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Ultra-cold Fermi gases exhibit a rich array of quantummechanical properties, including the transition
from a fermionic superfluid Bardeen-Cooper-Schrieffer (BCS) state to a bosonic superfluid Bose-
Einstein condensate (BEC).While these properties can be precisely probed experimentally, accurately
describing them poses significant theoretical challenges due to strong pairing correlations and the
non-perturbative nature of particle interactions. In this work, we introduce a Pfaffian-Jastrow neural-
network quantum state featuring a message-passing architecture to efficiently capture pairing and
backflowcorrelations.Webenchmark our approach on existingSlater-Jastrow frameworks and state-
of-the-art diffusionMonteCarlomethods, demonstrating aperformance advantage and the scalability
of our scheme.We show that transfer learning stabilizes the training process in the presence of strong,
short-ranged interactions, and allows for an effective exploration of the BCS-BEC crossover region.
Our findings highlight the potential of neural-network quantum states as a promising strategy for
investigating ultra-cold Fermi gases.

The study of ultra-cold Fermi gases has received considerable experimental
and theoretical attention in recent years due to their unique properties and
potential applications in fields ranging from condensed matter physics to
astrophysics. These systems can be created and manipulated in the
laboratory with high precision, providing a versatile platform for investi-
gating various phenomena. By tuning the s-wave scattering length a via
external magnetic fields near a Feshbach resonance, one can smoothly
transition from a fermionic superfluid Bardeen-Cooper-Schrieffer (BCS)
state with a < 0, characterized by long-range Cooper pairs to a bosonic
superfluid Bose-Einstein condensate (BEC)with a > 0, consisting of tightly-
bound, repulsive dimers. Given their diluteness, the behavior of these sys-
tems is mainly governed by a and the s-wave effective range of the potential
re, with natural units provided by the Fermi momentum kF, the Fermi
energy εF ¼ _2

2m k2F , and the Fermi gas energy per particle in the thermo-
dynamic limit EFG ¼ 3

5 εF (see ref. 1 and references therein).
The region between the BCS and BEC states, known as the unitary

limit, is particularly interesting as a diverges and re approaches zero. The
unitary Fermi gas (UFG) is a strongly interacting system that exhibits stable

superfluid behavior. Studying the BCS-BEC crossover near the unitary limit
can reveal critical aspects of the underlyingmechanismbehind superfluidity
in fermionic matter. The UFG is also universal, meaning its properties are
independentof thedetails of the two-bodypotential.This universality allows
for robust comparisons and predictions between seemingly disparate
quantum systems. For instance, the UFG is relevant for neutron stars, as
they provide a means to study superfluid low-density neutron matter2,3,
whose properties are crucial for the phenomenology of glitches4 and the
cooling of these stars via neutrino emission5–7.

Due to the onset of strong pairing correlations and the non-
perturbative nature of the interaction, the theoretical study of ultra-cold
Fermi gases is particularly challenging for quantum many-body methods.
Despite these challenges, quantum Monte Carlo (QMC) has proven to be
efficient in calculating various properties with high accuracy, including the
energy8, pairing gap9, and other quantities related to the so-called contact
parameter10. The simplestQMCmethod is variationalMonteCarlo (VMC),
often used as a preliminary step preceding more accurate methods, such as
auxiliary-field quantumMonte Carlo (AFQMC) or diffusion Monte Carlo
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(DMC). In unpolarized unitary Fermi gases, AFQMC is renown for pro-
viding the most accurate ground-state energies as it is sign-problem free8.
However, its applicability to other problems is somewhat limited, as
addressing odd-N systems, spin-polarized systems, or repulsive interactions
necessitates approximations that risk violating the variational principle.
Crucially, direct comparisons between continuum-based methods like
VMC and DMC, and lattice-based methods like AFQMC are valid only in
the limit of zero lattice spacing and zero effective range, due to both dis-
cretization and finite effective-range effects. Therefore, we opt to use state-
of-the-art DMC calculations as the main benchmark in this initial
investigation.

To control the fermion sign problem, DMC calculations typically rely
on thefixed-node approximation, keeping the nodes of thewave function in
the positions determined by the priorVMCcalculation. The analytical form
of the variational ansatz is usually tailored to specific problems of interest
and biased by the physical intuition of the researchers.While thefixed-node
approximation provides a rigorous upper bound to the ground-state energy
that agrees well with othermethods and experiments11,12, the resulting wave
function carries residual dependence on the starting variational wave
function13. This dependence is particularly significant in DMC calculations
of expectation values of operators that do not commute with the Hamil-
tonian, such as spatial and momentum distributions14.

In this work, we mitigate the biases introduced in traditional VMC
(and, by extension, DMC) approaches by performing VMC calculations
with highly flexible neural-network quantum states (NQS)15. After their
initial application to quantum-chemistry problems16,17, continuous-space
NQS have been successfully employed to study quantum many-body sys-
tems in the presence of spatial periodicities, such as interacting quantum
gases of bosons18, the homogeneous electron gas19,20, and dilute neutron
matter21. Recent works have also usedNQS to solve the nuclear Schrödinger
equation in both continuous space22–26 and the occupation number
formalism27, as well as spinless trapped fermion systems28. When dealing
with fermions, the antisymmetry is usually enforced by generalized Slater
determinants, the expressivity of which can be augmented with either
backflow transformations29 or by adding hidden degrees of freedom30.

Strong pairing correlations in fermionic systemsmotivate adopting an
antisymmetric wave function constructed from pairing orbitals rather than
single-particle orbitals. In the context of QMC studies of ultra-cold Fermi
gases, this wave function is typically constructed as an antisymmetrized
product of BCS spin-singlet pairs2,31–34. It goes by a variety of names, such as
the geminal wave function35,36, the singlet pairing wave function37, and the
(number-projected) BCS wave function34, just to name a few. Although
geminal wave functions have demonstrated significant improvements over
single-determinant wave functions of single-particle orbitals, the energy
gains are typically smaller for partially spin-polarized systems36, as con-
tributions from the spin-triplet channel are missing. This naturally leads to
the singlet-triplet-unpaired (STU) Pfaffian wave function37,38, in which the
pairing orbitals are explicitly decomposed into singlet and triplet channels.
Then, the STU ansatz is expressed as the Pfaffian of a blockmatrix, with the
singlet, triplet, and unpaired contributions partitioned into separate blocks.
When the triplet blocks are zero, the STU wave function reduces to the
geminal wave function.

Both the geminal and the STU wave functions rely on fixing the spin
ordering of the interacting fermions. Consequently, they are not amenable
to potentials that exchange spin, such as those used tomodel the interaction
among nucleons39. In neutron-matter calculations, for instance, the pairing
orbital for the Pfaffian wave function can be taken as a product of a radial
part and a spin-singlet part40,41. The spin-triplet pairing has so far been
neglected in neutron-matter calculations, but they can be treated similarly
without requiring spin ordering. Pfaffian wave functions combined with
neural-network Jastrow correlators42 have also successfully modeled lattice
fermions, even revealing the existence of a quantum spin liquid phase in the
J1-J2 models on two-dimensional lattices43.

We propose a NQS that extends the conventional Pfaffian-Jastrow37

ansatz by incorporating neural backflow transformations into a fully

trainable pairing orbital. Other than the assumption of strong pairing cor-
relations, our ansatz incorporates only the most essential symmetries and
boundary conditions. Permutation-equivariant backflow transformations
are generated by a message-passing neural network (MPNN), recently
introduced tomodel the homogeneous electron gas44. In addition to being a
significant departure from generalized Slater determinants, our Pfaffian-
Jastrow NQS naturally encodes pairing in the singlet and triplet channels
without stipulating a particular form for the pairing orbital. In viewof this, it
is broadly applicable to other strongly interacting systems with the same
symmetries and boundary conditions.

We demonstrate the representative power of our NQS by computing
ground-state properties of ultra-cold Fermi gases in the BCS-BEC
crossover. Our Pfaffian-JastrowNQS outperforms Slater-JastrowNQS by
a large margin, even when generalized backflow transformations are
included in the latter. We find lower energies than those obtained with
state-of-the-artDMCmethods, which start fromhighly accurate BCS-like
variational wave functions. Analysis of pair distribution functions and
pairing gaps reveal the emergence of strong pairing correlations around
unitarity. Transfer learning is utilized to investigate the BCS-BEC cross-
over region and approach the thermodynamic limit, all within a unified
ansatz.Our results underscore the viability of utilizingNQS in the ab initio
study of ultra-cold Fermi gases.

Results
Hamiltonian
We simulate the infinite system using a finite number of fermions N in a
cubic simulation cell with side length L, equipped with periodic boundary
conditions (PBCs) in all d = 3 spatial dimensions. We use ri 2 Rd and
si∈ {↑, ↓} to denote the positions and spin projections on the z-axis of the
i-th particle, and the lengthL canbe determined from theuniformdensity of
the system ρ ¼ N=L3 ¼ k3F=ð3π2Þ.

The dynamics of the gas is governed by the non-relativistic Hamilto-
nian

H ¼ � _2

2m

XN
i

∇2
i þ

XN
ij

vij; ð1Þ

where the attractive two-body interaction

vij ¼ ðδsi ;sj � 1Þv0
2_2

m
μ2

cosh2ðμrijÞ
; ð2Þ

acts only between opposite-spin pairs, making the interaction mainly in s-
wave for small values of re. In the above equations,∇2

i is the Laplacian with
respect to ri and rij = ∥ri− rj∥ is the Euclidean distance between particles i
and j. The Pöschl-Teller interaction potential of Eq. (2) provides an analytic
solution of the two-body problem and has been employed in several
previous QMC calculations10,32,33,45. The parameters v0 and μ tune the
scattering length a and the effective range re in the s-wave channel. In the
unitary limit ∣a∣→∞, the zero-energy ground state between two particles
corresponds to v0 = 1 and re = 2/μ. In order to analyze the crossover between
the BCS andBECphases, wewill use different combinations of v0 and μ that
correspond to the same effective range. In addition, wewill consider various
values ofμwithfixed v0 = 1 to extrapolate the zero effective rangebehavior at
unitarity.

Neural-network quantum states
We solve the Schrödinger equation associated with the Hamiltonian of Eq.
(1) using two different families of NQS. All ansätze have the general form

ΨðXÞ ¼ eJðXÞΦðXÞ; ð3Þ

where the Jastrow correlator J(X) is symmetric under particle exchange and
Φ(X) is antisymmetric. Here, we have introduced X = {x1,…, xN}, with
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xi = (ri, si), to compactly represent the set of all single-particle positions
and spins.

To address the limitations of the worksmentioned in the Introduction,
we take the most general form of the Pfaffian wave function37,38 as the
antisymmetric part of our ansatz,

ΦPJ ðXÞ ¼ pf P; ð4Þ

where P is an N ×Nmatrix defined as

P �

0 ϕðx1; x2Þ � � � ϕðx1; xN Þ
ϕðx2; x1Þ 0 � � � ϕðx2; xN Þ

..

. ..
. . .

. ..
.

ϕðxN ; x1Þ ϕðxN ; x2Þ � � � 0

2
66664

3
77775: ð5Þ

Unlike the determinant, which is well-defined for all square matrices, the
Pfaffian, denoted as pf, is only well-defined for even-dimensional, skew-
symmetric matrices. Therefore, the above construction applies to even N
only, but it can be easily extended to odd N, as we will discuss shortly. To
ensure skew-symmetry, the pairing orbital ϕ(xi, xj) is defined as

ϕðxi; xjÞ ¼ νðxi; xjÞ � νðxj; xiÞ; ð6Þ

whereν(xi, xj) is adense feed-forwardneuralnetwork (FNN)
46.This approach

capitalizes on the universal approximation property of FNNs. We do not
mandate a specific functional form for the pairing orbital, as in traditional
VMCapproaches, nor dowe keep the spinsfixed, aswith the geminal or STU
wave functions discussed in the Introduction. Instead, our pairing orbital
discovers the spin-singlet and spin-triplet correlations on its own.

If N is odd, we augment the above construction by introducing one
unpaired single-particle orbital ψ(xi), represented by another dense feed-
forward neural network. Instead of theN ×Nmatrix in Eq. (5), we take the
Pfaffian of an (N+ 1) × (N+ 1) matrix,

ΦPJ ðXÞ ¼ pf
P u

�uT 0

� �
; ð7Þ

where the vectoru 2 RN is defined by applying the unpaired single-particle
orbital on each of the single-particle degrees of freedom

u ¼

ψðx1Þ
ψðx2Þ
..
.

ψðxN Þ

2
66664

3
77775: ð8Þ

Now, our Pfaffian-Jastrow (PJ) ansatz is well-defined for both even and odd
N, and the pairing orbital ϕ(xi, xj) used to construct the matrix P remains
consistent in both scenarios.

Our PJ ansatz is agnostic to any particular form of the interaction and
systematically improvable by simply increasing the size of the network
representing ν(xi, xj) (and also ψ(xi), if N is odd). The input dimensions of
both ν(xi, xj) and ψ(xi) only depend on the spatial dimension d and not the
total number of particlesN, leading to a scalable ansatz. Given the generality
of our formulation, the Pfaffian ansatz calculation cannot be reduced to a
determinant of singlet pairing orbitals, as in the geminal wave function.
Thus, the efficient computation of the Pfaffian is crucial to the scalability of
our approach. To this aim, we implement the Pfaffian computation
according to ref. 47, an algorithm based on the well-known Gaussian
elimination process.

In addition to the antisymmetry of the fermionic wave function, the
periodic boundary conditions, and the translational symmetry (which will
be discussed inMessage-passing neural network subsection of theMethods
section), we also enforce the discrete parity and time-reversal symmetries as

prescribed in ref. 25—see the Discrete symmetries subsection in the
Methods for a detailed discussion. We further improve the nodal structure
of our PJ ansatz through backflow (BF) transformations48. To our knowl-
edge, this is the first time neural BF transformations have been used in a
Pfaffian wave function, although they have demonstrated their superiority
over traditional BF transformations within the Slater-Jastrow formalism in
numerous applications16,17,29. We replace the original single-particle degrees
of freedom xi by new ones ~xiðXÞ, such that correlations generated by the
presence of all particles are incorporated into the pairing orbital. To ensure
that the Pfaffian remains antisymmetric, the backflow transformationmust
be permutation equivariant with respect to the original xi, i.e. ~xi depends on
xi and is invariant with respect to the set fxjgj≠i. In the Message-passing
neural network subsection of the Methods, we discuss in detail how the
backflow correlations are encoded via a permutation-equivariant message-
passing neural network. All calculations labeled as PJ-BF assume that we
apply the transformations νðxi; xjÞ ! νð~xi; ~xjÞ to the FNN in Eq. (6).

For comparison, we also report results obtained using a Slater-Jastrow
(SJ) ansatz, where the antisymmetric part of the wave function is a Slater
determinant of single-particle states,

ΦSJ ðXÞ ¼ det

φ1ðx1Þ φ1ðx2Þ � � � φ1ðxN Þ
φ2ðx1Þ φ2ðx2Þ � � � φ2ðxN Þ

..

. ..
. . .

. ..
.

φN ðx1Þ φN ðx2Þ � � � φN ðxN Þ

2
66664

3
77775: ð9Þ

In the fixed-node approximation, the single-particle states are the products
of spin eigenstates with definite spin projection on the z-axis sα and plane
wave (PW) orbitals with discrete momenta kα = 2πnα/L, nα 2 Zd ,

φαðxiÞ ¼ eikα�riχαðsiÞ; ð10Þ

where χαðsiÞ ¼ δsα ;si . Here, α = (kα, sα) denotes the quantum numbers
characterizing the state.Wewill label Slater-JastrowNQS calculations using
the above plane wave orbitals as SJ-PW.

As in the Pfaffian case, we improve the nodal structure of the Slater
determinant using backflow transformations generated by the MPNN,
discussed in the Message-passing neural network subsection of the Meth-
ods. These transformations modify both the spatial and spin degrees of
freedom, as detailed in the Backflow transformations for the SJ ansatz
subsection of the Methods. Slater-Jastrow calculations using the backflow
orbitals will be labeled as SJ-BF.

Energy benchmarks
We first benchmark the performance of the various NQS, outlined in the
Neural-network quantum states subsection of the Results, against the state-
of-the-art, fixed-node diffusion Monte Carlo (DMC) method, presented in
the Diffusion Monte Carlo subsection of the Methods. The final converged
energies for our NQS are calculated by averaging over the last 100 optimi-
zation steps and errorbands are reported as their standarddeviation.Weopt
for the standard deviation over the standard error to account for oscillations
in the variational parameters around their converged values, treating the
energy at each iterationasmeasurements fromslightlydifferentmodels. The
training is considered convergedwhen the changes in the energy are smaller
than the error. For the DMC calculations, the error bands are the standard
errors of the block-averaged energies49,50. All assessments comparing our
NQS with DMC are conducted under identical conditions, including the
same number of particles, density, scattering length a, and effective range re.
In addition, all plots include error bands as shaded regions, even if they are
not easily visible. The overall convergence pattern is discussed inmore detail
in the Variational Monte Carlo subsection of the Methods.

In Fig. 1a, we aim to understand how the NQS respond as we vary the
depth T of the MPNN, discussed in the Message-passing neural network
subsection of the Methods. As shown, the final converged energies per
particle for the Slater-Jastrow ansatz with plane wave orbitals (SJ-PW)
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decreases monotonically towards the corresponding DMC-PW value, with
agreement at T = 5. This behavior echoes the findings of ref. 51, and
demonstrates the impact of the MPNN on the flexibility of our Jastrow.

Incorporating backflow correlations into the Slater-Jastrow ansatz (SJ-
BF) significantly improves results compared to the fixed-node approach
with plane waves, but more than half of the discrepancy between the two
DMC energies remains. Our SJ-BF ansatz presents a weak dependence on
theMPNNdepthT in Fig. 1a, suggesting it is unlikely that further increasing
T would yield substantial improvements in energy. Other changes in the
structure, such as increasing the number of nodes in a given hidden layer or
increasing the depth of the individual FNNs comprising the MPNN, could
theoretically provide more flexibility to the SJ-BF ansatz. However, it is
commonly observed that achieving high accuracy using a generalized Slater
determinant often requires the use of multiple Slater determinants17 or
hidden degrees of freedom25,30. In extreme cases, an entirely different ansatz
may become necessary, like the generalized Pfaffian we study here.

Therefore, we turn our attention to our Pfaffian-Jastrow-Backflow
(PJ-BF) ansatz. Even with a single MPNN layer, the PJ-BF ansatz easily
outperforms DMC-BCS while also possessing fewer parameters than the
single-layer SJ-BF ansatz (~5600 v.s. ~6200). For reference, the analytical
expressions for the number of parameters in each NQS are listed in Sup-
plementary Table 1, along with the specific numbers of parameters
involved in this work. The overall dependence on the MPNN depth is
weak, withT = 2 giving a slightly lower energy and variance thanT = 5. For
the remainder of our analysis, we will use the PJ-BF ansatz with T = 2,
which contains about 8500 variational parameters. In this initial investi-
gation, we have employed the same Jastrow correlator in all of our NQS to
ensure a fair comparison between the different architectures. Our future
research will explore whether the Jastrow component is essential or if we
can exclusively rely on the generalized Pfaffian.

Given that theunitary limit is characterizedbyavanishingeffective range,
we examine how the ground-state energy varies with re in Fig. 1b. To expedite
andstabilize the trainingprocess for smallervaluesof re,weemploya technique
called transfer learning. Initially, we train the PJ-BF ansatz with T= 2 using
random initial parameters for kFre= 0.4, which corresponds to approximately
20% of the average interparticle distance. We then fine-tune this model as we
progressively reduce kFre to 0.2, 0.1, and finally, 0.05. With each decrease, the
wave function becomes increasingly more challenging to learn.

The PJ-BF ansatz gives energies approximately 0.004EFG− 0.009EFG
lower than DMC-BCS, with the largest differences occurring for the largest
values of kFre. This behavior is somewhat expected, as theDMCcalculations
rely on the nodes of the geminal wave function, which only considers
contributions from the singlet channel. For small values of kFre, this is a
reasonable assumption to make, but the effects of the approximation are
more apparent for larger values. Extrapolating to zero effective range using
quadratic fits (see Supplementary Table 2) suggests that PJ-BF and DMC-
BCS energies might eventually converge or at least approach each other,
mainly due to the dominance of s-wave contributions. However, in our
Pfaffian ansatz, we do not make any assumptions about the character of the
pairs. The Pfaffian is a strict generalization of the geminal, and when it is
coupledwith a fully trainable pairing orbital, it is able to capture both singlet
and triplet contributions without guidance. The true flexibility of our
method originates from the ability to include completely generalized
backflow correlations while remaining sign-problem free. Even if backflow
correlations are included in the starting variational wave function for the
DMCcalculations, the fixed-node approximation and the underlying biases
inherent to the variational ansatzwould limit the final converged energy. As
a result, we anticipate that our ansatz will outperformDMC at even smaller
effective ranges than those explored in this work, although it will likely
require fine-tuning of the network structure.

Fig. 1 | Ground-state energies per particle. The
converged energies per particle for the neural-network
quantum state (NQS) calculations are obtained by
averaging over the last 100 optimization steps, and the
corresponding error bands, represented by shaded
regions, are the standard deviations. The error bands
for the diffusion Monte Carlo (DMC) calculations are
the standard errors of the block-averaged energies. The
Pfaffian-Jastrow ansatz with backflow (PJ-BF) is
represented by orange triangles in all panels. a Initial
comparison among three differentNQS and twoDMC
benchmarks as a function of the message-passing
neural network depthT. The Slater-Jastrow ansatzwith
plane wave orbitals (SJ-PW) is represented by blue
squares, and the Slater-Jastrow ansatz with backflow
orbitals (SJ-BF) is represented by green circles. The
interaction parameters are set to v0 = 1 and μ = 5, cor-
responding toaneffective rangeofkFre = 0.4.TheDMC
benchmark energies with (DMC-BCS) and without
pairing (DMC-PW) are displayed as solid and dashed
lines, respectively. b Energies at unitarity as a function
of effective range kFre. The DMC-BCS benchmark
energies (blue circles) and the PJ-BF energies (orange
triangles) are extrapolated to zero effective range using
quadratic fits (dashed lines). See Supplementary
Table 2 for the computed and extrapolated energies.
c Energies at unitarity as a function of the number of
particlesN, for evenN only. The effective range is fixed
at kFre= 0.2. See Supplementary Table 3 for the data
depicted in the plot. d Energies in the BCS-BEC
crossover region as a function of inverse scattering
length 1/akF for a fixed effective range kFre= 0.2. Refer
to Supplementary Table 4 for the values of the inter-
action parameters v0 and μ, along with the corre-
sponding numerical values of the energies.
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Oneof themost appealing aspects of ourPJ-BF ansatz is that it doesnot
depend on the particle numberN. In light of this, we can apply the transfer
learning procedure again to accelerate the training of the larger N cases by
starting with the parameters obtained from the smallerN cases.We use this
process to investigate the ground-state energies at unitarity as a function of
N, as shown inFig. 1c. See SupplementaryTable 3 for thenumerical valuesof
the energies and errors. Our PJ-BF ansatz gives energies about
0.007− 0.008EFG lower thanDMC for all values ofN tested, with the largest
discrepancy at N = 38. Further investigations will be required to make
conclusions about the thermodynamic limit.

As an initial comparisonwith existingAFQMCresults,we consider the
case ofN = 38 and kFre = 0.2. Our PJ-BF ansatz yields ground-state energies
0.0061(5)EFG higher than the AFQMC value of 0.3897(4)EFG that we
extracted from Fig. 2 of ref. 8. A portion of this discrepancy is likely due to
using different finite effective-range potentials52; discretization effects pre-
sent in AFQMC also contribute. In addition, the refinement of our network
through hyperparameter tuning couldmitigate some of these discrepancies.
In future work, we plan to carry out detailed benchmarks with theAFQMC.
To this aim, we will carefully extrapolate to zero effective range using the
transfer learning technique outlined here, so as to enable comparison with
the AFQMC zero lattice spacing limit.

Finally, we explore the BCS-BEC crossover region for a fixed effective
range kFre = 0.2 in Fig. 1d. See Supplementary Table 4 for the values of the
interaction parameters v0 and μ, as well as the corresponding DMC-BCS
benchmarks and the PJ-BF results.Once again,we employ transfer learning,
wherein we use cases closer to unitarity to pretrain the cases that are further
away. In the BCS regime, our PJ-BF ansatz consistently yields energies
~0.01EFG lower than those obtained from DMC-BCS, albeit with slightly
inferior performance in the BEC regime. We attribute the minor difference
in the performance of our PJ-BF ansatz between the BCS andBECphases to
the requirement for greater flexibility in capturing the short-range behavior
of pairs in the BEC regime.We anticipate that enlarging the size of the FNN
that defines the pairing orbital would help alleviate the small discrepancies
in performance observed between the BCS and BEC phases.

Pair distribution functions
The spin-dependent two-body radial distribution functions capture the
probability density of finding two particles with specific spin orientations at a
givenseparationdistance.Hence, theyprovideaquantitativedescriptionof the
spatial correlations and pairing phenomena between fermionic particles.Note
that NQS offer a significant advantage over DMCmethods when computing
expectation values of quantum mechanical operators that do not commute
with the Hamiltonian. The accuracy of DMC estimates of two-body dis-
tribution functions heavily relies on the quality of the starting variational wave
function, and extrapolations have to be performed to remove such depen-
dencies that are particularly apparent at small interparticle distances10.

We compute the opposite-spin pair distributions similar to ref. 40, by
first defining

gcðrÞ ¼
1

2πr2ρN

XN
i < j

hΨjδðrij � rÞjΨi
hΨjΨi ; ð11Þ

gzðrÞ ¼
1

2πr2ρN

XN
i < j

hΨjδðrij � rÞσzi σzj jΨi
hΨjΨi ; ð12Þ

where σzi is the Pauli Z-operator acting on the i-th particle. Since the
eigenvalues of σzi σ

z
j are+ 1 if particles i and j have the same spin and− 1

they have opposite spin, the opposite-spin pair distribution function can be
computed as

g"#ðrÞ ¼
1
2

gcðrÞ � gzðrÞ
� �

: ð13Þ

In Fig. 2a, we show the opposite-spin pair distribution functions at unitarity
for kFre = 0.4, 0.2, and 0.1. Notice how the peaks of the distributions at
kFr = 0 grow roughly quadratically as kFre is reduced by half, demonstrating
the presence of strong pairing correlations as we approach the unitary limit
re→ 0. Clearly, the short-range character of the distributions are important
to capture at unitarity, as they begin to overlap when r > re.

Figure 2 b presents a complementary set of opposite-spin pair dis-
tribution functions in the crossover region with fixed effective range of
kFre = 0.2. When leaning towards the BCS phase 1/akF =− 0.5, the long-
range tail of the density is enhanced compared to the unitary case 1/akF = 0.
On the other hand, the tail is diminished in the BEC phase 1/akF =− 0.5,
suggesting the initiation of dimer formation. The differences in the peaks of
thedistributions arenot asdramatic as inFig. 2a, but they are consistentwith
the expected behavior in the BCS and BEC regimes near unitarity.

Pairing gap
The pairing gap is computed using odd-even staggering53

ΔðNÞ ¼ EðNÞ � 1
2
EðN þ 1Þ þ EðN � 1Þð Þ; ð14Þ

whereN is taken to be odd and E(N) denotes the total energy ofN particles.
Since theMPNN and the pairing orbital ϕ is independent of the system size
N, the trained ansatz for N = 14 can serve as the initial state for the N = 16
calculation. For the N = 15 calculation, the pairing orbital from the N = 16
calculation was utilized as the starting point, while the unpaired single-
particle orbitalψwas initializedwith randomparameters. The final energies
per particle forN = 14, 15, 16 are listed in Table 1, alongwith the differences

Fig. 2 | Opposite-spin pair distributions. Error
bands are computed as the standard deviation over
the last 100 iterations, but are not easily visible in the
plot. a Distributions at unitarity for different effec-
tive ranges: kFre = 0.4 (blue squares), kFre = 0.2
(orange circles), and kFre = 0.1 (green triangles).
b Distributions in the crossover region for the
BCS phase 1/akF =− 0.5 (blue squares), unitarity
1/akF = 0 (orange circles), and the BEC phase
1/akF = 0.5 (green triangles). The effective range is
fixed at kFre = 0.2. See Supplementary Table 4 for the
corresponding values of the interaction parameters
v0 and μ.
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between the PJ-BF andDMC-BCSmethods. The pairing gaps in Table 2 are
computed using the energies in Table 1.

In our investigations of even-N systems,we have enforced translational
invariance in our ansatz to better approximate an infinite system of corre-
lated pairs. This is achieved by excluding the absolute particle positions ri in
the inputs to the MPNN — see the Message-passing neural network sub-
section of theMethods for the full description. For odd-N systems, however,
breaking translational symmetry is necessary due to an unpaired fermion
occupying theminimumof the quasiparticle dispersion atfinite k54, yielding
nonzero total momentum. To highlight the versatility of our approach, we
present two different PJ-BF calculations for the unitary Fermi gas with
N = 15—one that enforces translational symmetry, and another that breaks
it. In the former, we simply take the one-body output of the MPNN hðTÞi as
input to the single-particle pairing orbital ψ, since it is translationally
invariant by construction. In the latter, we concatenate the positions
ðri; hðTÞi Þ with the MPNN output, keeping in mind the spins have already
been included hðTÞi .

In the DMC-BCS calculations, translational symmetry is enforced by
placing the unpaired particle in the k = 0 momentum state. To break
translational symmetry, we instead place the unpaired particle in different
momentum states k ≠ 0 and select the one giving the lowest energy. Notice
that symmetry breaking and enforcement in the PJ-BF calculations is more
general and efficient than in the DMC-BCS calculations, as we do not have
to specify the momentum state of the unpaired particle in advance, nor do
we have to run the calculations repeatedly for energy comparisons.

For N = 15 at unitarity, our PJ-BF energies are ~ 0.015EFG
and ~ 0.013EFG lower than DMC-BCS in the cases with and without
translational symmetry, respectively. Meanwhile, the PJ-BF energies are
just ~ 0.007EFG lower for both the N = 14 and N = 16 cases, leading to a
smaller pairing gap than predicted by DMC-BCS. Specifically, we predict a
pairing gap that is ~ 0.07εF smaller with translational symmetry,
and ~ 0.06εF smaller without translational symmetry.

At unitarity, our PJ-BF ansatz produces a pairing gap of
Δ(15) = 0.519(8)εF, just 0.07(5)εF larger than the reported experimental
value Δexp = 0.45(5)εF

9. Conversely, DMC-BCS calculations yield a larger
pairing gap of Δ(15) = 0.577(8)εF, exceeding Δexp by 0.13(5)εF. Considering
the influence offinite-size effects in both PJ-BF andDMC-BCS calculations,
further investigation involving larger particle numbers is warranted. The
pairing gapwe computed for this small test systemaligns,within errors,with
previous DMC calculations of the pairing gap at Δ(66) = 0.84(4)
EFG = 0.50(2)εF

54.
The difference in performance between the odd-N cases and the even-

N cases is evenmore noticeable on the BEC side, with theN = 15 calculation
being ~ 0.016EFG lower, and the N = 14 and N = 16 calculations being

just ~ 0.005EFG lower than theDMC-BCS energy. This leads to apairing gap
that is about 0.10εF smaller than DMC-BCS predicts. On the BCS side, the
PJ-BFfinds an improvement in energy of 0.009EFG to 0.011EFG compared to
DMC-BCS, with no significant difference in performance between the odd
and evenN cases. Still, the gap predicted by PJ-BF is ~ 0.008εF smaller than
DMC-BCS.

Discussion
In this study, we propose a neural-network quantum state based on the
Pfaffian-Jastrow (PJ) framework that utilizes a message-passing neural
network (MPNN) to encode pairing and backflow (BF) correlations. We
evaluate its performance against comparable Slater-Jastrow (SJ) ansätze
with identical MPNN architectures. Our results indicate that increasing the
depth of the MPNN systematically improves the performance of the SJ
ansätze, but backflow correlations within the single-particle picture are still
insufficient in capturing all pairing correlations. However, a simple and
compact PJ-BF ansatz outperforms state-of-the-artDMC-BCS benchmarks
in both the BCS and BEC phases. This improvement remains significant in
the limit of zero effective range,which is particularly challenging to compute
with many-body methods.

Transfer learning has proven to be an essential tool in this work. It
enables the realizationof theunitary limit in a controlledmanner,mitigating
the risk of becoming trapped in local minima. It also allows for the efficient
exploration of regions beyond unitarity, unlocking new avenues for
studying the BCS-BEC crossover. Transfer learning also played amajor role
inmoving towards the thermodynamic limit, with up toN = 38. All even-N
systems can be treated with a single architecture, while the odd-N systems
can be treated by introducing one additional FNN to represent the unpaired
single-particle orbital. This small modification makes the calculation of the
pairing gap more easily accessible and enables concrete assessments of
superfluid behavior. Our PJ-BF ansatz performs particularly well for odd-N
with1/akF≥0, but its predictionof a smaller pairing gap compared toDMC-
BCS is consistent throughout the crossover region.

In future work, we intend to perform a more careful extrapolation to
the re→ 0 limit with larger N since, with the exception of the unitary limit,
we have used relatively large values of kFre in this initial investigation of the
BCS-BEC crossover. More hyperparameter tuning will be needed, because
the smaller effective ranges will demand greater flexibility in our ansatz to
accurately capture the short-distance physics. In particular, we plan to
explore changes in thewidth of the hidden layers, the depth of the individual
FNNs, and the necessity of the Jastrow. With a more thoroughly tuned
network structure and a system size closer to the thermodynamic limit, we
plan to conduct a direct comparison with other state-of-the-art methods,
particularly AFQMC.

OurPfaffian-Jastrow-BackflowNQSdisplays immense potential in the
study of ultra-cold Fermi gases. Unlike conventional methods, this ansatz is
not subject to biases arising from physical intuition or a lack thereof, as it
does not require specifying a particular form for the pairing orbitals. For this
reason, it can be readily applied to other strongly correlated systems,
including molecules and other systems relevant for quantum chemistry
applications. In contrast to the commonly used geminal wave function, our
ansatz doesnot rely onordering the spin of the interacting fermions, and it is

Table 1 | Energies for even and odd particle numbers

1/akF N DMC-BCS PJ-BF Diff.

−0.5 14 0.7052 (3) 0.6937 (3) −0.0115 (4)

15 0.7546 (3)* 0.7433 (4)* −0.0113 (5)

16 0.7074 (4) 0.6980 (3) −0.0094 (5)

0 14 0.428 (1) 0.4208 (3) −0.007 (1)

15 0.4900 (2)* 0.4766 (5)* −0.0134 (5)

15 0.5357 (2) 0.5209 (5) −0.0148 (5)

16 0.4240 (2) 0.4173 (4) −0.0067 (4)

0.5 14 −0.3198 (3) −0.3244 (4) −0.0046 (5)

15 −0.2020 (3)* −0.2176 (5)* −0.0156 (6)

16 −0.3194 (3) −0.3245 (3) −0.0051 (4)

Ground-state energies per particle for even and odd particle numbers N, in units of the Fermi gas
energy in the thermodynamic limitEFG. The effective range is fixedat kFre = 0.2. Valueswith asterisks
(*) indicate calculations without translational symmetry. The last column lists the differences
between the Pfaffian-Jastrow with backflow (PJ-BF) energies and the diffusion Monte Carlo with
pairing (DMC-BCS) benchmarks.

Table 2 | Pairing gaps

1/akF DMC-BCS PJ-BF Diff.

−0.5 0.434 (6)* 0.426 (7)* −0.008 (9)

0 0.577 (8)* 0.519 (8)* −0.06 (1)

0 0.988 (8) 0.918 (8) −0.07 (1)

0.5 1.058 (6)* 0.962 (8)* −0.10 (1)

Thepairing gapΔ(15), in units of the Fermi energy εF, in theBCS-BECcrossoverwith fixed kFre = 0.2.
Errors are propagated from Table 1. Values with asterisks (*) indicate using an N = 15 calculation
without translational symmetry. The last column lists the differences between the Pfaffian-Jastrow
with backflow (PJ-BF) pairing gaps and the correspondingdiffusionMonteCarlowith pairing (DMC-
BCS) benchmarks.
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therefore amenable to Hamiltonians that exchange spin, such as those
modeling nuclear dynamics. In this regard, we anticipate calculations of
atomic nuclei and low-density isospin-asymmetric nucleonic matter and
carry out detailed investigations on the nature of nuclear pairing55.

When the stochastic reconfiguration algorithm and transfer learning
techniques are combined with the enforcement of translational, parity, and
time-reversal symmetries, highly non-perturbative correlations can be
encoded in a small number of parameters by modern standards. This
approach will pave the way for future developments in the study of many-
body systems, as it offers a powerful tool for encoding correlations in a
compact and computationally feasible manner.

Methods
Message-passing neural network
Implementing the families of NQS, Ψ(X), discussed in the Neural-network
quantum states subsection of the Results is possible usingX as direct inputs to
the appropriate FNNs and Deep-Sets56. Still, it is advantageous to devise new
inputs that already capture a large portion of the correlations. As in ref. 44, we
employapermutation-equivariantmessage-passingneuralnetwork (MPNN)
to iteratively build correlations into new one-body and two-body features
from the original “visible” features. The visible features are chosen to be

vi ¼ ðsiÞ; ð15Þ

vij ¼ rij; k rij k; sij
� �

; ð16Þ

with the separation vectors rij = ri− rj and distances ∥rij∥ = rij replaced by
their L-periodic surrogates

rij 7! cosð2πrij=LÞ; sinð2πrij=LÞ
� �

; ð17Þ

k rij k 7! k sinðπrij=LÞ k; ð18Þ

and the quantity sij � 2δsi;sj � 1 assigned a value of+ 1 for aligned spins
and− 1 for anti-aligned spins. Note that we have excluded explicit
dependence on the particle positions ri in the visible one-body features,
thereby enforcing translational invariance in the new features. Linear
transformations are applied to and concatenatedwith each feature to obtain
the initial hidden features

hð0Þi ¼ ðvi;AviÞ; ð19Þ

hð0Þij ¼ ðvij;BvijÞ: ð20Þ

Themain purpose of the linear transformationsA andB is to preprocess the
input data, but they also help simplify the implementation by keeping the
dimension of the hidden featureshðtÞi ,hðtÞij constant for all t. In each iteration,
t = 1,…, T of the MPNN, information is exchanged between the one- and
two-body streams through a so-called message

mðtÞij ¼ Mt hðt�1Þi ; hðt�1Þj ; hðt�1Þij

� �
: ð21Þ

For a given particle i, relevantmessages are collected and pooled together to
destroy the ordering with respect to all other particles j ≠ i,

mðtÞi ¼ pool fmðtÞij j j≠ ig
� �

: ð22Þ

The pooling operation, pool, collapses the order of the elements in the set it
acts upon and produces a vector with the same dimension as an individual
element. Throughout this work, we use logsumexp-pooling, the smooth

variation of max-pooling. More explicitly, the resulting vector of the
logsumexp-pooling function acting on a set of vectors {zi} is given by

logsumexp fz ig
� � ¼ log

X
i

expðz iÞ
 !

; ð23Þ

where both the logarithm and exponential are applied element-wise.
The pairwise messagesmðtÞij and the implied particle messagesmðtÞi are

then used to update the hidden features

hðtÞi ¼ vi; Ft hðt�1Þi ; mðtÞi
� �� �

; ð24Þ

hðtÞij ¼ vij; Gt hðt�1Þij ; mðtÞij
� �� �

: ð25Þ

The functions Mt, Ft, and Gt are all unique FNNs with the same output
dimension as the linear preprocessors A and B. By incorporating con-
catenated skip connections to the visible features, we guarantee that the
signal originating from the raw data remains discernible even as theMPNN
depth T increases. Finally, we combine the resulting outputs hðTÞi and hðTÞij
into pairwise feature vectors

g ij ¼ hðTÞi ; hðTÞj ; hðTÞij

� �
ð26Þ

to feed into subsequent networks. The flow of information through the
MPNNcan be visualized in Fig. 3. Notice how the hidden features in a given
layer depend on the hidden features of the previous layer and the original
visible features.

For all our NQS, we use a Jastrow correlator based on a Deep-Set56 to
enforce permutation invariance over the set of all pairwise features

JðXÞ ¼ ρ pool fζðg ijÞ j i≠ jg
� �� �

: ð27Þ

Here, ρ and ζ are FNNs, and the pooling operation is the same as in Eq. (22).
While many Jastrow functions are typically designed to satisfy Kato’s cusp
condition57 for specific systems, we take a different approach and allow our
neural networks to learn the cusp fully. The short-range behavior of the
ground state is particularly important for the UFG, so leaving our NQS
completely unbiased serves as an important test for evaluating the overall
capabilities of NQS.

The Slater-Jastrow ansatz with plane wave orbitals (SJ-PW) does not
require any additional neural networks beyond ρ and ζ, so it establishes a
baseline for the number of trainable parameters in this work. On the other
hand, the backflow variables qi and θi for the Slater-Jastrow ansatz with
backflow orbitals (SJ-BF) are the outputs of another Deep-Set

ðReðqiÞ; ImðqiÞ; θiÞ ¼ ρbf pool fζbf ðg ijÞ j j≠ ig
� �� �

; ð28Þ

which is permutation invariant with respect to all j ≠ i by construction. The
size of ρbf and ζbf determines the number of extra variational parameters
present in the SJ-BF ansatz compared to the SJ-PW ansatz. For the PJ-BF
ansatz, the pairing orbital ν in Eq. (6) simply takes gij as input in place of
(xi, xj). Therefore, the numberof additional variational parameters in thePJ-
BF ansatz relative to the SJ-PW ansatz is determined by the size of ν.

The individual FNNs within our NQS are solely dependent on the
spatial dimension d andnot the system sizeN. The analytical expressions for
the number of parameters for each of theNQS are shown in Supplementary
Table 1, where the individual FNNs are assumed to have constant width.
The hyperparameters are the MPNN depth T, the depth of the individual
FNNsD, and the number of hidden nodesH in a single hidden layer. All of
the FNNs mentioned throughout this word use H = 16 and D = 1. The
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activation function is GELU58 and the weights/biases are initialized with
glorot normal/zeros unless pretrained parameters are used.

Backflow transformations for the SJ ansatz
When employing the SJ ansatz in the fixed-node approximation (SJ-PW),
we take the single-particle states to be products of momentum eigenstates
with definite wave vector kα = 2πnα/L, nα 2 Zd , and eigenspinors with
definite spin projection sα,

∣φα

� ¼ ∣kα
�
∣sα
�
: ð29Þ

Omitting overall normalization constants, the probability amplitude of
measuring particle i in state α is given by the plane wave orbital

φαðxiÞ ¼ hxijφαi ¼ hrijkαihsijsαi ¼ eikα�riδsα ;si ; ð30Þ

where ∣xi
� ¼ ∣ri

�
∣si
�
. Let us transform to a new basis with modified position

eigenstates and a superposition of eigenspinors ∣~xi
� ¼ ∣~ri

�
∣χi
�
. While per-

mutation equivariance is the sole essential property required for the backflow
transformation ∣xi

�7!∣~xi
�
, topreserve theantisymmetryof the fermionicwave

function, an additional property is desirable for computational convenience.
Specifically,whenthe transformationdependsoncertainparameters,weaimto
have ∣~xi

� ¼ ∣xi
�
when the parameters are identically zero. Then, nonzero

parameters signify deviations from the original plane wave orbitals, such that
less training is required compared to completely trainable orbitals.

An appropriate spatial transformation is trivial.We simply define new
parameters qi 2 Cd , called the backflow displacement, and shift the coor-
dinates as

ri ! ri þ qiðXÞ: ð31Þ

The above backflow displacement is complex, allowing for changes in both
the phases and amplitudes of the original plane wave orbitals.

For the spin part of the transformation,we look to spinors on theBloch
sphere for inspiration,

∣χi
� ¼ cos

θiðXÞ
2

	 

∣si
�þ sin

θiðXÞ
2

	 

σxi ∣si

�
: ð32Þ

In the above, we have introduced another backflow variable θi 2 R akin to
the polar angle of a Bloch spinor, andwe have excluded the relative phase in
favor of a completely real-valued wave function. We also write the
superposition in terms of ∣si

�
and the Pauli X-operator σxi , which flips the

spin of the i-th particle, rather than ∣ "� and ∣ #�. Thisway, it is obvious that
∣χi
� ¼ ∣si

�
when θi = 0, as desired. The overlap of two spinors is given by

hχijχji ¼ cos
θi
2

	 

cos

θj
2

	 

hsijsji

þ sin
θi
2

	 

cos

θj
2

	 

hsijσxyi jsji

þ cos
θi
2

	 

sin

θj
2

	 

hsijσxj jsji

þ sin
θi
2

	 

sin

θj
2

	 

hsijσxyi σxj jsji

¼ cos
θi � θj

2

	 

δsi;sj þ sin

θi � θj
2

	 

ð1� δsi ;sj Þ:

ð33Þ

Therefore, if si = sj, the overlap is 1 for θi = θj and 0 for θi− θj = ± π. On the
other hand, if si ≠ sj, the overlap is 0 for θi = θj and ± 1 for θi− θj = ± π.

Finally, we can compute the backflow orbitals with the transformed
degrees of freedom

φαð~xiÞ ¼ h~xijφαi
¼ h~rijkαihχijsαi

¼ eikα�~ri cos
θi
2

	 

hsijsαi þ sin

θi
2

	 

hsijσxyi jsαi

	 


¼ eikα�ðriþqiÞ cos
θi
2

	 

δsα ;si þ sin

θi
2

	 

ð1� δsα ;si Þ

	 

:

ð34Þ

In Eqs. (31) and (32), we use the notation qi(X) and θi(X) to emphasize that
the backflowparameterswedefinehere are not variational parameters, but a
function of all other particles. More specifically, they are permutation-
equivariant functions of the original xi, whose functional forms depend on
the outputs of the permutation-equivariant MPNN described in the
Message-passing neural network subsection of the Methods.

Fig. 3 | Schematic representation of the message-passing neural network. Each of
the T total iterations of the network is represented by a yellow box. Dashed lines
represent the concatenation operations, while solid lines represent the

parameterized transformations (linear transformations and nonlinear feedforward
neural networks). Messages, highlighted in pink, mediate the exchange of infor-
mation between the one- and two-body streams, in blue.
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Discrete symmetries
In addition to fermion antisymmetry, periodic boundary conditions, and
translational invariance, we also enforce parity and time-reversal symme-
tries as prescribed in ref. 25. In the unpolarized case, we enforce the discrete
parity and time-reversal symmetries using ΨPT(R, S), which is given by

ΨPðR; SÞ ¼ ΨðR; SÞ þ Ψð�R; SÞ; ð35Þ

ΨPT ðR; SÞ ¼ ΨPðR; SÞ þ ð�1ÞnΨPðR;�SÞ; ð36Þ

where n =N/2 and we have used the notation R = {r1,…, rN} and
S = {s1,…, sN} for the set of all positions and spins, respectively. Enforcing
these symmetries has been shown to accelerate the convergence of ground-
state energies for both atomic nuclei25 and dilute neutron matter21.

Variational Monte Carlo and training
We train our NQS by minimizing the energy

EðpÞ � hΨðpÞjHjΨðpÞihΨðpÞjΨðpÞi ð37Þ

with respect to the variational parameters p. To compute the energy and its
gradient ∇pE using Monte Carlo integration, we sample positions R and
spins S from ∣Ψ(R, S)∣2 in a way that preserves periodicity and total spin
projectionon the z-axis, as in refs. 18,25. Since theorderingof the spins is not
fixed, our ansätze can be immediately applied to any continuous-space
Hamiltonian that exchange spin, such as ref. 59.

A sophisticated optimization technique is critical for achieving an
ansatz that is both compact and expressive. In this work, we employ the
stochastic reconfiguration60 (SR) algorithmwith regularization based on the
RMSprop method, introduced in ref. 25. The parameters are updated as

p p� ηG�1∇pE; ð38Þ

where η is a constant learning rate andG is the quantum geometric tensor61.
Due to the strong and short-range nature of the interaction inEq. (2), it

is likely for theoptimizationprocess to get trapped ina localminimumwhen
initialized with random parameters, especially for small values of kFre. For
instance, the energy may initially decrease, but then abruptly begin to
oscillate around a constant value, with a very large variance. To avoid this
problem, we pretrain the NQS on a softer interaction (kFre = 0.4) before
proceeding to harder ones (kFre = 0.2, 0.1, 0.05). Not only does this
approach improve the final converged energy, but the efficiency of the
optimization process overall, since the larger values of kFre can be trained
more aggressively.

For the initial phase of training the softer interaction kFre = 0.4 with
random initial parameters, the SJ-PW and SJ-BF ansätze reached

convergence within 5000 iterations and the PJ-BF ansatz reached con-
vergence within 10000 iterations. The differences in the required number of
training iterations can be attributed to the pairing orbital being fully
trainable in the PJ ansatz, while the SJ ansätze are designed to closely
approximate the free Fermi gas wave function for small values of the var-
iational parameters. During this phase, we used a learning rate of η = 0.001
and only 8000 Monte Carlo samples divided into 40 block averages.

After comparing the performance of the various NQS, in Fig. 1a, we
then chose a specific model (PJ-BF with an MPNN depth of T = 2) to fine-
tune at kFre = 0.2 through the transfer learning process. In this stage, we
reduced the learning rate toη = 0.0001and increased the number of samples
to 16000. Convergence was reached within 10000 iterations. Proceeding in
this way, we continued to reduce kFre by half, reduce the learning rate, and
increased the number of samples, until we reached kFre = 0.05.

This transfer learning process is particularly useful as we decrease re,
but we also use it to increaseN. In Fig. 4a, we present the energy per particle
throughout the training for different N. When we transition to a larger N,
there is a slight initial increase in energy, but it is noticeably less pronounced
compared to starting with randomparameters. Transfer learning forN > 14
with afixed effective range kFre = 0.2 required approximately 10000 training
iterations using learning rates in the range of η∈ [0.0001, 0.0004].

Similarly, when investigating the BCS-BEC crossover for
1/akF∈ [− 1, 1] under the same fixed effective range kFre = 0.2, our
approach demanded the same number of iterations and range of learning
rates. However, the step size of the Metropolis sampler had to change
drastically in the crossover region. We tuned this step size such that the
acceptance rate was approximately 60%.

Supplementary Table 5 presents the time per optimization step for
both the SJ-BF and PJ-BF ansätze as ratios compared to the time per opti-
mization step for the SJ-PW ansatz with the same MPNN depth T. The
computational costs of both the SJ and PJ ansätze are primarily determined
by the evaluation of the shared MPNN, and of course, the details of the
implementation, computing resources, and hyperparameters. For an
MPNN depth of T = 1, our implementation of the SJ-BF ansatz required
22%more time per optimization step than the SJ-PW ansatz, while the PJ-
BF ansatz required 52% more time compared to the SJ-PW ansatz. The
differences in the time required decrease asT increases, with an 8% increase
for SJ-BF and a 22% increase for PJ-BF at a depth of T = 5.

Supplementary Table 6 lists the time per optimization step tN for the
PJ-BF ansatz and different N as ratios compared to the N = 14 case, t14. In
addition, the times tN are shown as a function ofN in Fig. 4b. The algorithm
we used to compute the Pfaffian, as referenced in refs. 37,47, is theoretically
expected to scale as O(N3). The nearly perfect linear fit indicates that the
computational time scales as O(N1.894) for the PJ-BF ansatz with T = 2. Our
more favorable scaling is most likely due to the parallelization we have
implemented and the use of 4 NVIDIA-A100 GPUs during most of our
simulations. The data point for N = 38 utilizes 8 NVIDIA-A100 GPUs, as

Fig. 4 | Computational details. a To demonstrate
the transfer learning strategy, we depict the energy
per particle, in units of the Fermi gas energy EFG,
plotted against the optimization step, with the
training curves for increasing N concatenated
together. The final parameters from the previous
training session were used as the initial parameters
for the subsequent training session. b Log-log plot of
wall time per optimization step tN as a function of
particle numberN. The slope of the linear fit (dashed
line) for N≤32 gives an approximate scaling of
O(N1.894) when using 4 NVIDIA-A100 GPUs.
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opposed to 4 GPUs used for other points, and was consequently excluded
from the fit.

Diffusion Monte Carlo
The fixed-node DMC calculations are performed as described in ref. 62. All
comparisons between our NQS and the DMC calculations involve identical
conditions, including the same number of particles, density, scattering
length a, and effective range re. The initial state is prepared using a varia-
tional wave functionwith the same general formasEq. (3).Note that, within
the fixed-node approximation, DMC provides a strict upper bound to the
energy of the system.While DMC is a precisemethod, its accuracy relies on
the choice of nodal surface and the quality of the preceding VMC
calculation.

The symmetric Jastrow factor is given by

JðXÞ ¼
Xn
ii0

uðrii0 Þ; ð39Þ

uðrÞ ¼ K tanhðμJ rÞ coshðγrÞ=r; ð40Þ

where n =N/2 and the unprimed and primed indicies denote the spin-up
and spin-down particles, respectively. The parameters K and γ are adjusted
so that u(d) = 0 and u0ðdÞ ¼ 0, and μJ and d are variational parameters.
Considering that the s-wave channel dominates the interaction, the
antisymmetric part is given by the number-projected BCS wave function

ΦBCSðXÞ ¼ det

ϕðr110 Þ ϕðr120 Þ � � � ϕðr1n0 Þ
ϕðr210 Þ ϕðr220 Þ � � � ϕðr2n0 Þ

..

. ..
. . .

. ..
.

ϕðrn10 Þ ϕðrn20 Þ � � � ϕðrnn0 Þ

2
66664

3
77775; ð41Þ

with the pairing orbitals

ϕðrÞ ¼ ~βðrÞ þ
X
i

aðk2i Þeiki�r ; ð42Þ

~βðrÞ ¼ βðrÞ þ βðL� rÞ � 2βðL=2Þ; ð43Þ

βðrÞ ¼ ð1þ cbrÞ ð1� e�dbrÞ e
�br

dbr
: ð44Þ

The parameters aðk2i Þ, b and d are obtained byminimizing the energy, and c
is chosen so that the function β has zero slope at the origin. If we instead let
β = 0 and restrict the sum in Eq. (42) tomomentum statesfilled up to kF, the
antisymmetric part is equivalent to the Slater determinant with single-
particle plane waves as in Eqs. (9) and (10). Since this approach does not
involve pairing, we will refer to the related DMC results as DMC-PW.
Conversely, the approach that accounts for pairing will be identified as
DMC-BCS.

It should be emphasized that the BCS wave function of Eq. (41) is a
special case of the generalized Pfaffian of Eq. (4). In fact, it can be easily
shown37 that by only retaining the spin-singlet blocks, the calculation of the
Pfaffian reduces to the determinant of spin-singlet block.

Note Added: A work very recently appeared in pre-print63 introduces
neural backflow transformations in a geminal wave function and studies the
unitary Fermi gas. We leave systematic comparisons between the two
approaches to future works while already observing that the Pfaffian wave
function is a strict generalization of the geminal wave function37,64.

Data availability
The data supporting the findings of this study are available in the tables,
figures, and Supplementary Information. Additional raw data used to

generate the plots can be made available from the corresponding author
upon request.

Code availability
Simulation codes are available from the corresponding author upon request.
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