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The quantum speed limit (QSL) is a fundamental lower bound on the evolution time for quantum
systems, and its tightness has been observed to be dependent on the properties of the physical
process. However, experimental studies exploring theQSL in open quantum systems are still missing.
Here, we studied geometric quantum speed limits of a qubit subject to decoherence in an ensemble of
chloroform molecules in a Nuclear Magnetic Resonance experiment. We controlled the system-
reservoir interaction and the spin relaxation rates by adding a paramagnetic salt, allowing the
observation of bothMarkovian and non-Markovian open system dynamics for the qubit. We used two
distinguishabilitymeasures of quantum states to assess the speed of the qubit evolution: the quantum
Fisher information (QFI) andWigner-Yanase skew information (WY). For non-Markovianity and low salt
concentrations, we found crossovers between QSLs related to those metrics. TheWYmetric sets the
tighter QSL for high concentrations and Markovian dynamics. We also show that QSLs are sensitive
even to small fluctuations in spin magnetization.

Oneof the core concepts of quantummechanics is the uncertainty principle.
While this relationship is well known for non-commuting observables, e.g.,
position and momentum, the time-energy uncertainty relation has been
controversial over decades, resulting in several attempts to address this
issue1,2. In their seminal work,Mandelstam and Tamm (MT)3 reinterpreted
this question by introducing the concept of quantum speed limit (QSL),
which is a threshold imposed by quantum mechanics to the minimum
evolution time between two orthogonal states. In this setting,Margolus and
Levitin (ML)4 derived a bound for the orthogonalization time of pure
quantumstates that scaleswith the inverse of themean energy of the system.

Over a decade ago, Taddei et al.5 have presented a general QSL bound
based on the quantum Fisher information, valid for both unitary and
nonunitary evolutions. At the same time, del Campo et al.6 obtained a QSL
relying on the relative purity, finding evidence that the spectral property of
the noisewouldhave an influenceon the speedof evolution. In turn,Deffner
and Lutz7 introduced a QSL bound in terms of the operator norm of the
generator of the nonunitary dynamics. Such an approach allowed them to
investigate the influence of non-Markovianity on the evolution rate, finding
that, for the Jaynes-Cummings model, its effect could lead to a faster

evolution. QSLs have been addressed for either closed and open quantum
systems8–16, and find applications ranging from quantum many-body
systems17–23, to quantum thermodynamics24–27. In the context of none-
quilibrium quantum dynamics, ref. 28 provides an extensive review on
quantum speed limit bounds of several dynamical evolutions, particularly
focusing on quantum many-body systems.

Information geometry is a powerful tool to study QSLs. In this setting,
onefinds a general framework providing an infinite family ofQSLs based on
contractive Riemannian metrics on the space of quantum states, which
applies to any physical process29. In this scenario, theQSL relates to a certain
information-theoretic distinguishability measure built for a set of quantum
states, pure or mixed, separable or entangled, valid for closed and open
systems. In addition, QSL bounds were investigated theoretically using
matrix norms, e.g., Schatten p-norms, applied to the generator of the
nonunitary dynamics30–33. Recent results include the study of bounds on the
speed of observables related to open quantum systems34, and also the pro-
posal of a general framework for deriving tighter speed limits for macro-
scopic systems35, which in turn finds applications in transport phenomena
and nonequilibrium dynamics in spin systems.
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In the last years, several works include an analysis of QSLs for driven
quantum systems under Markovian evolution7,36. These results triggered
studies ofQSLs for particular choices of quantumchannels focusing onhow
the degree of non-Markovianity could affect the tightness of QSL
bounds37–41. Overall, non-Markovian dynamics present an intricate physical
structure, allowing the revivals of genuine quantum resources during the
evolution, for example, quantum coherence, thus contrasting with the
typical monotonic loss observed in Markovian scenarios42. In ref. 43, the
authors discussed timescales related to generate an amount of quantumness
under arbitrary physical process, also investigating the dependence of the
QSLboundon initial andfinal states, and the role playedbynon-Markovian
effects.Noteworthy,QSLdependson the initial state and thedynamicalmap
governing the system evolution, showing the absence of a general connec-
tion between non-Markovianity and the speed of evolution of a quantum
system44–47.

Recently, an experimental measurement of the QSL time in a trapped
single-atom system showed a crossover between the Mandelstam-Tamm
andMargolus-Levitin bounds, with the latter dominating the dynamics for
longer times48. We also mention the experimental discussion of the MT
bound for time-dependent Hamiltonians with nuclear spin systems49.
Despite all theoretical advances in understanding QSLs and experimental
achievements for closed quantum systems, the field still lacks experimental
studies exploring andcertifying themachinery developed for openquantum
systems. That happens due to the challenge of controlling the system-
environment interaction and configuration, which determines the Marko-
vian or non-Markovian character of the evolution.

In this work, we assess geometricQSLs in an openquantum system, by
controlling just two parameters of the bath: the relaxation times of the
hydrogen and carbonnuclear spins of an ensemble of chloroformmolecules
in a liquid-state Nuclear Magnetic Resonance (NMR) experiment. We
control the relaxation rates of the carbon and hydrogen nuclear spins by
adding a paramagnetic salt to the solution, allowing us to observe the
transition from non-Markovian toMarkovian regimes in the dynamics50,51.
Then, we investigate how the speed of evolution is affected under different
experimental conditions. For non-Markovian dynamics and low salt con-
centrations, we observe crossovers between quantum speed limits defined
by the quantum Fisher information and the Wigner-Yanase skew infor-
mation metrics. The occurrence of these crossovers is related to the char-
acter of the systems time evolution. In high concentrations, the Wigner-
Yanase metric sets the tighter quantum speed limit bound when the system
undergoes non-Markovian or Markovian dynamics.

Results
Quantum speed limits for open system dynamics
The quantum speed limit (QSL) is related to the distinguishability of
quantum states from a geometric perspective29. We remind that the so-
calledMorozova-Čencov-Petz (MCP) theorem states that the convex space
of quantum states is endowed with a family of contractive Riemannian
metrics52,53. In this sense, the nonuniqueness of distinguishability measures
of quantum states implies a class of geometric QSLs that can be exploited in
the search for tighter bounds. Here, we discuss the QSL time for the single-
qubit state ρt in Eq. (7). The evolution of this state draws a path γ in the space
of quantumstates connecting initialρ0 andfinalρτ states. TheMCP theorem
states that the length ‘fγðρ0; ρτÞ of such path depends on some chosen
contractive Riemannian metric related to a given Morozova-Čencov (MC)
function f 52,53. Hereafter, we will restrict our analysis to two paradigmatic
metrics: the quantum Fisher information (QFI) and the Wigner-Yanase
skew information (WY). In particular, focusing on the single-qubit state in
Eq. (7), the length of the path depicted by the nonunitary evolution of the
state ρt becomes

‘fγðρ0; ρτÞ ¼
1
2

Z τ

0
dt

ffiffiffiffiffi
hft
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dt
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Overall, the quantity ð1=2Þ
ffiffiffiffiffi
hft

q
∣dhσxit=dt∣ in Eq. (1) signals the speed

of evolution respective to the nonunitary dynamics of the single-qubit state,
for a givenRiemannianmetric. Note that this quantity depends on the time-
dependent single-qubit observable hσxit that is accessed experimentally. For
details in the proof of Eqs. (1), (2), and (3), see the Supplementary Note 1,
and also refs. 29,52–55 therein. We point out that γ is an arbitrary path
connecting states ρ0 and ρτ, and its length need not be the shortest one56.
Indeed, for a givenRiemannianmetric on the space of quantum states, there
exists a geodesic path with minimum length Lf ðρ0; ρτÞ followed by the
evolved state ρt when going from ρ0 to ρτ. On the one hand, the geodesic
length related to the QFI metric is given by the Bures angle,
LQFIðρ0; ρτÞ ¼ arccos½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðρ0; ρτÞ
p �, where the Uhlmann fidelity related to

initial ρ0 and final ρτ single-qubit states yields

Fðρ0; ρτÞ ¼
1
2
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On the other hand, theWYmetric implies the geodesic length known

as Hellinger angle, LWYðρ0; ρτÞ ¼ arccos½Aðρ0; ρτÞ�, while the quantum
affinity for single-qubit states is given by
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Thegeodesic length constitutes a lower bound for the length of thepath
drawn by the above dynamical evolution, i.e., Lf ðρ0; ρτÞ≤ ‘fγðρ0; ρτÞ. Sol-
ving this inequality as a function of time, one finds the QSL time related to
the nonunitary evolution of the single-qubit state in Eq. (7). In this setting,
any distinguishability measure of quantum states gives rise to a different
geometric QSL. The contractive Riemannian metric whose geodesic length
Lf is effectively tailored to the nonunitary dynamical evolution depicted by
the length ‘fγ is the one that signals the tightest QSL

29. To investigate the
tightness of a given geometric QSL, we set the relative deviation

δfγ :¼
‘fγðρ0; ρτÞ � Lf ðρ0; ρτÞ

Lf ðρ0; ρτÞ
: ð6Þ

For a givenmetric, Eq. (6) indicates how far the dynamical evolution is from
the respective geodesic path, and is expected to approach zero when both
coincide such that the QSL bound saturates. Here, the tightest geometric
QSL for the nonunitary dynamics of the single-qubit state is obtained after
minimizing the quantity δfγ over the two aforementioned information-
theoretic quantifiers, namely,QFI andWYmetrics. In addition,we consider
the relative difference δQFIγ � δWY

γ as a criterion to testify the tightest QSL,
i.e., for δQFIγ � δWY

γ > 0 we have that WY metric assigns the tighter QSL,
while for δQFIγ � δWY

γ < 0 the QFI metric sets the tightest lower bound.
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In the following, we discuss geometricQSLs for the single-qubit state
by focusing on QFI and WY metrics. To do so, we compare numerical
simulations of the open-system dynamics with the results calculated
using experimental data. The quantum state undergoes a nonunitary
evolution exhibiting both non-Markovian and Markovian regimes.
In the limit of high concentrations in which the system undergoes
Markovian dynamics, we find that the WY metric sets the tighter QSL
bound. However, for low concentrations, we observe non-Markovian
dynamics, and the relative difference δQFIγ � δWY

γ [see Eq. (6)] exhibits
crossovers between the geometricQSL bounds related to theQFI andWY
metrics.

Control of longitudinal and transverse relaxation times
In our experiments, we consider a two-qubit system encoded on the nuclear
spins of the 13C and 1H of an ensemble of chloroform (CHCl3) molecules in
liquid-state at room temperature. The interaction between the spins is given
by the Hamiltonian H ¼ πJ

2 σz � σz , where J is the strength of the inter-
action, and σi is the i-th Pauli matrix (i = x, y, z). For simplicity, we set ℏ = 1.
The non-unitary dynamics for each nuclear spin are described by the
longitudinal and transverse relaxation times, T1,(C,H) and T2,(C,H), respec-
tively. The longitudinal relaxation time is associated with the spin-lattice
relaxation, i.e., the return of the system to thermal equilibrium. The trans-
verse relaxation time describes the spin-spin relaxation, which affects only
the coherences of the densitymatrix. In Fig. 1(a), we show the long decay of
the 13C FID when we decouple the 13C and 1H nuclear spins, which makes
clear the effect of the 1H as the main source of decoherence. This effect
happens due to the longitudinal relaxation of the 1H nuclear spin and the
scalar J coupling having the same time scale. When T1,H ≈ 1/J, the random
spin flips on the proton spin caused by the T1,H process make the scalar
interaction effectively time-dependent, turning the 1H into a source of
decoherence for the 13C. Thus, by changing the concentration of Fe(acac)3,
we control the correlation time of the system-environment interaction (see
further details in the Methods).

In the presence of paramagnetic ions, the magnetic dipolar interaction
of the nuclear spins with the spins of the ion’s unpaired electrons is usually
much stronger thanwith other nuclear spins. Thus paramagnetic relaxation
becomes the primary nuclear relaxation mechanism, scaling up the inverse
of the average distance between the ions and the nucleus, resing in a linear
dependenceof the relaxation rates, 1/T1,H and1/T2,C, with the concentration
of paramagnetic ions57. Figure 1b, c show the linear behavior for 1/T1,H and
1/T2,C, as expected for paramagnetic relaxation.

Geometric QSL bounds
In Fig. 2, we present the tightness of the geometric QSL bounds related to
QFI andWYmetrics, and theMarkovian/non-Markovian properties of the
nonunitary dynamics of the single-qubit system. The solid lines depict the
best fit using the model given in Eq. (7). The system initiates at the state
ρ0 ¼ ð1=2ÞðIþ ðσx þ σzÞ=

ffiffiffi
2

p Þ. Themeasured values are T1,H = 12 ± 1ms
and T2,C = 480 ± 20ms for C = 20mM; T1,H = 1.7 ± 0.2 ms and
T2,C = 87 ± 3ms for C = 120mM; and T1,H = 0.63 ± 0.08ms and
T2,C = 29 ± 2ms forC = 300mM. In the numerical simulations, we used the
coupling strength J = 209.1 Hz, with T1,H = 7.1 ms and T2,C = 38.55ms for
C = 20mM[see panels a, d, g, and j in Fig. 2];T1,H = 1.15ms andT2,C = 12.8
ms for C = 120mM [see panels b, e, h, and k in Fig. 2]; and T1,H = 0.425ms
and T2,C = 5.49ms for C = 300mM [see panels c, f, i, and l in Fig. 2]. The
large discrepancy between themeasured and simulated values ismainly due
to frequency offset errors, which accelerate the signal decay and lead to
shorter T1,H and T2,C for fitted values. Such errors come from difficulty in
setting the exact resonance frequency when the spectral lines are broad due
to the fast relaxation rates used in the experiments.Despite this, note that the
measured and simulated values for T1,H have the same order of magnitude.
For the physical model in Eq. (8), the relaxation time T1,H is more relevant
than T2,C. To see this, first we note that T1,H/T2,C≪ 1, i.e., the function ξ(t)
[see Eq. (8)] will be mainly dominated by T1,H rather than T2,C.

Discussion
In the following, we comment on the non-Markovian and Markovian
dynamical signatures of the quantum system. The characterization of non-
Markovian dynamics has motivated several efforts to understand the
mechanism of information backflow from the environment to the system,
and the notion of divisibility of a dynamical map. Historically, the study of
information backflow in open quantum systems with the set of measures of
non-Markovianity introduced by (i) Breuer, Laine, and Piilo (BLP)58; (ii)
Rivas,Huelga, andPlenio (RHP)59; (iii) Luo, Fu, and Song (LFS)60. In spite of
that, recent studies have addressed the dynamical behavior of quantum
coherence measures to characterize non-Markovianity61–63. For a single
qubit dissipative channel, it has been shown that the ℓ1-norm of coherence
exhibits revivals and thus captures non-Markovian signatures of the
dynamics in the sameway as the BLPmeasure64. Themain idea is that, since

Fig. 1 | Couple-decoupled 13C evolution, and Longitudinal and transverse
relaxation times. a Coupled (red points) and decoupled (black points) 13C FID’s for
the 50 mM concentration, showing the speedup of the decoherence due to scalar
relaxation. The deviation from an exponential decay is the result of a small frequency
offset. b and (c) The dependence of T1,H (triangles) and T2,C (squares) on the
Fe(acac)3 concentration, exhibiting the well known linear dependence of the
relaxation rate on the concentration of a paramagnetic species57–red lines indicate
the best linear fit of the data. Error bars for T2 are the standard deviations from the
fits of the decoupled FIDs for each concentration. ForT1, the error bars are calculated
from the error propagation of the parameter t1 in the inversion recovery sequence.
The error in t1 is obtained experimentally, checking the small range of t1 valueswith a
similar NMR signal.
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the coherence measure monotonically decreases under completely positive
and trace preserving (CPTP) incoherent operations, one finds the ℓ1-norm
of coherence useful for detecting non-Markovianity. For a detailed discus-
sion, see ref. 65 and references therein. In this setting, we investigate the
dynamical behavior of quantum coherence of the two-level system, thus
characterizing non-Markovian and Markovian regimes based on the so-
called ℓ1-norm of coherence. Panels a–c in Fig. 2 show the normalized ℓ1-
norm of coherence of the evolved single-qubit state for different con-
centrations of Fe(acac)3, with C‘1

ðρtÞ ¼
P

j≠ljhjjρt jlij66,67. Here, we set
f∣0i; ∣1ig as the reference basis to evaluate the coherence measure, with
σz∣si ¼ ð�1Þs∣si 8s 2 f0; 1g. In Fig. 2a, with C = 20mM, the normalized
quantum coherence measure exhibits periodic revivals with damped
amplitudes, thus vanishing at later times of the dynamics. Figure 2b shows a
qualitatively similar behavior, with the quantum coherence approaching
zero faster forC = 120mM. In both cases, the revivals point to the signature
of non-Markovian dynamics. In Fig. 2c, the quantum coherence displays a
monotonic decay for C = 300mM, a typical behavior of Markovian
dynamics58,64,65. Overall, from low to high concentrations of the para-
magnetic salt, we observe the non-Markovian regime forT1,H ≈ 1/J (20mM
and 120mM), while for T1,H≪ 1/J the dynamics is Markovian (300mM).

Hereafter, we discuss the relative deviation δfγ [see Eq. (6)] for the
geometric QSL bound constructed with theQFImetric [panels d, e, and f in
Fig. 2], and theWYmetric [panels g, h, and i in Fig. 2]. These quantities are
very sensitive to noise since even the small fluctuations observed for short
times in the signals of 120and300mMconcentrationsheavily affectδfγ. This

happens due to the time-derivative in Eq. (1). Thus, to avoid undesired
numerical errors, we smoothed the data before the numerical integration to
evaluate ‘fγ for both metrics. The results without smoothing the data are
shown in Supplementary Note 1. Panels d and g in Fig. 2 show the relative
deviations δQFIγ and δWY

γ within thenon-Markovian regimeof the dynamics,
with C = 20mM. These relative deviations oscillate out of phase with the
FID signal. Next, forC = 120mM, panels e and h in Fig. 2 show each relative
deviation with a non-monotonic behavior, a fingerprint of non-
Markovianity for non-unitary evolution. Panels f and i in Fig. 2 show that
for C = 300mM, both relative deviations behave monotonically as a func-
tion of the evolution time of the Markovian dynamics.

To investigate the tightness of the quantum speed limit, we plot in
panels j, k, and l in Fig. 2 the relative difference δQFIγ � δWY

γ for the con-
centrations 20mM,120mM and 300mM, respectively. Importantly, for
δQFIγ � δWY

γ > 0, onefinds the tighter speed limit signaled by theWYmetric.
Otherwise, for δQFIγ � δWY

γ < 0, the QFI metric systematically produces the
tightest lower bound to the evolution time. It is worth noting that the
tightness of the QSL bound depends on the physical process considered. It
turns out that the QSL bound related to the QFI metric is tighter than that
speed limit obtained from WY metric for closed quantum systems29.
However, our experiments show the opposite situation for the considered
open quantum system dynamics. For C = 20mM, Fig. 2j shows that the
relative difference oscillates over the evolution time and exhibits crossovers
between δQFIγ and δWY

γ , and both QFI andWYmetrics give rise to the same
geometric QSL whenever δQFIγ � δWY

γ ¼ 0. No crossover occurs after

Fig. 2 | Coherence measure and geometric QSL bounds. Numerical simulation
(black line) and experimental data (red dots) plots of the normalized coherence
measure C‘1

ðρtÞ=C‘1
ðρ0Þ (a–c) relative deviations for quantum Fisher information

δQFIγ (d–f) and Wigner-Yanase skew information metrics δWY
γ (g–i), and relative

difference δQFIγ � δWY
γ (j–l) for the concentrations 20 mM (a, d, g, and j), 120 mM

(b, e, h, and k) and 300 mM (c, f, i, and l). The system is initialized at the single-qubit
state ρ0 ¼ ð1=2ÞðIþ hσxi0σx þ hσzi0σzÞ, with hσxi0 ¼ hσzi0 ¼ 1=

ffiffiffi
2

p
. The follow-

ing parameterswere used for the numerical simulations setting the coupling strength
J = 209.1 Hz, with T1,H = 7.1 ms and T2,C = 38.55 ms (a, d, g, and j); T1,H = 1.15 ms
and T2,C = 12.8 ms (b, e, h, and k); T1,H = 0.425 ms and T2,C = 5.49 ms (c, f, i, and l).
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t ~ 57.4ms, and theQSL related to theWYmetric turns out to be the tighter
one at later times of thedynamics. The tightest geometricQSL is capturedby
the Wigner-Yanase skew information metric for the two higher con-
centrations, even for the non-Markovian regime observed for the 120mM
concentration. This is seen in panels k and l in Fig. 2.

Conclusions
In summary, we experimentally assess geometric speed limits for the non-
unitary dynamics of a qubit encoded on 13C nuclear spin. We control the
relaxation rates of the qubit by adding Fe(acac)3 to the solution. The
paramagnetic relaxation makes it possible to vary the relaxation times by
two orders of magnitude, and we could observe a transition between non-
Markovian to Markovian regimes in the nonunitary reduced dynamics of
13C spins depending on the salt concentrations. Taking a geometric
approach to address the QSL based on the quantum Fisher information
(QFI) andWigner-Yanase (WY) skew information metrics, we find a good
agreementbetween the results ofnumerical simulations and the experiment.
We emphasize the tightness of the QSL depends on the properties of the
physical process that is considered, i.e., it is a function of the initial state and
the dynamical map that governs the system evolution. For example, for any
single-qubit unitary dynamics, it is known that the geometricQSL related to
the QFI metric is tighter than the one corresponding to the WY metric.
However, one can find instances of nonunitary dynamics of single-qubit
states in which the QSL bound constructed with the WY metric is tighter
than the QFI one, and vice-versa29.

The present work is novel in the specialized literature, as it
discusses the experimental investigation of QSLs for an open quan-
tum system carried out on a controllable Nuclear Magnetic Reso-
nance platform. Past results covered experimental discussion of the
QSL derived by Mandelstam-Tamm for the unitary dynamics of
nuclear spin systems49, and also the study of the Mandestam-Tamm
and Margolus-Levitin speed limits by using the technique of matter
wave interferometry of single atom in an optical trap48. Our discus-
sion focuses on geometric QSLs related to the QFI and WY metrics.
To the best of our knowledge, QFI and WY metrics cannot be
directly measured for general physical processes. It is known that
these quantities recover the variance of the dynamical generator for
closed systems initialized at pure states68,69. However, for nonunitary
dynamics and mixed states, bounds on the variance are found that
provide, at most, estimates of these quantities70,71. To overcome such
issues, we recast the geometric QSL bounds in terms of single-qubit
observables fhσ li0;tgl¼x;y;z

[see Eqs. (1)–(5)], which are probed
experimentally.

In our physical system, we find that the tightness of the QSL bound is
somehow related to the concentration of the paramagnetic salt that is added
to the ensemble of chloroform molecules. By varying such concentration,
the strength of the system-reservoir coupling changes and therefore a
transition betweennon-Markovian toMarkovian regimes is observed in the
single-qubit dynamics encoded in nuclear carbon spins. For lower con-
centrations (C = 20mM), we observe crossovers between the QFI and WY
as the tighteroneon anon-Markovian regime. In the other two studied cases
(C = 120mMandC = 300mM), theWYmetric sets the tighterQSL, both in
non-Markovian and Markovian dynamics.

We remark how geometric QSLs are very sensitive to noise, i.e., even
tiny fluctuations observed for short times in the data, from low to high
concentrations, heavily affect the figure ofmerit that signals the tighter QSL
bound of the two-level system.We note that the relative deviation indicates
how much the dynamical evolution differs from the respective geodesic
related to the considered metric. The smaller the relative deviation, the
tighter the QSL bound for each concentration. We note that the relative
deviations δQFIγ and δWY

γ show similar numerical behaviors for each con-
centration [see panels d-i in Fig. 2]. Thismeans that, for the physical process
considered, the QFI andWYmetrics provide QSL bounds that are close to
each other. Finally, this resultmight suggest that neitherQFI orWYmetrics

can be the fundamental one, which can foster the investigation of new
proposals of bona fide QSL metrics.

Methods
System dissipative dynamics
In our experiments, the two-qubit system initiates in a thermal equilibrium
state ρCHT ≈ ½ð1� ϵCÞ=4� I� Iþ ðϵC=2Þ ∣0i 0h ∣� Iþ ðϵH=4Þ I� σz ,
which is valid at the high-temperature limit (ϵl≪ 1), with ϵl = ℏωl/kBT and
ωC,H is the

13C (1H)Larmor frequency,kB is theBoltzmannconstant, andT is
the temperature. Since we are interested in the 13C magnetization, one can
discard thefirst and third terms in state ρCHT , such that the densitymatrix for
the 13C spin is given, up to normalization, by ρC ¼ TrHðρCHT Þ≈∣0i 0h ∣50. We
obtain the initial state for our experiments after a π/4 rotation on the y-axis,
resulting in ρC0 ¼ ð1=2ÞðIþ ðσx þ σzÞ=

ffiffiffi
2

p Þ. To model the open system
dynamics of the carbon nuclear spin, we followed the description in
refs. 50,72. The decoherence for each nuclear spin is described by the
longitudinal and transverse relaxation times, T1,(C,H) and T2,(C,H), respec-
tively. The longitudinal relaxation time is associated to the spin-lattice
relaxation, i.e., the return of the system to thermal equilibrium. The trans-
verse relaxation time describes the spin-spin relaxation, which affects only
the coherences of the density matrix.

In our system, the 1H spin becomes a source of the decoherence for the
carbon spin when the conditionT1,H ≈ 1/J is satisfied. Under this condition,
the flips on the proton spin due to T1,H occur at the same time scale as the
evolution caused by the scalar coupling, introducing an effective time
dependence on this coupling. This results in a faster decay of the system
magnetization, known as scalar relaxation57. This process is inhomogeneous
in time, with a correlation time given by the minimum between T1,H and 1/
J50,72,73. BymodulatingT1,H through paramagnetic relaxation,we can control
the degree of non-Markovianity of the 13C open-system dynamics. In the
limit of fast correlation time, T1,H≪ 1/J, i.e., for high concentrations of the
paramagnetic salt, we observe Markovian dynamics for the system
dephasing.

We consider a phase-damping channel to model the spin-spin relaxa-
tionof the 13C spin anda single bit-phaseflip channel for both spin-lattice and
spin-spin relaxations of the 1H spin, since T1,H≈T2,H for all experimental
configurations discussed throughout our results. The Kraus operators for the
phase damping are K1 ¼

ffiffiffiffi
qt

p I� I and K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� qt

p
σz � I, with

qt ¼ ð1þ e�t=2T2;C Þ=2. For the bit-phase flip, one gets E1 ¼
ffiffiffiffi
pt

p
I� I and

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� pt

p
I� σy , where pt ¼ ð1þ e�t=2T1;H Þ=2. Here T1,H and T2,C

define the characteristic timeof the bit-phaseflip channel andphasedamping
channel, respectively.

In this scenario, the state of the two-qubit system during the evolution
is obtainedby the applicationof theKraus operators to the initial state,when
partitioning the evolution time 0 ≤ t ≤ τ intoN equal steps of size Δt = τ/N,
with JΔt≪ 1. Hence, by iterating such a process, withΔt→ 0 (N→∞), and
tracing out the hydrogen degrees of freedom, one obtains the single-qubit
marginal state as follows

ρCt ¼ 1
2

Iþ hσxit σx þ hσzi0 σz
� �

; ð7Þ

where hσxit ¼ ξðtÞ hσxi0 stands for the transversal magnetization of the 13C
(hereafter the system), with

ξðtÞ ¼ e�t=2T2;C e�t=4T1;H
t

4T1;H
sinc

t
4T1;H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 π2J2T2

1;H � 1
q !"

þ cos
t

4T1;H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π2J2T2

1;H � 1
q !#

;

ð8Þ

with sinc ðxÞ :¼ sin x=x, and ξ(0) = 1. For more details, see the Supple-
mentary Note 2. From now on, we will omit the superscript in Eq. (7) and
define ρt as the single-qubit state of the

13C nuclear spin.
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The function ξ(t) in Eq. (8) encodes the nonunitary signatures in the
dynamics of the two-level system. Furthermore, it shows how reducingT1,H
increases the role of the 1H nuclear spin as the main source of decoherence,
with the dynamics dominated by the sinc(•) term in Eq. (8) and the oscil-
lations due to the scalar interaction disappearing for T1,H≪ 1/J. Thus, to
evaluate the geometric QSL of a given Riemannian metrics, we prepare the
state ρ0 by the application of a single (π/4) pulse on the y-axis and let the
system evolve according to Eq. (8). We control the relaxation rates 1/T1,H
and 1/T2,C by adding the paramagnetic salt iron(III) acetylacetonate
(Fe(acac)3) to the solution, with the relaxation rates growing linearly with
the concentration of Fe(acac)3

57.

Experimental setup
We carried out the measurements at 25° C in a Bruker Avance III 600
MHz, with 1H and 13C Larmor frequencies of 600 and 150 MHz,
respectively, with a 5 mm double resonance probe-head. We realized
the experiments with a solution of chloroform (CHCl3), with natural
abundance of 13C in a 5. mm NMR tube, doped with Iron(III) acet-
ylacetonate (Fe(acac)3, Sigma Aldrich). To guarantee good frequency
stability, we used the deuterium signal of acetone-d6 (Cambridge
Isotopes Laboratories - Inc.) to lock the NMR signal. We avoided the
undesired line broadening of the deuterium reference signal, due to
the effects of the paramagnetic salt, putting the acetone-d6 in a 3 mm
NMR tube, all inside the 5 mm tube.

We prepared the solutions of CHCl3 and Iron(III) acetylacetonate
diluting the paramagnetic salt in 2ml ofCHCl3. To get the concentrations of
20, 50, 120, 300 and 450mM,we used 14.5(1), 35.5(1), 85.1(1), 211.6(1) and
317.8(1) miligrams of Fe(acac)3, respectively. The error on the concentra-
tions is of 1mM. Each sample contained 150 μl of doped CHCl3 and 150 μl
of acetone-d6.

We measured the spin-lattice relaxation time T1,(H,C) for
1H and 13C

using a standard inversion-recovery pulse sequence. We estimate T1,(H,C)
adjusting the time delay t1 in the sequence such that the magnetization
vanishes. Under this condition, we can calculate T1,(H,C) from the equation
T1 ¼ t1= lnð2Þ. The 13C spin-spin relaxation timeT2,C ismeasured from the
Free Induction Decay (FID) signal obtained when both spins are decoupled
through aWaltz-64heteronuclear decoupling sequence74, with a decoupling
π/2-pulse of 54 μs.We assumedT2;C ≈T

�
2;C due to a good shimming. Here,

T�
2;C is the characteristic time for the FID decay and it differs from T2,C due

to the effects of inhomogeneities in the static field B0
57. To avoid frequency

offset effects on the estimation of T2,C, the FID signals were fitted using a
function MxðtÞ ¼ M0 e

�t=T2;C cosðωtÞ, where M0 is the initial magnetiza-
tion amplitude and ω is the frequency offset. We used the spectrum of the
thermal equilibrium state to adjust the phase and normalize the intensity of
all NMR data throughout this work.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used for the analysis is available from the corresponding author
upon reasonable request.
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