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Synthetic Lagrangian turbulence by 
generative diffusion models

T. Li1, L. Biferale    1, F. Bonaccorso1, M. A. Scarpolini    2 & M. Buzzicotti    1 

Lagrangian turbulence lies at the core of numerous applied and fundamental 
problems related to the physics of dispersion and mixing in engineering, 
biofluids, the atmosphere, oceans and astrophysics. Despite exceptional 
theoretical, numerical and experimental efforts conducted over the past  
30 years, no existing models are capable of faithfully reproducing statistical 
and topological properties exhibited by particle trajectories in turbulence. 
We propose a machine learning approach, based on a state-of-the-art 
diffusion model, to generate single-particle trajectories in three-dimensional 
turbulence at high Reynolds numbers, thereby bypassing the need for 
direct numerical simulations or experiments to obtain reliable Lagrangian 
data. Our model demonstrates the ability to reproduce most statistical 
benchmarks across time scales, including the fat-tail distribution for velocity 
increments, the anomalous power law and the increased intermittency 
around the dissipative scale. Slight deviations are observed below the 
dissipative scale, particularly in the acceleration and flatness statistics. 
Surprisingly, the model exhibits strong generalizability for extreme events, 
producing events of higher intensity and rarity that still match the realistic 
statistics. This paves the way for producing synthetic high-quality datasets 
for pretraining various downstream applications of Lagrangian turbulence.

Understanding the statistical and geometrical properties of particles 
advected by turbulent flows is a challenging problem of utmost impor-
tance for modelling, predicting and controlling many applications such 
as combustion, industrial mixing, pollutant dispersion, quantum fluids, 
protoplanetary disks accretion, cloud formation and prey–predator 
dynamics, to cite just a few1–16. The main difficulties arise from the vast 
range of time scales involved, spanning from the longest, τL, governed 
by the stirring mechanism, to the shortest, τη, associated with viscous 
dissipation and the presence of strong non-Gaussian fluctuations 
(intermittency). Indeed, the ratio τL/τη is proportional to the Taylor 
Reynolds number, Rλ, a dimensionless measure of the turbulent inten-
sity, varying from a few thousand in laboratory experiments to millions 
and even larger in atmospheric and astrophysical contexts17. Similarly, 
non-Gaussian fat tails become more pronounced with increasing Rλ, 
resulting in rare-but-intense velocity and acceleration fluctuations of 
up to 50–60 standard deviations that can be easily measured even in 

table-top laboratory flows at moderate Rλ (Figs. 1a and 2). Due to the 
combined influence of long-distance sweeping, multitime fluctuations 
and small-scale trapping within intense minitornadoes, the problem 
remains insurmountable from both theoretical and modelling perspec-
tives at the present time.

Over the past 30 years, many different Lagrangian phenomeno-
logical models have been proposed, employing various methods such 
as two-time Ornstein–Uhlembeck stochastic approaches, to capture 
the dynamics at the two spectrum extremes, τL, τη (refs. 18,19) as well as 
multitime infinite-differentiable processes20. Numerous other models 
have explored with differing degrees of success, including applica-
tions to passive scalar fluctuations21–25. Moreover, both Markovian and 
non-Markovian modelization based on multifractal and/or multipli-
cative models have been employed previously to reproduce certain 
observed Lagrangian and Eulerian multiscale turbulent features26–31; 
see ref. 32 for a recent attempt to combine multifractal scaling and 

Received: 8 July 2023

Accepted: 12 February 2024

Published online: 17 April 2024

 Check for updates

1Dept. of Physics and INFN, University of Rome Tor Vergata, Rome, Italy. 2Dept. of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy. 
 e-mail: michele.buzzicotti@roma2.infn.it

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-024-00810-0
http://orcid.org/0000-0001-8767-9092
http://orcid.org/0000-0001-7419-4117
http://orcid.org/0000-0002-7162-5038
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-024-00810-0&domain=pdf
mailto:michele.buzzicotti@roma2.infn.it


Nature Machine Intelligence | Volume 6 | April 2024 | 393–403 394

Article https://doi.org/10.1038/s42256-024-00810-0

equation-informed and data-driven tools to generate 3D single- or 
multiparticle Lagrangian trajectories possessing statistical and geo-
metrical properties that quantitatively agree with experiments and 
direct numerical simulations (DNSs). The demand for the synthetic 
generation of high-quality and high-quantity data is crucial in various 
turbulent applications, particularly in the Lagrangian domain, where 
having even a single trajectory requires the reproduction of the entire 
Eulerian field over huge spatial domains, which is often a daunting 
or impossible task for DNSs or extremely laborious for experiments.

Here we present a stochastic data-driven model able to match 
numerical and experimental data concerning single-particle statistics 
in homogeneous and isotropic turbulence at high Reynolds num-
bers. The model is based on a state-of-the-art generative DM36,37,53. We 
have trained two distinct DMs for our study: DM-1c, which generates 
a single component of the Lagrangian velocity, and DM-3c, which 
simultaneously outputs all three correlated components (Methods). 
Our synthetic generation protocol is able to reproduce the scaling of 
velocity increments over the full range of available frequencies and 
for all statistically converged moments up to the eighth order in the 
original training data. Moreover, the protocol successfully captures 
acceleration fluctuations of up to 60 standard deviations and even 
beyond, including the cross-correlations between the three velocity 
components. We train the model using high-quality data obtained 
from DNS at Rλ ≃ 310. The results also show excellent agreement with 
the numerical ground-truth data for the generalized flatness of fourth, 
sixth and eighth orders, whose intensities, due to the presence of inter-
mittent fluctuations, are found to be an order of magnitude larger than 
the expected values in the presence of a Gaussian statistic. Remark-
ably, our model exhibits strong generalization properties, enabling 
the synthesis of events with intensities never encountered during the 
training phase. These extreme fluctuations, resulting from small-scale 

stochastic partial differential equations. However, although all these 
previous attempts are able to reproduce well some non-trivial features 
of the turbulent statistics, we still lack a systematic way to generate 
synthetic trajectories with the correct multiscale statistics over the full 
range of dynamics encountered in a real turbulent environment, from 
the large forcing scales, through the intermittent inertial range, to the 
coupled regime between inertial and dissipative scales33.

As a result, new approaches are needed to attack the problem. 
Machine learning (ML) synthetic data-driven models, including vari-
ational autoencoders34, generative adversarial networks (GANs)35 
and, more recently, diffusion models (DMs)36, have exhibited remark-
able success across diverse fields such as computer vision, audio gen-
eration, natural language processing, healthcare and various other 
domains37–40. Building upon this success, there is a growing interest 
in applying these techniques to scientific challenges. Specifically, ML 
methods have shown strong potential to tackle open problems in fluid 
mechanics41,42. ML tools have been further developed for tasks like 
generation, super-resolution, prediction and inpainting of dynamical 
systems43,44, two-dimensional (2D) and three-dimensional (3D) Eulerian 
turbulent snapshots45–50; see ref. 51 for a short summary. In many cases, 
the validation of these tools when applied to fluid mechanics is primar-
ily limited to simple 2D smooth and quasi-Gaussian turbulent flows 
or focused on single-point measurements such as mean profiles and 
two-point spectral properties. There is often a lack of comprehensive 
quantitative assessments concerning the more intricate multiscale 
non-Gaussian properties at high Reynolds numbers. Recently, a fully 
convolutional model has been proposed to generate one-dimensional 
Eulerian cuts of high-Reynolds-number turbulence52. This model has 
demonstrated success in capturing up to the fourth-order structure 
function; however, its generalization to higher-order statistics exhibits 
less accuracy. Given the state of the art, it is fair to say that we lack both 
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Fig. 1 | Comparison between DNSs and DMs. a, Standardized PDFs of one 
generic component of the velocity increment, δτVi, at τ/τη = 1, 2, 5, 100 for 
ground-truth DNS data (black lines), synthetically generated data from DM-1c 
(blue lines with circles) and that from DM-1c-10% (green lines with squares), 
a DM-1c model trained with 10% DNS data. PDFs for different τ are vertically 
shifted for the sake of presentation. σ is the standard deviation. b–d, DM-1c 
trajectories for one generic velocity component with large (b), medium (c) 
and small (d) time increments, τ/τη = 100, 5, 1, respectively. e, Comparison of 
3D trajectories showing small-scale vortex structures for both DNS and DM-3c 
data, where different curves correspond to the three standardized velocity 
components i = x, y, z. For the DNS, the high oscillatory correlations between 

the three components are consistent with the presence of strong vortical 
structures. Similarly, in the case of DM-3c, these correlations can be interpreted 
as reflecting vortical structures within the hypothetical Eulerian flow. f, Examples 
of 3D trajectories reconstructed from DNS (bottom) and DM-3c (top). Notice in 
panel a the remarkable generalizability properties of our DM data-driven model, 
able to explore and capture extreme events for velocity fluctuations with far 
larger intensities than observed in the DNS dataset, represented by much more 
extended tails, while still maintaining the ground-truth statistics inherent in the 
training data. Here, the statistics for DM-1c and DM-1c-10% data are derived from 
86 and 22 times the number of trajectories in the DNS, respectively.
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vortex trapping and sharp u-turn trajectories with unprecedented 
excursions and rarity, consistently follow the realistic statistics inher-
ent in the training data.

Problem setup
Lagrangian turbulence
The dataset used for training is extracted from a high-resolution DNS 
of the 3D Navier–Stokes equations (NSE) in a cubic periodic domain 
with large-scale isotropic forcing. Lagrangian point-like particles have 
an instantaneous velocity, V(t) = Ẋ(t), coinciding with the local instan-
taneous flow streamlines at the particle position, X(t):

Ẋ(t) = u(X(t), t), (1)

where u solves the NSE; see equation (6) in Methods. To construct a 
high-quality ground-truth database, we tracked a total number of tra-
jectories, Np = 327,680, each spanning a length of T ≃ 1.3τL ≃ 200τη, with 
a temporal sampling interval of dts ≃ 0.1τη. Consequently, each trajec-
tory is discretized into a total of K = 2,000 points; see Table 1. Particles 
are injected randomly in the 3D volume once a statistically stationary 
evolution is reached for the underlying Eulerian flow, thus ensuring 
that the Lagrangian statistics are also stationary. The set of multitime 
observables utilized to benchmark the quality of the single-particle 3D 
trajectory generation primarily relies on the statistics of Lagrangian 
velocity increments:

δτVi(t) = Vi(t + τ) − Vi(t), (2)

where i = x, y, z indicates any of the three velocity components and τ 
represents the time increment. The instantaneous particle acceleration 
is obtained from the limit ai(t) = limτ→0 δτVi/τ , where we use a time 
resolution of 0.1τη for both DNS and DM. The probability density func-
tions (PDFs) of δτVi in Fig. 1a and ai in Fig. 2 show strongly non-Gaussian 
fluctuations. The PDFs of δτVi become more pronounced at decreasing 
the time scale τ. It is a well-known empirical fact that Lagrangian veloc-
ity increments develop scaling power laws in the inertial range, τη ≪ τ ≪ τL, 
as measured by the Lagrangian structure functions33,54,55 of order p:

S(p)τ = ⟨(δτVi)
p⟩ ∝ τξ(p), (3)

where with 〈 ⋅ 〉, we indicate an average over all Np trajectories and over 
time. For both DNS and DM-3c, S(p)τ  is calculated by further averaging 
over all velocity components. Henceforth, we neglect the dependence 
on the velocity component because of isotropy. Concerning the scaling 
exponents, ξ(p), there exists a whole spectrum of anomalous correc-
tions, Δ(p), to the mean-field dimensional estimate, p/2, leading to 
ξ(p) = p/2 + Δ(p). Furthermore, beyond global scaling laws, the statistics 
of velocity fluctuations can be quantitatively captured scale by scale 
for each τ by measuring the local scaling exponents, which are obtained 
from the logarithmic derivatives of S(p)τ :

ζ(p, τ) =
d log S(p)τ
d log S(2)τ

. (4)

DMs
DMs emerge in recent years, outperforming the current state-of-the-art 
GANs on image synthesis37. DMs are built upon forward and backward 
diffusion processes (Fig. 3a and Methods). The forward process is a 
Markov chain that gradually introduces Gaussian noise into the training 
data until the original signal is transformed into pure noise. In the oppo-
site direction, the backward process starts from pure Gaussian-noise 
realizations and learns to progressively denoise the signal, effectively 
generating the desired data samples, as shown in Fig. 3f. The diffusion 
processes stem from non-equilibrium statistical physics, leveraging 
Markov chains to progressively morph one distribution into another56,57. 
The training of DMs involves the use of variational inference lower 
bound to estimate the loss function along a finite, but large, number 
of diffusion steps. By focusing on these small incremental changes, 
the loss term becomes tractable, eliminating the need to resort to the 
less stable adversarial training, a strategy commonly used by GANs, 
which aims to reproduce the entire data distribution in a single jump 
from the input noise. Our implementation of DMs has adopted the 
UNet architecture of the cutting-edge DM used in computer vision37. 
An optimized noise schedule for the diffusion processes has also been 
developed to enhance both efficiency and performance when con-
structing the multiscale features of the signal, as presented in Fig. 3b 
and discussed in more detail in the Methods.

Results
PDFs
In Fig. 1a, we show the success of the DM in generating more and more 
intense (non-Gaussian) velocity fluctuations, δτVi, by sending τ → 0, 
with very good statistical agreement with the ground truth. The typical 
trajectories generated by DM-1c are also qualitatively shown in Fig. 1b–d 
for different time lags, τ, with local events belonging to both laminar and 
intense fluctuations. Note the ability of DMs to overcome the additional 
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of the acceleration, ai, for ground-truth DNS data (black line), synthetically 
generated data from DM-1c (blue line with circles) and that from DM-1c-10% 
(green line with squares). Notice the ability of DM-1c to well generalize the 
statistical trend for rare intense fluctuations never experienced during the 
training phase with the DNS data. The statistics of the DM-1c and DM-1c-10% data 
are based on 86 and 22 times the number of trajectories in the DNS, respectively. 
Inset: acceleration correlation function.

Table 1 | Eulerian and Lagrangian DNS parameters

NL
1,024

L
2π

dt
1.5 × 10−4

ν
8 × 10−4

ϵ
1.8 ± 0.1

τη
(2.1 ± 0.2) × 10−2

η
(4.2 ± 0.1) × 10−3

Rλ
≃310

Np 327,680 dts
2.25 × 10−3

T
4.5

K
2,000

NL is the resolution in each spatial dimension; L is the physical dimension of the cubic 
periodic box; dt represents the time step in the DNS integration; ν stands for kinematic 
viscosity; ϵ = ν〈∂iuj∂iuj〉 is the total mean energy dissipation, averaged over time and space; 
τη = √ν/ϵ is the Kolmogorov dissipative time; η = (ν3/ϵ)1/4 is the Kolmogorov dissipative 
scale; Rλ = urmsλ/ν signifies the ‘Taylor scale’ Reynolds number, where urms is the root mean 
squared velocity and λ = √5Etot/Ω ≃ 0.14 represents the ‘Taylor scale’, with Etot ≃ 4.5 and 
Ω ≃ 1,200 being, respectively, the total mean energy and enstrophy in the flow. Additionally, 
τL = L/urms≃ 3.5 is the integral time scale. Parameters of the Lagrangian particles are as follows: 
Np is the total number of trajectories, dts is the time lag between two consecutive Lagrangian 
dumps, T is the total length of each trajectory and K = T/dts is the total number of points in 
each trajectory.
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difficulty of simultaneously generating the three correlated compo-
nents (DM-3c) required to produce highly complex topological–vorti-
cal structures, as shown in Fig. 1e,f. In Fig. 2, we present the PDF of one 
generic component of the acceleration, ai, from DM-1c, showing very 
close agreement with the fat-tail ground-truth DNS distribution up to 
fluctuations around 60–70 times the standard deviation. To illustrate 
the convergence and generalizability of the DMs, we included results 
in Figs. 1a and 2 from the DM-1c model trained on only 10% of the DNS 
data, denoted as DM-1c-10%. The DM-1c and DM-1c-10% results match 
closely, demonstrating the training convergence. In Fig. 1a, the align-
ment of DM-1c-10% with the DNS data further underscores the DM’s 
generalizability to generate extreme events unseen in the training 
data, which, importantly, adhere to the realistic statistical properties. 

Further details and comparisons of other statistical measurements for 
DM-1c-10% are provided in the Supplementary Information.

Lagrangian structure functions and generalized flatness
In Fig. 4a, we show for both DM-1c and DM-3c the Lagrangian structure 
functions given by equation (3) for p = 2, 4, 6; and in Fig. 4b, we show 
the generalized flatness

F (p)
τ = S(p)τ /[S(2)τ ]

p/2
. (5)

Due to the zero-value odd-order structure functions caused by the 
symmetry of PDFs of the velocity increments, we focus only on the even 
orders. Structure functions and generalized flatness of different orders 
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Fig. 3 | Illustration of the DM and in-depth examination of its backward 
generation process. a, Schematic representation of the DM and associated UNet 
sketch, complemented by a table of hyperparameters. Here, N denotes the total 
number of diffusion steps and n denotes the intermediate step. More details on 
the network architecture can be found in the Methods section and ref. 37.  
b, Three distinct noise schedules for the DM’s forward and backward processes 
explored in this study (Methods). Points A–D indicate four different stages 
during the backward generation process (from 𝒱𝒱N  to 𝒱𝒱0) along the optimal noise 

schedule, curve (tanh6-1). At an early step during the backward process, we have 
very noisy signals, n = 0.52N (D), followed by two intermediate steps at n = 0.27N 
(C) and n = 0.06N (B) and the final synthetic trajectory obtained for n = 0 (A).  
c–e, A few statistical properties of the DM-1c signals generated at the four 
backward steps A–D: PDF of δτVi for τ = τη (c), second-order structure function, 
S(2)τ  (d), fourth-order flatness, F(4)τ  (e). f, Illustration of one trajectory generation 
from D to A, corresponding to b.
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are superimposed with the ground-truth DNS for comparison. The 
capacity of both DM-1c and DM-3c to reproduce the ground truth over 
many time-scale decades is striking, especially for τ ≳ τη. However, under 
the dissipative scale, with τ → 0, we observe a tendency for the DM-3c 
model to generate a slightly smoother signal compared to the DNS, 
consistent with our observations in Fig. 2. The fourth-order mixed 
flatness, F(4,ij)τ =  ⟨(δτVi)

2(δτVj)
2⟩/[S(2)τ ] 2 , calculated by averaging  

over ij = xy, xz and yz is shown in Fig. 4c to check the ability of the DM-3c 
to reproduce the correlation among different components of the veloc-
ity vector, confirming quantitatively the agreement between DM-3c 
and DNS shown in Fig. 1e,f. It is worth noting that although the results 
are very good, there is still room for further refinement of the scales 
in the dissipative range.

Acceleration correlation function
In the inset of Fig. 2, we also present the synthetic single-component 
acceleration correlation function, Cτ = 〈ai(t + τ)ai(t)〉, where i = x, y, z. 
The result demonstrates a strong alignment with the DNS. This mul-
tiscale Lagrangian structure function has been the subject of intense 
studying and modelling in the past, due to the presence of a whole set 
of hierarchical time scales affecting its properties58–61.

Local scaling exponents
Let us now introduce what is perhaps the most stringent and quanti-
tative multiscale test for turbulence studies: the comparison of local 

scaling properties provided by the scale-by-scale exponent defined 
in equation (4). In practice, we compute ζ(p, τ) by first computing 
d log S(p)τ /d log τ  and d log S(2)τ /d log τ  on a grid with τ intervals of 1 
(from 1 to 1,024) using second-order accurate central differences and 
then performing the division. It is easy to realize that in the inertial 
range, where equation (3) is supposed to hold, we have 
ζ(p, τ) = ξ(p)/ξ(2), independently of τ. On the other hand, it is known 
that most of the ‘turbulent’ deadlocks develop at the interface 
between viscous and inertial ranges, τ ≈ τη, where the highest level of 
non-Gaussian fluctuations is observed. Multifractal statistical mod-
els are able to fit the whole complexity of the ζ(p, τ) curves in the 
entire range of time scales33,54,62,63. This is achieved by introducing a 
multiplicative cascade model in the inertial range, ended with a fluc-
tuating dissipative time scale, ̃τη  (refs. 64,65). Despite numerous 
attempts, we miss a proper constructive method for embedding the 
above phenomenology to generate synthetic, realistic 3D Lagrangian 
trajectories27,29,32,66. In Fig. 5a, we show the local exponent for p = 4 for 
DM-1c and DM-3c and for the DNS data used for training. For com-
parison, in Fig. 5b we show a state-of-the-art collection of experimen-
tal and other DNS data published in the past. Similar results are 
obtained for p = 6 and 8 (not shown). The agreement of results from 
DMs with experimental and DNS data is remarkable. This is considered 
a high-quality benchmark, demanding the reproduction of the rate 
of variation of the local scaling properties over a range of frequencies/
time lags spanning more than three decades and a corresponding 
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variation of the structure functions (equation (3)) over four to five 
decades (Fig. 4). Such substantial variations are distilled into the 
measurement of O(1) quantities (equation (4)) with an error margin 
within 5%. There are no other tests that can check the scaling proper-
ties with greater precision because statistical accuracy typically does 
not allow one to go beyond a simple—and inaccurate—log–log fit of 
scaling laws over the full range of variation.

Discussion
We have presented a data-driven model capable of reproducing all 
recognized statistical properties of single-particle Lagrangian turbu-
lence in homogeneous and isotropic turbulence from the large scales 
down to the inertial and inertial-viscous scaling range, including the 
enhanced intermittent properties observed around τη. This achieve-
ment is summarized by the PDFs of velocity increments in the inertial 
range and acceleration (Figs. 1 and 2) as well as by the structure func-
tions, the flatness among different components and the local scaling 
exponents as shown in Figs. 4 and 5. In Table 2, we further summarize 
a comparison of single-time two-point correlations of velocity and 
acceleration, showing excellent matching of DM synthetic data with 
DNS, except for the case of cross correlation among different accel-
eration components, ΣA, where DM-3c gives a smaller value than DNS. 
This trend is also reflected in the smoother transition observed in the 
limit τ → 0 for the single- and mixed-component flatness in Fig. 4b,c. 
Furthermore, it is important to highlight the ability of both DM-1c 
and DM-3c to break the deadlock of viscous intermittency by being 
able to reproduce the dip structure in the local scaling exponents, 
as shown in Fig. 5 in the range τ ≈ τη. Fig. 6 shows how DM generation 
improves multiscale statistics as training progresses. We also evaluated 
another prominent generative model, the Wasserstein GAN, for this 
task. Despite efforts to train and select the best-performing model, 
its accuracy was only satisfactory at large and intermediate scales and 
failed considerably at smaller time scales. Further details can be found 
in the Supplementary Information.

Generalizability
Having AI models capable of generating high-quality trajecto-
ries can considerably increase the availability of well-validated  
synthetic data for pretraining physical applications based on  
Lagrangian single-particle dispersion. Even more surprisingly, 
our DM shows the ability to generate trajectories with extremely  
intense events, thus generalizing beyond the information absorbed 
during the training phase while still preserving realistic statistical 
properties. This is clearly illustrated by the striking observation 
of the extended tails of the PDFs measured from the larger dataset 
generated by the DM compared to those measured from the smaller 
set of training data, as shown in Figs. 1a and 2. Currently, our DM is 
not configured to generalize to different flow configurations, such 
as different boundary conditions, forcing mechanisms or higher 
Reynolds numbers. Achieving this adaptability may require the use 
of a conditional diffusion model37,53. By integrating data composed of 
diverse flows and geometries, such a model could interpolate between 

different setups and adapt to new conditions, providing a promising 
avenue for future research.

Explainability
The fundamental physical model learned by the DM to generate the 
correct set of multitime fluctuations remains elusive. The DM is based 
on nested non-linear Gaussian denoising, resembling in spirit the multi-
scale buildup of fluctuations used in the creation of multifractal signals 
and measures. The progressive enrichment of signal properties along 
the backward diffusion process is displayed in Fig. 3c–f. In Fig. 3e, we 
show quantitatively the buildup of non-trivial flatness at different stages 
of the backward process. Similarly, but more qualitatively, Fig. 3f shows 
the emerging non-Gaussian and non-trivial properties within a single 
trajectory, transitioning from a very noisy signal (n = 0.52N) to the final 
step of the backward process (n = 0). Figure 3c–f illustrates that during 
the generation process, the model initially generates statistics at larger 
scales and gradually builds up statistics at smaller scales. Decrypting 
this multiscale process in terms of precise non-linear mapping could 
lead to important discoveries in our phenomenological understanding 
of turbulence. A promising approach to enhance the interpretability 
of the model is to factorize the data with wavelet decomposition and 
implement DMs to synthesize the wavelet coefficients, conditioning 
on the low-frequency ones67.

Impact
Synthetic stochastic generative models offer remarkable advantages. 
They (1) provide access to open data without copyright or ethical 
issues connected to real-data usage and (2) enable the production of 
high-quality and high-quantity datasets, which can be used to train 
other models that require such data as input. The ultimate goal is to 
provide synthetic datasets that enable new models for downstream 
applications to reach enhanced accuracy, replacing the necessity for 
real-data pretraining with synthetic pretraining. Our study opens the 
way for addressing many questions for which the use of real Lagran-
gian trajectories requires an unfeasible computational or experimen-
tal effort. These questions include the relative dispersion problem 
between two or more particles to study Richardson diffusion68,69, shape 
dynamics70,71, data augmentation of datasets for drifter trajectories 
in specific oceanic applications72,73, generation and classification of 
inertial particle trajectories8 and data inpainting48.

Table 2 | Single-time second-order correlations

DNS DM-1c DM-3c

E 3.0 3.0 2.9

A 1.7 × 10−3 1.8 × 10−3 1.6 × 10−3

ΣV − 0.41 ∅ − 0.39

ΣA 4.4 × 10−5 ∅ 2.4 × 10−5

Quantities are related to both velocity and acceleration for DNS, DM-1c and DM-3c: 
E = 1/3∑i⟨V

2
i ⟩,A = 1/3∑i⟨a

2
i ⟩,ΣV = 1/3∑i,j⟨V

2
i V

2
j ⟩ − ⟨V2i ⟩⟨V

2
j ⟩,ΣA = 1/3∑i,j⟨a

2
i a

2
j ⟩ − ⟨a2i ⟩⟨a

2
j ⟩, 

where in the last two expressions, the summation is only for ij = xy, xz and yz.
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Fig. 6 | DM training protocol. The training loss function, ⟨Lsimplen ⟩, against 
iterations for DM-1c. Here, 〈 ⋅ 〉 represents the average over a batch of training 
data, each of which has a corresponding random step n with 0 ≤ n ≤ N. The inset 
presents the fourth-order flatness obtained from DM-1c at different iterations  
(A: 10 × 103, B: 30 × 103 C: 250 × 103), in comparison with that from DNS data. 
Statistics and error bars are derived as in Fig. 4.
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Methods
Navier–Stokes simulations for Lagrangian tracers
We solve the 3D NSE:

{
∂tu + u ⋅ ∇u = −∇p + νΔu + F

∇ ⋅ u = 0
, (6)

for an incompressible fluid of viscosity ν17. The flow is driven to a 
non-equilibrium statistically steady state by a homogeneous and iso-
tropic forcing, F, obtained via a second-order Ornstein–Uhlenbeck 
process18. For the DNS of the Eulerian field, we used a standard pseu-
dospectral solver fully dealiased with the two-thirds rule. Details on 
the simulation can be found in ref. 74. Parameters of the DNS used in 
this work are given in Table 1. The database of Lagrangian trajectories 
used in this study is dumped each dts = 15dt ≃ 0.1τη (ref. 75). Lagrangian 
integration of tracers is obtained via a B-spline sixth-order interpola-
tion scheme to obtain the fluid velocity at the particle position and with 
a second-order Adams–Bashforth time-marching scheme76.

DMs
The specific implementation of DMs utilized in this work is based on 
recent research37 that demonstrated extremely good performances of 
DMs even in comparison with GAN for image synthesis. The network 
architecture, depicted in Fig. 3, relies on the typical UNet structure77, 
which is commonly used for image analysis tasks as it is designed to cap-
ture both high-level contextual information and precise spatial detail. 
The UNet consists of two primary components: a contracting and an 
expanding path. Acting as an encoder, the contracting path progres-
sively reduces the spatial dimension of the input data while increasingly 
extracting abstract features that contain the global context of the input 
data. The expanding path acts as a decoder, interpreting the learned 
features and systematically recovering the spatial resolution to gener-
ate the final output (see the later section ‘DM architecture and noise 
schedule’ and Fig. 3 for more details).

Training algorithm
We train two different classes of DM: one to generate a single compo-
nent of the Lagrangian velocity field (DM-1c) and one for the three 
components simultaneously (DM-3c). Let us denote each entire trajec-
tory as 𝒱𝒱, where

𝒱𝒱 = 𝒱Vi(tk)|tk ∈ [0,T]; i = x, y, z}; (DM-1c)

and

𝒱𝒱 = 𝒱Vx(tk),Vy(tk),Vz(tk) |tk ∈ [0,T]}; (DM-3c)

and k = 1, …, K goes over the total number of discretized sampling times 
for each trajectory (Table 1). The distribution of the ground-truth tra-
jectories obtained from DNS of the NSE is denoted as q(𝒱𝒱). We introduce 
a forward noising process that starts from the ground-truth trajectory 
𝒱𝒱0 = 𝒱𝒱  and transforms it, after N steps, to a set of trajectories identical 
to pure random uncorrelated Gaussian noise. This process generates 
latent variables 𝒱𝒱1,… , 𝒱𝒱N  by introducing Gaussian noise at step n with a 
variance βn ∈ (0, 1) according to the following formulation

q(𝒱𝒱1∶N|𝒱𝒱0) ∶=
N
∏
n=1

q(𝒱𝒱n|𝒱𝒱n−1), (7)

where we have introduced the shorthand notation 𝒱𝒱1∶N  to denote the 
entire chain of the ensemble of noisy trajectories 𝒱𝒱1, 𝒱𝒱2,… , 𝒱𝒱N, and given 
that the tilde represents ‘distributed as’, each step is defined as

q(𝒱𝒱n|𝒱𝒱n−1) → 𝒱𝒱n ∼ 𝒩𝒩 (√1 − βn𝒱𝒱n−1,βnI) . (8)

Equation (7) is obtained using the Markovian property of the n steps 
in the forward process. For a large enough N and a suitable sequence 
of βn, the latent vector 𝒱𝒱N ∼ 𝒩𝒩(0, I)  approximates a delta-correlated 
Gaussian signal with zero mean and unitary variance. A second remark-
able property of the above process, which follows from the Gaussian 
property of the noise introduced at each step (equation (8)), is that 
given 𝒱𝒱0, we can sample 𝒱𝒱n at any given arbitrary n in a closed form by 
defining αn: = 1 − βn and ᾱn ∶= ∏n

i=0 αi as

q(𝒱𝒱n|𝒱𝒱0) → 𝒱𝒱n ∼ 𝒩𝒩𝒩√ᾱn𝒱𝒱0, (1 − ᾱn)I). (9)

In other words, starting from any ground-truth trajectory, 𝒱𝒱0, we can 
evaluate its corresponding realization after n steps in the forward 
process as

𝒱𝒱n = √ᾱn𝒱𝒱0 +√1 − ᾱnϵ, (10)

where ϵ ∼ 𝒩𝒩(000, I). Now, it is clear that if we can reverse the above process 
and sample from p(𝒱𝒱n−1|𝒱𝒱n), we will be able to generate new true samples 
starting from the Gaussian-noise input, p(𝒱𝒱N) = 𝒩𝒩𝒩000, I). In general, the 
backward distribution, p(𝒱𝒱n−1|𝒱𝒱n), is unknown. However, in the limit of 
continuous diffusion (small βn), the reverse process has the identical 
functional form of the forward process56. Because q(𝒱𝒱n|𝒱𝒱n−1) is a Gaussian 
distribution and βn is chosen to be small, p(𝒱𝒱n−1|𝒱𝒱n) will also be a Gauss-
ian. In this way, the UNet, with trainable parameters θ, needs to model 
the mean μθ(𝒱𝒱n,n)  and standard deviation Σθ(𝒱𝒱n,n)  of the transition 
probabilities for all steps in the backward diffusion process:

pθ(𝒱𝒱0∶N) = p(𝒱𝒱N)
N
∏
n=1

pθ(𝒱𝒱n−1|𝒱𝒱n), (11)

where each reverse step can be written as

pθ(𝒱𝒱n−1|𝒱𝒱n) → 𝒱𝒱n−1 ∼ 𝒩𝒩𝒩μθ(𝒱𝒱n,n),Σθ(𝒱𝒱n,n)). (12)

During training, the optimization involves minimizing the cross 
entropy, LCE, between the ground-truth distribution and the likeli-
hood of the generated data

LCE ∶= −𝔼𝔼q(𝒱𝒱0) log (pθ(𝒱𝒱0))

= −𝔼𝔼q(𝒱𝒱0) log (∫pθ(𝒱𝒱0∶N)d𝒱𝒱1∶N) .
(13)

However, integrating over all possible backward paths from 1 to N and 
averaging over all ground-truth data, 𝔼𝔼q(𝒱𝒱0)[…] = ∫[…]q(𝒱𝒱0)d𝒱𝒱0, to evalu-
ate every network update is beyond being numerically intractable. A 
way out is to exploit a variational lower bound LVLB for the cross entropy56:

LCE ≤ 𝔼𝔼q(𝒱𝒱0)𝔼𝔼p(𝒱𝒱1∶N |𝒱𝒱0) [log
p(𝒱𝒱1∶N |𝒱𝒱0)
pθ(𝒱𝒱0∶N)

] ∶= LVLB. (14)

To make the above expression computable, the expectation value can 
be split into its independent steps. Consequently, it can be rewritten as a 
summation of several Kullback–Leibler divergences, DKL, plus one entropy 
term (see details in Appendix B of ref. 56). In this way, LVLB becomes

LVLB = 𝔼𝔼q(𝒱𝒱0)
⎡⎢⎢⎢
⎣
DKL(p(𝒱𝒱N|𝒱𝒱0) ∥ pθ(𝒱𝒱N))⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

LN

+
N
∑
n>1

DKL(p(𝒱𝒱n−1|𝒱𝒱n, 𝒱𝒱0) ∥ pθ(𝒱𝒱n−1|𝒱𝒱n))⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
Ln−1

− logpθ(𝒱𝒱0|𝒱𝒱1)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
L0

⎤⎥⎥⎥
⎦
.

(15)
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The first term, LN, can be ignored during training, as p(𝒱𝒱N|𝒱𝒱0)  does  
not depend on the network hyperparameters, and pθ(𝒱𝒱N) = 𝒩𝒩𝒩0, I)  is 
just the Gaussian distribution. Hence, the network must minimize  
only the terms Ln with n < N to reproduce the entire backward  
diffusion process and generate correct data. At this point, the last 
remarkable property that allows each term of the variational lower 
bound to be written in a tractable way is that the inverse conditional 
probability can be calculated analytically when conditioned on a par-
ticular realization of the ground-truth data. Using Bayes’ theorem, we 
can write

p(𝒱𝒱n−1|𝒱𝒱n, 𝒱𝒱0) = q(𝒱𝒱n|𝒱𝒱n−1, 𝒱𝒱0)
q(𝒱𝒱n−1|𝒱𝒱0)
q(𝒱𝒱n|𝒱𝒱0)

. (16)

All probabilities in the right-hand side of equation (16) describe forward 
steps as defined in equations (8) and (9). Therefore, equation (16) can 
be regarded as the product of three Gaussians

p(𝒱𝒱n−1|𝒱𝒱n, 𝒱𝒱0) ∝ exp (− (𝒱𝒱n−√αn𝒱𝒱n−1)
2

2βn
)

⋅ exp (− (𝒱𝒱n−1−√ᾱn−1𝒱𝒱0)
2

2(1−ᾱn−1)
)

⋅ exp ( (𝒱𝒱n−√ᾱn𝒱𝒱0)
2

2(1−ᾱn)
) ,

(17)

which can be rewritten as

p(𝒱𝒱n−1|𝒱𝒱n, 𝒱𝒱0) → 𝒱𝒱n−1 ∼ 𝒩𝒩𝒩 ̃μ(𝒱𝒱n, 𝒱𝒱0), ̃βnI), (18)

where the mean and the standard deviation of the conditioned reverse 
probability are, respectively,

̃μn(𝒱𝒱n, 𝒱𝒱0) ∶=
√ᾱn−1βn
1 − ᾱn

𝒱𝒱0 +
√αn(1 − ᾱn−1)

1 − ᾱn
𝒱𝒱n (19)

and

̃βn ∶=
1 − ᾱn−1
1 − ᾱn

βn. (20)

All terms denoted by Ln−1 in the variational lower bound are DKL 
between the two Gaussians that depend only on the difference 
between their mean values and standard deviations. Assuming that 
the standard deviations of the reverse and forward processes are 
identical, that is, Σθ = βnI, we only need to model the mean  
values of the backward Gaussians. Consequently, the Kullback–Leibler 
divergence simplifies to the difference between the two mean values, 
given in equation (19) and the output of the UNet mode, μθ(𝒱𝒱n,n), in 
equation (12). From this simplification, it follows that each loss term 
becomes

Ln−1 = 𝔼𝔼q(𝒱𝒱0) [
1
2βn

|| ̃μn(𝒱𝒱n, 𝒱𝒱0) − μθ(𝒱𝒱n,n)||2] .

Expressing 𝒱𝒱0 in term of 𝒱𝒱n by inverting equation (10) and substituting 
it in equation (19), the mean value of the reverse conditioned probabil-
ity can be rewritten as

̃μ(𝒱𝒱n, 𝒱𝒱0) =
1

√αn
(𝒱𝒱n −

βn
√1 − ᾱn

ϵ𝒱𝒱0 ,n) , (21)

where the subscripts of the noise term, ϵ𝒱𝒱0 ,n, indicate that this is the 
specific noise realization used to obtain 𝒱𝒱n from 𝒱𝒱0, as defined in equa-
tion (10). Now, because 𝒱𝒱n is known by the network, one may reparam-
eterize the predicted mean μθ(𝒱𝒱n,n) as

μθ(𝒱𝒱n,n) =
1

√αn
(𝒱𝒱n −

βn
√1 − ᾱn

ϵθ(𝒱𝒱n,n)) , (22)

where ϵθ is a function approximator designed to predict ϵ𝒱𝒱0 ,n from 𝒱𝒱n, 
leading to the following reformulation of the loss terms:

Ln−1 = 𝔼𝔼q(𝒱𝒱0),ϵ𝒱𝒱0 ,n [
βn

2αn(1 − ᾱn)
||ϵ𝒱𝒱0 ,n − ϵθ(𝒱𝒱n,n)||2] .

Namely, in the training ϵθ predicted from the DM is compared with the 
one used to build up the 𝒱𝒱n from 𝒱𝒱0. This formulation leads to faster and 
more stable training36. Moreover, it has been shown36 that one can 
obtain good results even by performing the training without learning 
the variance of the reverse process and introducing a simpler, 
reweighted loss function defined as

Lsimplen−1 = 𝔼𝔼q(𝒱𝒱0),ϵ𝒱𝒱0 ,n [||ϵ𝒱𝒱0 ,n − ϵθ(𝒱𝒱n,n)||2] , (23)

which is identical to the one we implemented in this work. It is worth 
noting that due to the Gaussian form of pθ(𝒱𝒱0|𝒱𝒱1), L0 results in the same 
loss function as depicted in equation (23). Therefore, the optimized 
loss functions can be expressed as Lsimplen , where n ranges from 0 to N − 1.

DM architecture and noise schedule
The UNet architecture we have implemented is one of the most advanced 
networks described in the literature, demonstrating state-of-the-art 
performance in image generation37. It is capable of extracting hidden, 
spatially correlated information that is essential both for image genera-
tion and for accomplishing our specific task. The details of the archi-
tecture, including the hyperparameters, are summarized in the table 
in Fig. 3a. Each encoder and decoder part consists of five levels. Pro-
gressing to the next level entails doubling or halving the resolution as 
one passes through an Upsample or Downsample layer, respectively. 
The Depth parameter controls the number of ResBlocks with or without 
AttentionBlocks at each level. Within each level, layers share the same 
number of features, which can be determined using the Channels and 
Channels multiple parameters from the table. Attention mechanisms78 
allow neural networks to prioritize certain regions or features within 
the data. In this study, we employed multihead attention with four 
heads. AttentionBlocks were utilized at levels with resolutions of 250 
and 125. For the DM-1c model, we utilized 250 × 103 iterations, while 
400 × 103 iterations were used for the DM-3c model. In each iteration, 
we sample a batch of training data and assign a random step index n to 
each sample and then optimize Lsimplen  across the data batch. Figure 6 
shows the training loss as a function of iteration for DM-1c alongside 
the fourth-order flatness of samples generated from it at different itera-
tion checkpoints: A, B and C. Here, C corresponds to the final model. It 
reveals that although the loss rapidly reached a ‘plateau’, it is crucial to 
continue training for the model convergence. This is because ⟨Lsimplen ⟩ is 
an average derived from a data batch where each sample is assigned a 
random n, which does not truly represent the inherent loss LCE described 
in equation (13). Although LCE can be approximated as the summed 
expectation of Lsimplen  across the training dataset for 0 < n ≤ N, direct 
evaluation of LCE is impractical. Instead, we rely on examining the statisti-
cal properties to measure training progress.

Concerning the noise schedule to improve the training and sam-
pling protocols, we explored three different laws and found that the 
optimal one for our application is given in terms of a tanh profile; 
see Fig. 3b. Indeed, all results shown in the main text and in panels 
Fig. 3c–e of the same figure have been obtained by following the sched-
ule (tanh6-1):

ᾱn =
− tanh(7n/N − 6) + tanh 1

− tanh(−6) + tanh 1
, (24)
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which allowed us to use N = 800 diffusion steps rather than N = 4,000 
needed for the linear case where the forward process variances are 
constantly increasing from β1 = 10−4 to βN = 0.02. As a result, a fivefold 
improvement in performance is achieved. We also explored an alterna-
tive noise schedule (power4) with a functional form: ᾱn = 1 − (n/N)4 , 
with N = 800, which resulted in being slightly inferior to (tanh6-1). Note 
that applying methods to speed up DM sampling with pretrained mod-
els remains worthy of future exploration79,80.

Computational cost
To illustrate the computational cost of our case, the DNS of the Eulerian 
field takes about 7.2 hours on 4,096 cores. This step is essential even to 
generate a single Lagrangian trajectory. An additional 64% of the time is 
required to track 4 million Lagrangian tracers. All training and sampling 
of the DMs in our study was performed on four NVIDIA A100 GPUs. 
Training takes approximately 1 hour per 10,000 iterations, resulting in 
approximately 25 hours for DM-1c and 40 hours for DM-3c. Sampling 
an equivalent number of 4 million trajectories takes about 200 hours.

Data availability
The Lagrangian trajectories used in this study, which include the posi-
tions, velocities and accelerations of each particle, are available for 
download from the open access Smart-TURB portal http://smart-turb.
roma2.infn.it, in the TURB-Lagr repository74,75. It is also possible to 
download from the same repository a minimum dataset for testing the 
code and the generated Lagrangian trajectories (velocities over time) 
used for all analyses in this paper. TURB-Lagr is a database of 3D tur-
bulent Lagrangian trajectories obtained by DNS of the NSE with homo-
geneous and isotropic forcing. Details on how to download and read 
the database are also given in the portal. All data related to this study 
have also been uploaded to the Open Access Repository (https://doi.
org/10.15161/oar.it/143615)81. Source data are provided with this paper.

Code availability
The code to train the DM and generate new trajectories can be found at 
https://github.com/SmartTURB/diffusion-lagr (ref. 82). A ready-to-run 
Code Ocean capsule with the complete environment is available at 
https://codeocean.com/capsule/0870187/tree/v1 (ref. 83).
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