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Equivariant 3D-conditional diffusion  
model for molecular linker design

Ilia Igashov    1, Hannes Stärk2, Clément Vignac1, Arne Schneuing    1, 
Victor Garcia Satorras3, Pascal Frossard1, Max Welling3,5, Michael Bronstein4 & 
Bruno Correia    1 

Fragment-based drug discovery has been an effective paradigm in 
early-stage drug development. An open challenge in this area is designing 
linkers between disconnected molecular fragments of interest to obtain 
chemically relevant candidate drug molecules. In this work, we propose 
DiffLinker, an E(3)-equivariant three-dimensional conditional diffusion 
model for molecular linker design. Given a set of disconnected fragments, 
our model places missing atoms in between and designs a molecule 
incorporating all the initial fragments. Unlike previous approaches that 
are only able to connect pairs of molecular fragments, our method can link 
an arbitrary number of fragments. Additionally, the model automatically 
determines the number of atoms in the linker and its attachment points 
to the input fragments. We demonstrate that DiffLinker outperforms 
other methods on the standard datasets, generating more diverse and 
synthetically accessible molecules. We experimentally test our method 
in real-world applications, showing that it can successfully generate valid 
linkers conditioned on target protein pockets.

The space of pharmacologically relevant molecules is estimated to 
exceed 1060 structures1, and searching in that space poses substantial 
challenges for drug design. A successful approach to reduce the size of 
this space is to start from ‘fragments’, smaller molecular compounds 
that usually have no more than 20 heavy (non-hydrogen) atoms. This 
strategy is known as fragment-based drug design (FBDD)2. Given a 
protein pocket (a site on the target protein that has suitable properties  
for ligand binding), computationally determining fragments that 
interact with the pocket is a cheaper and more efficient alternative 
to experimental screening methods2. Once the relevant fragments 
have been identified and docked to the target protein, it remains to 
combine them into a single connected chemical compound. As has 
been shown in various applications, including FBDD3, scaffold hopping 
(that is, discovery of structurally novel compounds starting from a 
known active molecule by modifying its core)4 and proteolysis targeting  
chimera (PROTAC) design5, the geometries of the identified fragments 
are crucial for the effective design of relevant and potent molecules.  

In addition, consideration of the structure of the protein pocket during 
the linker design process can remarkably improve the affinity of the 
generated compound leads6. In this work, we address the problem of 
linking fragments placed in a three-dimensional (3D) context with the 
possibility of conditioning the design process to the target protein 
pocket. Since we address several possible application scenarios, we 
note that the term ‘linker’ denotes any chemical matter that can connect 
starting molecular fragments and does not relate to any aspects of the 
terminology specific for any of the discussed domains.

Early computational methods for molecular linker design were 
based on database search and physical simulations7, both of which 
are computationally intensive. Therefore, there is increasing interest 
in machine learning methods that can go beyond the available data 
and generate diverse linkers more efficiently. Existing approaches are 
based either on syntactic pattern recognition8 or on autoregressive 
models9–11. While the former method operates solely on SMILES12, the 
latter takes into account 3D positions and orientations of the input 
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about pockets. The overall goal of this work is to provide practitioners 
with an effective tool for molecular linker generation in realistic drug 
design scenarios.

Results
We evaluate our method on four benchmarks in several different  
scenarios. First, we report the performance of DiffLinker on ZINC13  
and CASF14 datasets that contain only pairs of fragments to be  
connected. Next, we introduce a new dataset based on GEOM  
molecules15, where each entry contains two or more separate frag-
ments. For all three sets we experiment with different modalities of 
our method: with predefined or sampled linker size and with known or 
unknown anchor points. Additionally, we assess the ability of DiffLinker 
to design relevant linkers in the presence of the protein pocket. For 
that, we introduce another dataset based on Binding MOAD16. Besides 
standard metrics used in the previous benchmarks, we measure the 
number of steric clashes between generated linkers and surrounding 
protein atoms. Finally, we demonstrate the applicability of DiffLinker in 
fragment-based design of Hsp90 and IMPDH inhibitors and in scaffold 
hopping for improving selectivity for JNKs. More details on datasets, 
baselines and metrics can be found in Methods.

Connecting fragment pairs
While DiffLinker shows greater flexibility and applicability in different 
scenarios than other methods, we show below that it also outperforms 
them on standard benchmarks ZINC and CASF in terms of chemical 
relevance (namely, the quantitative estimate of drug-likeness (QED), 
synthetic accessibility (SA) and number of rings) of the generated 
molecules. As shown in Table 1, molecules generated by DiffLinker 
are predicted to be more synthetically accessible and demonstrate 
higher drug-likeness, which is important for drug design applications. 
Moreover, our molecules usually share higher chemical and geometric 
similarity with the reference molecules as demonstrated by the SCRDKit 
scores given in Supplementary Table 5. In terms of validity, our models  
perform on par with the other methods. Note that both DeLinker 
and 3DLinker are autoregressive approaches that explicitly employ 
valency rules at each generation step, while our model is shown to learn  
these rules from the data. Remarkably, the validity of the reference 
molecules from CASF with covalent bonds computed by OpenBabel 
is 92.2% while our model generated molecules with 90.2% validity. 
Notably, sampling the size of the linker substantially improves novelty 
and uniqueness of the generated linkers without serious degradation 
of the most important metrics.

fragments, as this information is essential for designing valid and stable 
molecules in various applications (see Supplementary Information  
for details). However, these methods are not equivariant with respect 
to the permutation of atoms and can only combine pairs of fragments. 
Finally, to date, there is no computational method for molecular linker 
design that takes the target protein pocket into account.

In this work, we introduce DiffLinker, a conditional diffusion 
model that generates molecular linkers for a set of input fragments 
represented as a 3D atomic point cloud. First, our model generates 
the size of the prospective linker and then samples initial linker atom 
types and positions from the normal distribution. Next, the linker atom 
types and coordinates are iteratively updated using a neural network 
that is conditioned on the input fragments. Ultimately, the denoised 
linker atoms and the input fragment atoms form a single connected 
molecule, as shown in Fig. 1.

DiffLinker has several desirable properties: it is equivariant to 
translations, rotations, reflections and permutations; it is not limited 
by the number of input fragments, does not require information on  
the attachment atoms and generates linkers with no predefined size. 
Moreover, we propose a new 3D conditioning mechanism for Euclidean 
diffusion models, which makes DiffLinker a versatile and state-of-the-art 
generative method applicable to various structure-based drug  
design tasks.

We show that DiffLinker has performance superior to that of previ-
ous methods in generating chemically relevant linkers between pairs 
of fragments. Our method achieves state-of-the-art results in synthetic 
accessibility and drug-likeness, which makes it useful in drug design 
pipelines. Besides, DiffLinker remarkably outperforms other methods 
in the chemical diversity of the generated linkers. We further pro-
pose a more challenging benchmark and show that our method is able  
to successfully link more than two fragments, which cannot be  
done by the other methods. We also demonstrate that DiffLinker can 
be conditioned on the target protein pocket; our model respects  
geometric constraints imposed by the surrounding protein atoms  
and generates molecules that are structurally compatible with the 
corresponding pockets. To demonstrate the relevance of DiffLinker 
in practical drug design applications, we provide three case stud-
ies where our method can be integrated into the fragment-based 
design of ligands to target heat shock protein 90 (Hsp90) and inosine 
5′-monophosphate dehydrogenase (IMPDH), and scaffold hopping  
for improving selectivity for c-Jun N-terminal kinases ( JNKs). To 
the best of our knowledge, DiffLinker is the first method that is not  
limited by the number of input fragments and accounts the information 
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Fig. 1 | Overview of the molecular linker generation process. a, Probabilities of linker sizes are computed for the input fragments, and linker atoms are sampled and 
denoised using our fragment-conditioned equivariant diffusion model. b, Example of the linker generation process. Linker atoms are highlighted in orange.
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In this experiment, we considered four different versions of  
DiffLinker depending on the amount of the prior information on anchors 
and linker length available at the sampling stage. Overall, the informa-
tion about anchors helps to achieve higher validity and novelty of the 
generated samples, and this modality is preferred if such information is 
available. On the other hand, if anchor atoms are unknown, the resulting 
samples are more diverse as sampled linkers connect different pairs of 
atoms. Sampling linker length increases the diversity and novelty of  
the designed molecules while other metrics such as drug-likeness, SA 
and validity slightly degrade. In many drug design applications, unique-
ness plays a crucial role, and chemical diversity provides chemists with 
more options to consider and test. In such cases, the DiffLinker model 
with minimum prior information (anchor atoms and linker size are 
unknown) is preferred. Examples of linkers generated by DiffLinker for 
different input fragments are shown in Extended Data Fig. 1.

Connecting multiple fragments
One of the major advantages of DiffLinker compared to recently devel-
oped autoregressive models DeLinker and 3DLinker is one-shot gene
ration of the linker between any arbitrary number of fragments. This 
overcomes the limitation of DeLinker and 3DLinker, which can only 
link two fragments at a time. Although these autoregressive models 
can be adjusted to connect pairs of fragments iteratively while grow-
ing the molecule, the full context cannot be taken into account in this 
case. Therefore, suboptimal solutions are more likely to be gener-
ated. To illustrate this difference, we adapted DeLinker and 3DLinker 
to iteratively connect pairs of fragments in molecules where more 
than two fragments should be connected and tested all the methods 
on the GEOM dataset. As shown in Table 1, 3DLinker fails to construct 
valid molecules in almost 84% of cases and cannot recover any refer-
ence molecule, as shown in Supplementary Table 5. Despite the higher  
complexity of linkers in this dataset, our models achieve 93% validity 
and recover more than 85% of the reference molecules. DeLinker fails to 
generate valid molecules in almost 100% of samples. Besides, molecules 

generated by 3DLinker have no rings in the linkers, have substantially 
lower QED and are predicted to be harder to synthesize. Examples of 
linkers generated by DiffLinker for different input fragments are pro-
vided in Extended Data Fig. 2. An example of the DiffLinker sampling 
process for a molecule from the GEOM dataset is shown in Fig. 1b.

Pocket-conditioned linker design
To illustrate the ability of DiffLinker to leverage the structural infor-
mation provided by the target’s pockets, we trained three models on 
the Pockets dataset (Methods). These models were conditioned on 
the full-atom pocket representation, on the backbone atoms only 
and unconditioned, which serves as a baseline to evaluate the pocket 
conditioning. We computed the standard metrics reported in Supple-
mentary Tables 6 and 7, as well as the number of steric clashes between 
generated molecules and the pockets. Clashes between two atoms are 
defined based on the distance between them and their van der Waals 
radii. As shown in Fig. 2b, the model conditioned on the full-atom 
pocket representation generates molecules with similar levels of 
steric clashes to those of the reference complexes from the test set. 
There is a clear trend in the number of clashes depending on the level  
of resolution of the pockets on which DiffLinker is conditioned,  
where conditioning on full-atom pockets generates molecules with 
less steric clashes.

To highlight the benefits of a reduced search space when using a 
fragment-based approach, we also compare the results of our full-atom 
conditioned model with two fully de novo generation methods. We 
choose ResGen17, a 3D autoregressive method, and DiffSBDD18, a con-
ceptually similar diffusion model, as our baselines and evaluate the 
predicted binding propensity. In particular, we use GNINA19 to relax 
the generated molecules in the pocket and calculate an estimate of the 
binding affinity. As shown in Fig. 2c, DiffLinker produces molecules 
with lower predicted binding affinity and poses that agree better with 
the orthogonal docking method GNINA than those generated without 
predefined fragments.

Table 1 | Performance metrics on ZINC, CASF and GEOM test sets

Method QED ↑ SA ↓ No. of rings ↑ Valid, % Unique, % Novel, %

ZINC

DeLinker + ConfVAE + MMFF 0.64 3.11 0.21 98.3 44.2 47.1

3DLinker (given anchors) 0.65 3.11 0.23 99.3 29.0 41.2

3DLinker 0.65 3.14 0.24 71.5 29.2 41.9

DiffLinker 0.68 3.01 0.25 93.8 24.0 30.3

DiffLinker (given anchors) 0.68 3.03 0.26 97.6 22.7 32.4

DiffLinker (sampled size) 0.65 3.19 0.32 90.6 51.4 42.9

DiffLinker (given anchors, sampled size) 0.65 3.24 0.36 94.8 50.9 47.7

CASF

DeLinker + ConfVAE + MMFF 0.35 4.05 0.35 95.7 51.6 55.6

DiffLinker 0.41 4.00 0.34 85.3 40.5 41.8

DiffLinker (given anchors) 0.40 4.03 0.38 90.2 37.3 48.4

DiffLinker (sampled size) 0.40 4.06 0.30 63.7 60.0 49.3

DiffLinker (given anchors, sampled size) 0.40 4.10 0.38 68.4 57.1 56.9

GEOM

DeLinker + ConfVAE + MMFF 0.76 3.59 0.00 0.1 74.5 —

3DLinker 0.36 3.56 0.00 16.3 73.7 —

DiffLinker 0.48 2.98 0.78 93.5 36.7 70.7

DiffLinker (given anchors) 0.49 3.01 0.82 93.4 37.3 70.5

DiffLinker (sampled size) 0.46 3.24 0.76 87.4 63.1 76.3

DiffLinker (given anchors, sampled size) 0.47 3.30 0.84 88.8 64.4 76.6

The first three metrics, average QED42, average SA26 and average number of rings in the linker, assess the chemical relevance of the generated molecules. The last three metrics, validity, 
uniqueness and novelty, evaluate the standard generative properties of the methods. For all three datasets, we compare DiffLinker with two state-of-the-art baselines: 3DLinker11 and DeLinker9. 
To obtain 3D conformations for the molecules generated by DeLinker, we apply a pretrained ConfVAE45 followed by a force field relaxation procedure using MMFF46. The top two best results for 
each metric are highlighted in bold.
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Case studies
Here we demonstrate how DiffLinker can be integrated in real-world 
pipelines for drug design and discuss three scenarios taken from  
the literature: fragment-based design of Hsp90 and IMPDH inhibitors, 
and scaffold hopping for improving selectivity for JNKs.

Design of Hsp90 inhibitors. Hsp90 is a molecular chaperone involved 
in enabling the folding of numerous proteins, including those partici-
pating in oncogenic transformations. The authors of ref. 20 proposed 
a potent inhibitor for Hsp90 using fragment-based screening and 

structure-based design techniques. First, using biochemical screening 
followed by X-ray crystallography, ref. 20 identified fragments bound 
to separate subsites within the ATPase pocket of Hsp90 (Protein Data 
Bank (PDB) code 3HZ1), as shown in Fig. 3a. The authors report that 
by linking these fragments, compounds with more than 1,000-fold 
improvement in affinity over the initial fragment hit were gener-
ated. A crystal structure of the reported inhibitor bound to Hsp90 is  
shown in Fig. 3c.

In our experiment, we follow the overall procedure reported  
in ref. 20 and integrate DiffLinker in the fragment-linking step.  
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Fig. 2 | Ligand generation with DiffLinker in both pocket-conditioned 
and unconditioned scenarios. a, Examples of linkers sampled by DiffLinker, 
conditioned on pocket atoms (top row) and unconditioned (bottom row). 
Linkers sampled by the unconditioned model present steric clashes with the 
protein pocket. b, Quantification of steric clashes in reference molecules (that is, 
ground truth from the test set, number of data points n = 566) and samples from 
three DiffLinker models differently conditioned (or unconditioned) on pocket 
atoms (number of samples n = 56,600 per model). c, Comparison of DiffLinker 

pocket-conditioned linker design approach with two de novo molecule design 
baselines. All generated molecules were minimized using the molecular docking 
software GNINA19. We report the resulting docking score and r.m.s.d. between 
the original and the final conformation. Numbers of DiffLinker, DiffSBDD and 
ResGen samples are 56,596, 12,720 and 10,652, respectively. All box-and-whisker 
plots include the median line, the box denotes the interquartile range (IQR) and 
whiskers denote the rest of the data distribution within ±1.5× IQR.
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Fig. 3 | Hsp90 as a practical example for fragment-based ligand generation. 
a, Experimentally identified fragments bound to separate subsites within the 
ATPase pocket of Hsp90 (PDB code 3HZ1). b, Starting fragments after removing 
methyl ester group. c, Crystal structure of the inhibitor reported in ref. 20  
(PDB code 3HZ5). d, DiffLinker generated molecule that reproduces the 
reference inhibitor. e,f, Distributions of GNINA (e) and Vina (f) scores for unique 

samples generated by DiffLinker conditioned (green, n = 485) and unconditioned 
(blue, n = 166 for GNINA (e) and n = 66 for Vina (f) after removing outliers) on the 
target pocket. Red solid line depicts the score of the reference inhibitor reported 
in ref. 20. Magenta dashed lines represent scores for three DiffLinker samples 
that recover the reference inhibitor. For GNINA scores, higher values represent 
higher affinities.
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We consider two experimentally observed fragments bound to the 
ATPase pocket of Hsp90 (Fig. 3a), remove the methyl ester group 
from one of them (Fig. 3b) and generate 1,000 linkers using the 
pocket-conditioned model. To predict the size of the linker, we use a 
graph neural network (GNN) trained on the ZINC dataset. We note that 
the inhibitor reported in ref. 20 was not included in the Pockets and 
ZINC training sets. Additionally, none of the relevant crystal structures 
was included in the Pockets training set.

DiffLinker successfully recovers the inhibitor reported in ref. 20. 
Among 1,000 samples, three have the same chemical structure as the 
reference ligand. The molecule with the highest SCRDKit score, which 
captures the highest geometric and chemical similarity to the reference 
compound, is shown in Fig. 3d.

Additionally, we generated 1,000 linkers with the model trained on 
the ZINC dataset (without pocket conditioning). Having the reference 
molecule and samples generated by two different DiffLinker models, 
we scored the protein-ligand complexes with GNINA19 and Vina21, as 
implemented in the GNINA package. We use GNINA and Vina as proxies 
for binding energy, as these methods are fast, and their predictions pre-
sent some level of correlation with experimentally determined binding 
affinities, as shown in Extended Data Fig. 3 and discussed in more detail 
in Supplementary Information. As shown in Fig. 3e,f, docking scores  
of the molecules sampled by the model conditioned on the protein 
pocket are improved relative to those by DiffLinker trained on the ZINC 
dataset only (P values of a two-sided Kolmogorov–Smirnov test are 
1.832 × 10−124 and 1.460 × 10−175 for GNINA and Vina scores, respectively). 
Notably, some of the sampled molecules have docking scores superior 
to those of the best pose of the reference compound. We additionally 
note that docking scores of all three DiffLinker samples that reproduce 
the reference inhibitor molecule are comparable with scores of the 
reference, as depicted by dashed and solid lines in Fig. 3e,f.

Design of IMPDH inhibitors. IMPDH is an attractive tuberculosis drug 
target which plays an important role in de novo synthesis of guanine 
nucleotides. Using fragment-based screening and structure-based 
design techniques, ref. 6 identified potent IMPDH inhibitors. Having  
started with two initial fragment hits shown in Fig. 4a (PDB code 5OU2), 
the authors reported three successful compounds obtained through 

fragment linking. These compounds are represented in Fig. 4f. Notably, 
the authors achieved more than 1,000-fold improvement in affinity 
over the initial fragment hits with the most potent candidate, com-
pound 31. The crystal structure of the protein complexed with the 
compound is shown in Fig. 4c (PDB code 5OU3).

We generated 1,000 linkers of length 5 and 6 using the pocket- 
conditioned model. DiffLinker recovered compound 30 and  
compound 31, which are some of the most potent inhibitors among 
those reported in ref. 6. Sampled molecules that reproduce these 
compounds with the highest SCRDKit score are shown in Fig. 4d,e.  
Even though DiffLinker did not reproduce compound 29, it generated 
similar molecules in terms of Tanimoto distance. In Fig. 4g, we provide 
the top three closest samples with their Tanimoto distances.

Finally, following our previous experiment with Hsp90 inhibitors, 
we compute GNINA docking scores for DiffLinker samples and repre-
sent them also relative to the score of the reference crystallized com-
pound 31 in Fig. 4h. Vina scores for the same molecules are provided 
in Extended Data Fig. 4a. We highlight the scores of eight samples that 
reproduce compound 31. We note that all eight samples show similar 
docking scores to the reference crystal structure. To better understand 
the differences between the reference and sampled molecules, we 
computed the interactions between the reference molecule and the 
IMPDH pocket residues using PLIP22. We also computed the interac-
tions between the DiffLinker sample that reproduces compound 31 
with the highest docking score and the target pocket. As shown in 
Fig. 4h, the reference and sampled linkers interact differently with the 
pocket. While the reference linker interacts with the pocket through 
the acceptor oxygen that forms a hydrogen bond with the nitrogen 
of Glu-318, the sampled linker interacts with the pocket through the 
nitrogen donor that forms a hydrogen bond with the oxygen of Glu-318. 
This difference in the interactions and docking scores suggests that our 
model explores the space of possible ligand conformations trying to 
find favourable interactions with the protein pocket.

Improving selectivity of JNK inhibitors. JNKs constitute an important 
protein family of mitogen-activated protein kinases that regulate 
various cellular processes, including cell proliferation, apoptosis,  
autophagy and inflammation23. Kamenecka et al.24 designed 
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Fig. 4 | Case study for fragment-based design of IMPDH inhibitors.  
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of the most potent inhibitor (compound 31) reported in ref. 6 (PDB code 5OU3). 
d, DiffLinker sample that reproduces compound 31. e, DiffLinker sample that 
reproduces compound 30. f, Chemical structures of three potent inhibitors 
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(Tanimoto distance) to compound 29. h, Distribution of GNINA scores for unique 
samples (n = 800) generated by DiffLinker. Red solid line depicts the score of 
experimentally validated compound 31. Blue dashed lines represent scores for 
eight DiffLinker samples that recover compound 31. On the right, we represent 
the interactions between a molecule (top, reference; bottom, DiffLinker sample 
with the highest score) and the target IMPDH pocket computed by PLIP22.
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JNK3-selective inhibitors that had more than 1,000-fold selectivity 
over p38, another closely related mitogen-activated protein kinase 
family member. Starting with the indazole class of compounds and 
by changing the compound’s scaffold, the authors obtained an amino
pyrazole scaffold that resulted in compounds with over 2,800-fold 
JNK-selectivity. Crystal structures of compounds with indazole and 
aminopyrazole scaffolds reported in ref. 24 are shown in Fig. 5a,b.

Here, we study the ability of DiffLinker to generate a set of diverse 
scaffolds. We input the structure of fragments with the missing core 
(taken from indazole crystal structure, PDB code 3FI3) and generate 
1,000 scaffolds with 8 and 9 atoms using our pocket-conditioned 
model. DiffLinker recovered both indazole and aminopyrazole scaf-
folds, as observed in the ground-truth compounds. Following the 
previous experiments, we provide docking scores of DiffLinker samples  
in Extended Data Fig. 4b,c. Sampled molecules that reproduce com-
pounds reported in ref. 24 with the highest SCRDKit score are shown in 
Fig. 5c,d respectively. Overlay of real (green) and sampled (orange) 
indazole and aminopyrazole structures is shown in Fig. 5e,f. In addi-
tion, we identified 238 unique topologies of the generated scaffolds, 
which suggests that DiffLinker is able to extensively explore the space 
of potentially relevant scaffolds through the sampling of linker regions. 
Six most common distinct topologies along with the exemplary Dif-
fLinker samples are represented in Fig. 5g. For each of the represented 
moieties, we also provide the number of unique sampled chemical 
structures employing this topology. While none of the relevant crystal 
structures was included in the training set, we note that indazole and 
aminopyrazole moieties are among the most commonly sampled ones.

Discussion
In this work, we introduced DiffLinker, a new E(3)-equivariant 3D condi-
tional diffusion model for molecular linker design. Our method showed 
several desirable and practical features that have the potential to help 
accelerate the development of prospective drug candidates using 
FBDD strategies.

However, several aspects remain for further improvement; for 
instance, chemical validity of the sampled compounds is a necessary 
requirement for a successful molecule design method. As explained 
in Supplementary Information, lower validity of DiffLinker samples is 
caused by the fact that our model generates raw point clouds, which 
are then processed by OpenBabel25 to compute covalent bonds. In 
contrast, other methods construct bonds and employ valency rules at 
each generation step explicitly. While our model clearly demonstrates 
the ability to effectively learn fundamental chemistry from the raw 

geometric data, several options that could be beneficial remain to 
be tested. One possible direction is incorporating the information 
on covalent bonds to the model (that is, adding edge features) and 
generating chemical bonds along with atom types and coordinates.

Another important property of the sampled molecules is high SA. 
This quality plays a crucial role in real-world drug discovery pipelines. 
In the current work, we report SA score26 and show that DiffLinker 
produces more synthetically accessible molecules, compared to other 
linker design methods; however, there still remains room for improve-
ment. While the current model gets a notion of SA only from the raw 
training data, one may explicitly employ this concept in the method by 
guiding the denoising process with, for instance, SA score26.

While DiffLinker effectively suggests diverse and valid chemical 
structures in tasks like fragment linking and scaffold hopping, we have 
observed that generating relevant linkers for PROTAC-like molecules 
poses a greater challenge. The main difference between these problems 
lies on the linker length and the distance between the input fragments. 
While the average linker size in our training sets is around 8 atoms (5 for 
ZINC, 10 for GEOM, 10 for Pockets), a typical linker in a PROTAC varies 
between 12 and 20 atoms27. It means that the distribution of linkers in 
PROTACs has different characteristics compared to the distributions 
of linkers provided in our training sets. Therefore, to improve the per-
formance of DiffLinker in PROTAC design, one may consider retraining 
the model using more suitable PROTAC data.

Finally, although the current work focuses on molecular linker 
design, DiffLinker can facilitate other stages of fragment-based 
drug discovery, as there are no fundamental limitations in applying 
our model to molecule growing or de novo generation of molecular 
fragments.

Methods
Here we describe DiffLinker, an E(3)-equivariant diffusion model for 
generating molecular linkers conditioned on 3D fragments. First, we 
provide an overview of diffusion models and discuss the data represen-
tation and equivariance. Next, we formulate equivariance requirements 
for the underlying denoising distributions and propose an appropriate 
learnable dynamic function. We also discuss the strategy of sampling 
the size of a linker and conditioning on protein pockets. Finally, we 
provide information on datasets, evaluation methodology, base-
lines and sampling efficiency of DiffLinker. The full linker generation 
workflow is schematically represented in Fig. 1, and the pseudocode  
of DiffLinker’s training and sampling procedures is provided in  
Supplementary Information.
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Fig. 5 | Exploring chemical diversity for improving selectivity of JNK 
inhibitors. a,b, Crystal structures of compounds with indazole (PDB code 
3FI3) (a) and aminopyrazole (PDB code 3FI2) (b) scaffolds, respectively, with 
JNK3 shown in blue. c,d, DiffLinker samples that reproduce indazole (c) and 
aminopyrazole (d) scaffolds of the compounds reported in ref. 24. e,f, Overlay of 

real (green) and sampled (orange) indazole (e) and aminopyrazole (f) structures. 
g, Six distinct linking moieties along with the corresponding exemplary 
DiffLinker samples. For each of the shown topologies, we also provide the 
number of unique chemical structures employing this topology to demonstrate 
how frequently each moiety was sampled.
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Diffusion models
Diffusion models28 are a class of generative methods that consist of 
a ‘diffusion process’, which progressively transforms a data point x 
into noise and a ‘generative denoising model’, which approximates  
the reverse of the diffusion process.

In this paper, we consider Gaussian diffusion: at a time step 
t = 0, …, T, the conditional distribution of the intermediate data 
state zt given previous state zt−1 is defined by the multivariate normal 
distribution,

q(zt|zt−1) = 𝒩𝒩𝒩zt; αtzt−1, σ
2
t I), (1)

where I is an identity matrix, parameter αt ∈ ℝ+ controls how much 
signal is retained and parameter σt ∈ ℝ+  controls how much noise  
is added. The noise model is chosen to be Markovian, such that the 
probability of a trajectory can be written as:

q(z0, z1,… , zT|x) = q(z0|x)
T
∏
t=1

q(zt|zt−1), (2)

where zT is the data state at time step T. As the distribution q is  
normal, a simple formula for the distribution of zt given x can be derived:

q(zt|x) = 𝒩𝒩𝒩zt|αtx,σ2t I), (3)

where αt = αt/αt−1  and σ 2
t = σ2t − α

2
t σ2t−1 . This closed-form expression 

shows that noise does not need to be added iteratively to x to achieve 
an intermediate state zt.

Another key property of Gaussian noise is that the reverse process 
of the diffusion, referred to as the true denoising process, also admits 
a closed-form solution when conditioned on the original data point x:

q(zt−1|x, zt) = 𝒩𝒩𝒩zt−1;μt(x, zt), ς2t I), (4)

where distribution parameters μt and ςt can be derived analytically:

μt(x, zt) =
αtσ2t−1
σ2t

zt +
αsσ

2
t

σ2t
x and ςt =

σtσt−1
σt

. (5)

This formula describes that if a diffusion trajectory starts at x and  
ends at zT, then the expected value of any intermediate state is an 
interpolation between x and zT.

The second component of a diffusion model is the generative 
denoising process, which aims to invert the diffusion trajectory  
by approximating the original data point x using a neural network.  
The generative transition distribution is then defined as:

p(zt−1|zt) = q(zt−1|x̂, zt), (6)

where x̂ is an approximation of the data point x computed by a  
neural network φ. Instead of predicting x directly, ref. 29 has empi
rically shown that it is more effective to first predict the Gaussian  
noise ϵ̂t = φ(zt, t) and then estimate x̂ based on equation (3):

x̂ = (1/αt)zt − (σt/αt)ϵ̂t. (7)

The neural network is trained to maximize an evidence lower bound 
on the likelihood of the data under the model. Up to a prefactor  
that depends on t, this objective is equivalent to the mean squared 
error between predicted and true noise29,30. Therefore, we use the 
simplified objective ℒ(t) = ||ϵ − ϵ̂t||2  that can be optimized by mini- 
batch gradient descent using an estimator 𝔼𝔼t∼u(0,…,T)[Tℒ(t)].

Finally, once the network is trained, it can be used to sample new 
data points. For this purpose, one first samples the Gaussian noise: 
zT ∼ 𝒩𝒩(0, I) . Then, for t = T, …, 1, one should iteratively sample 

zt−1 ~ p(zt−1∣zt) and finally sample x ~ p(x∣z0), where z0 is the data state  
at the time step t = 0.

Molecule representation and equivariance
In our model, molecules are represented as 3D atomic point clouds.  
A molecule is represented by the coordinates of its M atoms 
r = (r1,… , rM) ∈ ℝM×3  and their corresponding feature vectors, 
h = (h1,… ,hM) ∈ ℝM×nf , which are one-hot encoded atom types. We  
refer to this point cloud as x = [r, h].

While atomic coordinates are continuous, atom types are discrete 
variables that need to be handled differently in our diffusion model. 
Instead of using categorical diffusion models31,32, we use a simpler 
strategy33 that lifts the atom types to a continuous space using one- 
hot encoding and adding Gaussian noise. The continuous values 
are then converted back to discrete values through argmax over the  
different categories during the final transition from z0 to x. For more 
details on the structure of the final transition distribution p(x∣z0)  
and likelihood computation, we refer the reader to ref. 33.

To process 3D molecules efficiently, the data symmetries need to 
be respected. In this work, we consider the Euclidean group E(3) that 
comprises translations, rotations and reflections of ℝ3 and the ortho
gonal group O(3) that includes rotations and reflections of ℝ3. A func-
tion f is E(3)-equivariant if for any point cloud x, orthogonal matrix 
R ∈ ℝ3×3 and translation vector t ∈ ℝ3 we have: f(Rx + t) = Rf(x) + t. Note 
that for simplicity, we use notation Rx + t = [(Rr1 + t,… ,RrM + t)⊤,h] .  
A conditional distribution p(x∣y) is E(3)-equivariant if for any point 
clouds x, y, p(Rx + t∣Ry + t) = p(x∣y). Finally, a function f and a distri
bution p are O(3)-equivariant if f(Rx) = Rf(x) and p(Rx∣Ry) = p(x∣y), 
respectively. We call the function f translation invariant if f(x + t) = f(x).

Equivariant 3D conditional diffusion model
Unlike other diffusion models for molecule generation33,34, our 
method is conditioned on three-dimensional data. More specifically, 
we assume that each point cloud x has a corresponding ‘context’ u, 
which is another point cloud consisting of all input fragments and 
(optionally) protein pocket atoms that remain unchanged throughout 
the diffusion and denoising processes, as shown in Fig. 1. Hence, we 
consider the generative process from equation (6) to operate on point 
cloud x while being conditioned on the fixed corresponding context:

p(zt−1|zt,u) = q(zt−1|x̂, zt), where x̂ = (1/αt)zt − (σt/αt)φ(zt,u, t). (8)

The presence of a 3D context puts additional requirements on the 
generative process, as it should be equivariant to its transformations.

Proposition 1. Consider a prior noise distribution p(zT|u) = 𝒩𝒩𝒩zT;μ, I), 
where μ = [ f(zT),000] ∈ ℝM×(3+nf) , and f ∶ ℝM×(3+nf) → ℝM×3  is a function 
operating on 3D point clouds. Consider transition distributions 
p(zt−1|zt,u) = q(zt−1|x̂, zt) , where q is an isotropic Gaussian and x̂ is an 
approximation computed by the neural network φ according to  
equation (8). Let the conditional denoising probabilistic model p  
be a Markov chain defined as

p(z0, z1,… , zT|u) = p(zT|u)
T
∏
t=1

p(zt−1|zt,u). (9)

If f is O(3)-equivariant and φ is equivariant to joint O(3)-transfor
mations of zt and u, then p(z0∣u) is O(3)-equivariant.

The choice of the function f highly depends on the problem being 
solved and the available priors. In our experiments, we consider two 
cases. First, following ref. 9, we make use of the information about 
atoms that should be connected by the linker. We call these atoms 
‘anchors’ and define f(u) as the anchors’ centre of mass. However, in 
a real-world scenario, it is unlikely to be known which atoms should 
be the anchors. Here we define f(u) as the centre of mass of the whole 
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context u. We should note that although function f computes a single 
point in 3D, it outputs its coordinate vector repeated M times along the 
first dimension (because the noise is further sampled independently 
for each atom of the point cloud).

We note that the probabilistic model p is not equivariant to trans
lations, as shown in Supplementary Information. To overcome this 
issue, we construct the network φ to be translation invariant. Then, 
instead of sampling the initial coordinates noise from 𝒩𝒩( f(u), I)   
we centre the data at f(u) and sample from 𝒩𝒩(000, I). This makes the  
generative process independent of translations.

Dynamics
The learnable function φ that models the dynamics of the diffusion 
model takes as input a noisy version of the linker zt at time t and the 
context u. These two parts are modelled as a single fully connected 
graph where nodes are represented by coordinates r and feature  
vectors h that include atom types, time t fragment flags and (optionally) 
anchor flags. The predicted noise ϵ̂ includes coordinate and feature 
components: ϵ̂ = [ϵ̂r, ϵ̂h].

The neural network is built upon the E(3)-equivariant GNN 
(EGNN)35. EGNN consists of the composition of equivariant graph 
convolutional layers (EGCL) rl+1, hl+1 = EGCL[rl, hl], which are defined as

mij = ϕe(hl
i,h

l
j ,d

2
ij ), hl+1

i = ϕh (hl
i,∑

j≠i
mij) , rl+1i = rli + ϕvel(rl,hl, i), (10)

where dij =∥ rli − rlj ∥ and ϕe and ϕh are learnable functions parame
trized by fully connected neural networks (see Supplementary Infor-
mation for details).

The latter update for the node coordinates is computed by the 
learnable function ϕvel. Note that our graph includes both a noisy linker 
zt and a fixed context u, and φ is intended to predict the noise that 
should be subtracted from the coordinates and features of zt. There-
fore, it is natural to keep the context coordinates unchanged when 
computing dynamics and to apply non-zero displacements only to 
the linker part at each EGCL step. Hence, we model the linker node 
displacements as follows,

ϕvel(rl,hl, i) = ∑
j≠i

rli − rlj

dij + 1
ϕr(hl

i,h
l
j ,d

2
ij ), (11)

where ϕr is a learnable function parametrized by a fully connected neural  
network. Displacements for the context nodes are always set to 0.

The equivariance of convolutional layers is achieved by construc-
tion. The messages ϕe and the node updates ϕh depend only on  
scalar node features and distances between nodes that are E(3)- 
invariant. Coordinate updates ϕvel additionally depend linearly on  
the difference between coordinate vectors rli  and rlj , which makes  
them E(3)-equivariant.

After the sequence of EGCLs is applied, we have an updated  
graph with new node coordinates ̂r = [ur, ẑrt] and new node features 
ĥ = [ûh, ẑht ]. Since we are interested only in the linker-related part, we 
discard the coordinates and features of context nodes and consider 
the tuple [ẑrt , ẑht ] to be the EGNN output.

To make the function φ invariant to translations, we subtract the 
initial coordinates from the coordinate component of the EGNN output 
following ref. 33:

ϵ̂ = [ϵ̂r, ϵ̂h] = φ(zt,u, t) = EGNN(zt,u, t) − [zrt ,000]. (12)

Linker-size prediction
To predict the size of the missing linker between a set of fragments, we 
represent fragments as a fully connected graph with one-hot encoded 
atom types as node features and distances between nodes as edge 
features. From this, a separately trained GNN (see Supplementary 

Information for details) produces probabilities for the linker size. Our 
assumption is that relative fragment positions and orientations, along 
with atom types, contain all the information essential for predicting the 
most likely size of the prospective linker. When generating a linker, we 
first sample its size with the predicted probabilities from the categori-
cal distribution over the list of linker sizes seen in the training data, as 
shown in Fig. 1.

Protein pocket conditioning
In real-world FBDD applications, it often occurs that fragments are 
obtained by experimental screening followed by structural determina-
tion3 or selected and docked into a target protein pocket36. To propose 
a drug candidate molecule, the fragments have to be linked. When gen-
erating the linker, one should take the surrounding pocket into account 
and construct a linker that is sterically compatible with the protein 
pocket and, if possible, also contributes to a potent binding affinity. To 
add pocket conditioning to DiffLinker, we represent a protein pocket as 
an atomic point cloud and consider it as a part of the context u. We also 
extend node features with an additional binary flag marking atoms that 
belong to the protein pocket. Finally, as the new context point cloud 
contains much more atoms, we modify the joint representation of the 
data point zt and the context u that are passed to the neural network φ. 
Instead of considering fully connected graphs, we assign edges between 
nodes based on a 4 Å distance cutoff, as it makes the resulting graphs 
less dense and counterbalances the increase in the number of nodes.

Datasets
ZINC. We follow ref. 9 and consider a subset of 250,000 molecules 
randomly selected by Gómez-Bombarelli et al.37 from the ZINC data-
base13. First, we generate 3D conformers using RDKit38 and define a 
reference 3D structure for each molecule by selecting the lowest energy 
conformation. Then, these molecules are fragmented by enumerating 
all double cuts of acyclic single bonds that are not within functional 
groups. The resulting splits are filtered by the number of atoms in 
the linker and fragments, SA26, ring aromaticity and pan-assay inter-
ference compounds (PAINS)39 criteria. One molecule can therefore 
result in various combinations of two fragments with a linker between. 
The resulting dataset is randomly split into train (438,610 examples), 
validation (400 examples) and test (400 examples) sets. Atom types 
considered for this dataset are: C, O, N, F, S, Cl, Br and I.

CASF. Another evaluation benchmark used by ref. 9 is taken from the 
CASF-2016 dataset14. In contrast to ZINC, where molecule conformers 
were generated computationally, CASF includes experimentally veri-
fied 3D conformations. Following the same preprocessing procedures 
as for the ZINC dataset, ref. 9 obtained an additional test set of 309 
examples, which we use in our work. Atom types considered for this 
dataset are: C, O, N, F, S, Cl, Br and I.

GEOM. ZINC and CASF datasets used in previous works only contain 
pairs of fragments. However, real-world applications often require con-
necting more than two fragments with one or more linkers36. To address 
this case, we construct a new dataset based on GEOM molecules15, which 
we decompose into three or more fragments with one or two linkers 
connecting them. To achieve such splits, we use RDKit implementa-
tions of two fragmentation techniques—a matched molecular pair 
analysis (MMPA) based algorithm40 and BRICS41—and combine results, 
removing duplicates. Overall, we obtain 41,907 molecules and 285,140 
fragmentations that are randomly split in train (282,602 examples), 
validation (1,250 examples) and test (1,288 examples) sets. Atom types 
considered for this dataset are: C, O, N, F, S, Cl, Br, I and P.

Pockets dataset. To assess the ability of DiffLinker to generate valid 
linkers given additional information about protein pockets, we use 
the protein-ligand dataset curated by Schneuing et al.18 from Binding 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | April 2024 | 417–427 425

Article https://doi.org/10.1038/s42256-024-00815-9

MOAD16. To define pockets, we consider amino acids that have at least 
one atom closer than 6 Å to any atom of the ligand. All atoms belonging 
to these residues constitute the pocket. We split molecules into frag-
ments using RDKit’s implementation of an MMPA-based algorithm40. 
We randomly split the resulting data into train (185,678 examples), 
validation (490 examples) and test (566 examples) sets, taking into 
account Enzyme Commission numbers of the proteins. Atom types 
considered for this dataset are: C, O, N, F, S, Cl, Br, I and P.

Metrics
First, we report several chemical properties of the generated molecules 
that are especially important in drug design applications: average 
QED42, average SA26 and average number of rings in the linker. Next, 
following ref. 9, we measure validity, uniqueness and novelty of the 
samples. We then determine if the generated linkers are consistent 
with the 2D filters used to produce the ZINC training set. These filters 
are explained in detail in Supplementary Information. In addition, we 
record the percentage of the original molecules that were recovered 
by the generation process. To compare the 3D shapes of the sampled 
and ground-truth molecules, we estimate the root mean squared devia-
tion (r.m.s.d.) between the generated and real linker coordinates in the 
cases where true molecules are recovered. We also compute the SCRDKit 
metric that evaluates the geometric and chemical similarity between 
the ground-truth and generated molecules43,44.

Baselines
We compare our method with DeLinker9 and 3DLinker11 on the ZINC 
test set and with DeLinker on the CASF dataset. We adapted DeLinker 
and 3DLinker to connect more than two fragments (see Supplementary 
Information for details) and evaluate its performance on the GEOM 
dataset. To obtain 3D conformations for the molecules generated by 
DeLinker, we applied a pretrained ConfVAE45 followed by a force field 
relaxation procedure MMFF46. For all methods, including ours, we gener-
ate linkers with the ground-truth size unless explicitly noted otherwise. 
To obtain SMILES representations of atomic point clouds generated by 
our models, we utilize OpenBabel25 to compute covalent bonds between 
atoms. We also use OpenBabel to rebuild covalent bonds for the mol-
ecules in test sets to correctly compute the recovery rate, r.m.s.d. and 
SCRDKit scores for our models. In ZINC and CASF experiments, we sample 
250 linkers for each input pair of fragments. For the GEOM dataset and 
in experiments with pocket conditioning, we sample 100 linkers for 
each input set of fragments. In our experiments with protein pockets as 
additional context, we compare DiffLinker with two de novo generation 
methods, ResGen17 and DiffSBDD18. In both cases, we obtained trained 
model weights from the publicly available repositories and sample 
molecules with the default settings as described in the online documen-
tation. We sample 120 new molecules for each target with a version of 
DiffSBDD that uses the full-atomic pocket context. ResGen produced 
100 molecules per target on average (minimum 19, maximum 149).

Sampling
For all the experiments discussed in the main text, we sampled with 
the same number of denoising steps T = 500 as used in training. Sam-
pling time for all the datasets is provided in Supplementary Table 10. 
Although the time reported in Supplementary Table 10 is more than 
affordable for applying our method in practice, we explored the capa-
bility of DiffLinker to sample even faster without performance loss. 
Following ref. 47, we conducted an additional evaluation of DiffLinker 
with the reduced number of denoising steps T = 500 in sampling, con-
sidering T/2, T/5, T/10, T/20, T/50 and T/100 values. Extended Data 
Fig. 5 shows how the performance metrics obtained on the ZINC test 
set depend on the number of denoising steps performed in sampling. In 
all cases, we used DiffLinker pretrained on ZINC with T = 500 denoising 
steps. As shown in Extended Data Fig. 5, our model is robust to a notable 
reduction of the number of denoising steps in sampling resulting in 

10-fold gain in sampling speed without any performance degradation. 
Effectively, one can reduce the sampling speed from 0.365 to 0.036 
seconds per molecule with no substantial performance metrics loss.

Software
Dataset processing was done in Python (v.3.10.5) using RDKit 
(v.2022.03.2) for generating molecular conformers and splitting them 
in fragments and linkers, scikit-learn (v.1.0.1) for splitting datasets and 
BioPython (v.1.79) for processing protein structures. The MMPA-based 
algorithm40 and BRICS41 used for molecule fragmentation, as well 
as force field relaxation procedure MMFF46, are components of The 
RDKit package. Central packages used for writing DiffLinker as well 
as training and sampling scripts include NumPy (v.1.22.3), PyTorch 
(v.1.11.0), PyTorch Lightning (v.1.6.3), WandB (v.0.12.16), RDKit 
(v.2022.03.2) and OpenBabel (v.3.0.0). For sampling molecules with 
baseline methods, we used pretrained models and sampling scripts 
available at the corresponding repositories: 3DLinker (https://github.
com/YinanHuang/3DLinker)48, DeLinker (https://github.com/oxpig/
DeLinker)49, DiffSBDD (https://github.com/arneschneuing/DiffS-
BDD)50 and ResGen (https://github.com/HaotianZhangAI4Science/
ResGen)51. None of these repositories provide version releases. Data 
analysis and vizualization was done in Python (v.3.10.5) using RDKit 
(v.2022.03.2), imageio (v.2.19.2), NetworkX (v.2.8.4), SciPy (v.1.7.3), 
matplotlib (v.3.5.2), seaborn (v.0.11.2) and GNINA (v.1.0.3, https://
github.com/gnina/gnina)52.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All the processed datasets, as well as pretrained models, are available 
at Zenodo. Datasets: ZINC (https://doi.org/10.5281/zenodo.7121271)53, 
CASF (https://doi.org/10.5281/zenodo.7121264)54, GEOM (https://
doi.org/10.5281/zenodo.7121278)55, Pockets (https://doi.org/10.5281/
zenodo.7121280)56. Models: https://doi.org/10.5281/zenodo.7775568 
(ref. 57). Molecules used in the ZINC dataset are available at the ZINC 
database (https://zinc.docking.org/). Molecules used in the CASF 
dataset were taken from the CASF-2016 benchmark package (http://
www.pdbbind.org.cn/download/CASF-2016.tar.gz) of the PDBbind 
database (http://www.pdbbind.org.cn/). Molecules used in the GEOM 
dataset are available at the repository of the original GEOM dataset 
(https://github.com/learningmatter-mit/geom)58. Molecules used in 
the Pockets dataset were taken from Binding MOAD (http://www.bind-
ingmoad.org/). Crystal structures of the Hsp90 inhibitor and initially 
bound fragments are available at Protein Data Bank under the access 
codes 3HZ5 and 3HZ1, respectively. Crystal structures of the initial 
fragment hits and the reported inhibitor for IMPDH are available at 
Protein Data Bank under the access codes 5OU2 and 5OU3, respectively. 
Crystal structures of JNK inhibitors with indazole and minopyrazole 
scaffolds are available at Protein Data Bank under the access codes 
3FI3 and 3FI2, respectively.

Code availability
The source code of this study is freely available at GitHub (https://
github.com/igashov/DiffLinker)59,60.
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Extended Data Fig. 1 | Examples of DiffLinker samples on ZINC and CASF datasets. Examples of linkers generated by DiffLinker (sampled size) for fragments from 
CASF and ZINC datasets.
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Extended Data Fig. 2 | Examples of DiffLinker samples on GEOM dataset. Examples of linkers generated by DiffLinker (sampled size) for fragments from GEOM 
datasets.
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Extended Data Fig. 3 | Correlation of GNINA scores and experimentally determined binding affinities. Predicted GNINA (a) and Vina (b) scores versus 
experimental KD values for Hsp90 proteins and their ligands (n = 76) found in PDBbind database. Error bands show 95% confidence intervals using 1000 bootstrap 
samples.
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Extended Data Fig. 4 | Distributions of docking scores for DiffLinker samples 
for IMPDH and JNK. Distributions of Vina and GNINA scores for samples 
generated by DiffLinker. a, Vina scores of unique samples (n = 800) for IMPDH. 
Red solid line depicts the score of an experimentally validated compound 31 
and blue dashed lines represent scores for eight DiffLinker samples that recover 

compound 31. b-c, Distributions of GNINA and Vina scores correspondingly 
of unique samples (n = 755) for JNK. Blue and red solid lines depict scores 
of experimentally validated compounds with indazole and aminopyrazole 
scaffolds. Dashed magenta lines represent scores of eleven DiffLinker samples 
that recover compound with the indazole scaffold.
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Extended Data Fig. 5 | Dependency of DiffLinker performance on the number 
of sampling steps. Dependency of validity, recovery and RMSD on the number 
of denoising steps in sampling shows that DiffLinker is robust to reducing the 
number of denoising steps. The robustness of DiffLinker allows for 10-fold gain  

in sampling speed without any performance degradation. For all experiments  
we used DiffLinker trained on ZINC with 500 steps and performed evaluation  
on ZINC test set sampling 250 linkers for each input set of fragments.
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