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The study of the water cycle at planetary scale is crucial for our understanding of large-scale climatic
processes. However, very little is known about how terrestrial precipitation is distributed across
different environments. In this study, we address this gap by employing a 17-dataset ensemble to
provide, for the first time, precipitation estimates over a suite of land cover types, biomes, elevation
zones, and precipitation intensity classes. We estimate annual terrestrial precipitation at
approximately 114,000 ± 9400 km3, with about 70% falling over tropical, subtropical and temperate
regions. Our results highlight substantial inconsistencies, mainly, over the arid and the mountainous
areas. To quantify the overall discrepancies, we utilize the concept of dataset agreement and then
explore the pairwise relationships among the datasets in terms of “genealogy”, concurrency, and
distance. The resulting uncertainty-based partitioning demonstrates how precipitation is distributed
over a wide range of environments and improves our understanding on how their conditions influence
observational fidelity.

In the last 100 years, more than 40 studies have attempted to quantify the
globalwater cycle budget1. This is no surprise because, despite the challenges
in robustly estimating the amount of water that is exchanged between the
atmosphere, lithosphere, and hydrosphere, the role of water is pivotal in
many abiotic and biotic processes. The role of water does not only affect the
energy cycle through the latent heat release, but it is also closely related to the
Earth’s biogeochemical cycles, which are crucial factors for ecosystem
functioning. Thus, the assessment of the global water cycle budget and its
variability is critical for understanding how the Earth systemworks. Having
accurate estimates of its fluxes is a vital first step to achieve it.

Among the water cycle fluxes, precipitation, which includes all the
forms of water that is condensed in the atmosphere and then transferred to
the ground, is one of the major components and certainly the most mea-
sured one. In the last decades, its estimation has come a long way as more
accurate instruments became available and rain-gauge networks have been
established at global scale, like for example the Global Historical Clima-
tology Network2. At the same period, the rise of the internet and open data
policies allowed for easy and quick exchange of precipitation records, which
resulted in the development of gridded global datasets. The availability of

data products became exponential with the beginning of the satellite era,
marked by the launch of the Tropical Rainfall MeasuringMission3, offering
coverage over previously inaccessible or unmonitored regions. In a parallel
attempt to further improve the spatio-temporal resolution of the mea-
surements, reanalysis data products such as NASA/DAO, NCEP/NCAR,
and ERA-15 rose to the avant-garde4–6. Once again, reanalyses implied a
further increase in the number of available datasets because now we can
permute different combinations of models, observations, and assimilation
schemes. Nowadays, we are in the propitious position to have increasingly
accurate precipitation estimates coming from these three categories; gridded
station-based observations, satellite measurements, and reanalysis
simulations.

The unprecedented data wealth had a direct effect on the quantifi-
cation of global water cycle budget and its constituent fluxes. In their
milestone study, Trenberth et al.7 were thefirst to exploit the observational
and model simulation data availability (GPCP v2, CRU TS 2.1, PREC/L,
CLM3, ERA-40) to report the global water cycle mean state during the
1979–2000 period. Their multi-source approach became the norm for the
studies that followed, and in the last decade the focus of research shifted to
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the application of consistent data fusion techniques between the various
data products8. Still, although all the studies of global water cycle budget
provide estimates of precipitation, exploring how precipitation is parti-
tionedover landhas receivedquite less attention.Despite the progress that
has beenmade, we still find it hard to answer simple questions about how
precipitation is distributed over land, for example "How much does it
precipitate over the boreal forests?”.

So far, there has been only one study of the global water cycle budget
that effectively mapped the distribution of water over various land cover
types9. Being itself a review of earlier works10–13, the study of Oki and Kanae9

reports that out of the 111 thousand km3 of water that annually falls over
land, almost half of it (54 thousand km3) falls over forests, less than a third
(31 thousand km3) over grassland, 11.6 thousand km3 over cropland, 2.4
thousand km3 over lakes, and the remaining 12 thousand km3 are dis-
tributedoverother smaller fractionsof landcover types.A similar, but rather
simpler, approach can be found in the study of global transpiration by
Schlesinger and Jasechko14. In thismeta-analysis of the global transpiration/
evapotranspiration ratio, the precipitation estimates were calculated by
simply multiplying the total biome area to the average precipitation that is
known to correspond to each biome14. This kind of partitioning is missing
from modern water cycle budget studies, which at most report how pre-
cipitation is separated over ocean and land1.

In this work, we use a large ensemble of global precipitation datasets to
revisit the prior estimates and extend them to elevation zones and pre-
cipitation intensity classes. To quantify the uncertainty in the estimation of
the spatial partitioning for each category we introduce the approach of
dataset agreement, assuming that there is no observable “ground truth”. In
this manner, we determine the regions and categories with high observa-
tional fidelity among the 17 datasets, and discuss their impact on the overall
partitioning. The pattern of differences between the gridded station obser-
vations, the satellite measurements, and the reanalysis simulations can be
easily observed, helping us pave the way to future improvements and better
estimates of terrestrial precipitation. Still, despite their differences, the state-
of-the-art precipitation data products are able to provide a clear overview of
the distribution of precipitation over land in the first two decades of the 21st
century.

Results
The ensemble mean of the annual terrestrial precipitation is estimated at
111,650 ± 9445 km3 (Table 1 and Supplementary Table S2). In this estimate
the precipitation over Antarctica is not included due to poor station cov-
erage. If we add to the global annual volume the Antarctica precipitation
estimates reported by Rodell et al.15 and Bromwich et al.16, then the annual
terrestrial precipitation reaches 114 thousand km3 (see Methods). As
expected, almost half of terrestrial precipitation falls over the tropical cli-
mates, with temperate regions coming second (≈21%). Together, these two
regions account for slightly more than two thirds of the terrestrial pre-
cipitation while covering only one third of global land. On the contrary, the
arid regions that have a similar areal extent, receive only 10% of the pre-
cipitation. The polar regions, which in this study include only the arctic and
high mountainous domains, receive a very small fraction of the total
precipitation.

The largest portion of terrestrial precipitation falls over forested
regions, and most forest precipitation is concentrated over tropical forests
specifically (Fig. 1a, Supplementary Table S4). Depending on the subset
criterion, the total precipitation volume ranges between 47.39 (land cover)
and 66.25 (biome) thousand km3 per year. Land cover refers to the physical
characteristics of the Earth’s surface, such as forests, wetlands, and water
bodies,while the biome refers to a large geographic areawith similar climate,
vegetation, and animal life. Therefore, the reason for the above discrepancy
is that savannas are regarded as adifferent land cover than forests,while they
are consideredpart of the forest biome (Fig. 1b, SupplementaryTable S5). In
total, forests, savannas, and croplands receive 73% of the terrestrial pre-
cipitation, with the remaining 27% consisting of shrublands (mainly desert
and tundra), grasslands, barren, and water/snow/ice-covered regions.

A similar fraction (75%) of the terrestrial precipitation falls over the
0–800m elevation zone, with only 7.8% falling over 1500m (Fig. 1c, Sup-
plementary Table S6). The shape of the elevation distribution depends on
the elevation zone selection and the different climatic classes are well-
distributed among them. Overall, 30% of the global land area receives the
70% of terrestrial precipitation, laying within the three highest precipitation
intensity classes (Fig. 1d, Supplementary Table S7).

In general there is good agreement between the various data sources
over the regions of highprecipitationand low in themore arid ones (Fig. 2a).
The Sahara and Arabian deserts, the Tibetan plateau, the Andes and the
RockyMountains, aswell as thehigh latitude areas, show largedisagreement
between thedatasets.Water-scarce ecosystems, suchas deserts, tundras, and
montane grasslands, portray the largest discrepancies among the datasets
(Supplementary Fig. S5). These ecosystems are dominated by shrublands or
non-vegetated land cover types such aspermanent snowandbarren regions.
Additionally, the higher elevation zones have lower observational fidelity
with regions above three thousand meters demonstrating low and below
average dataset agreement close to 75% of the grid cells (Supplementary
Fig. S5c). However, due to the low amounts of precipitation that these
regions receive, the uncertainty stemming from the dataset disagreement
doesn’t affect the global total much.We estimate that the grid cells with low
and below average dataset agreement cover only about 13% of the total
precipitation (circa 14.5 thousand km3 per year with a standard deviation
around 2.5 thousand km3). This has a rather small impact to the spatial
partitioning, which doesn’t change significantly if the grid cells with below
average dataset agreement are omitted from its estimation (Supplementary
Figs. S6–S9).

Conversely, regions with high precipitation show stronger consistency
among the datasets, which is partially caused by the estimation of the
standardized inter-quantile range used to determine the dataset agreement.
This is because the absolute differences in many low precipitation regions
remain relatively high when compared to their means. Thus, if we use the
absolute inter-quantile range then the high precipitation regions will have
lower agreement (Supplementary Fig. S10). To remedy this effect, we also
estimated dataset agreement per precipitation intensity class (Fig. 2b). This
representation provides some extra information about the uncertainty
across regionswith similar climatic properties. For example, thewesternhalf
of the Sahara desert has lower spread among the datasets than its eastern
counterpart. Also the tropics and other regions of higher dataset agreement
appear less homogeneous with emerging hotspots of uncertainty. Themost
likely cause for the heterogeneity is the (non-) existence of operational
ground stations (Supplementary Fig. S11).

Looking at each data source category, i.e., gauge-based, remote sensing,
and reanalyses, there are distinct differences per climate class (Table 1) and
land cover type. The mean of reanalyses show consistently higher values
compared to the station data across all climate classes, ranging from 4% for
tropical to a tenfold 42% for polar climate, and resulting to 11% globally. On
the contrary, the estimates of remote sensing data appear closer to the
ground stations, even in regionswith scarce gauge coverage such as thepolar
or the tropical ones. The highest divergence between them is encountered
over the continental climate. These differences occur irrespective of the land
type classification used examined in this study (Fig. 3, and Supplementary
Figs. S12–S14). In addition, the probability distribution of grid average
precipitation per land use is significantly different in terms of overall shape.
For example, in forests and grasslands, station datasets appear to cover half
of the total data spread andmainly overlapwith remote sensing data.On the
contrary, the remote sensing datasets overlap with reanalysis datasets over
croplands, where the station datasets show an even narrower spread. The
highest similarity appears over barren land, where all three data products
share a common empirical distribution. In general, despite their differences,
we see that on average the ground stations provide the lowest estimates, the
reanalyses the highest, while the remote sensing data products are in
between them.

By further examining the overall uncertainty across individual datasets,
we observe that their variance is more than four times higher than the
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average inter-annual variability of the dataset ensemble. The range of the
global twenty-year means spans from 92.6 (CPC) to 126.6 (NCEP-DOE)
thousand km3 per year (SupplementaryTable S3), with a standard deviation
of about 11 thousand km3 per year. The mean of the ensemble standard
deviation of the annual global precipitation values is slightly less, but still
quite higher than themean of the inter-annual standard deviation, which is
approximately 2.2 thousand km3. The dataset with the lowest inter-annual
variability is CRU-TS, whereas on the other extreme lies NCEP-DOEwith a
value almost 3.5 times higher (Fig. 4). CPC appears to report the lowest
amount of precipitation in all climate classes. Other remarkable negative
deviations from the dataset mean manifest in MERRA2 for tropical, in
CMAP for temperate and continental, MSWEP for arid, and GPCC for
polar climate. On the contrary, the highest estimates of precipitation can be
found in NCEP-NCAR for tropical, in ERA5 for temperate, in NCEP-DOE
and JRA55 for dry and continental, and in EM-Earth for polar climate. The
datasets closest to the ensemble mean are CRU-TS and GPCP, followed by
EM-Earth and MSWEP. Based on these findings CRU and GPCP, can be
regarded as the most representative choices for large-scale climatologic
studies of the terrestrial precipitation, when a multi-source approach is not
available.

Discussion
Spatial partitioning of terrestrial precipitation
Understandinghowprecipitation isdistributedoverdifferent land types and
their correspondingclimatic properties is crucial forprogressing the studyof
the global water cycle. Our results can be used either as a reference for
attributing past and future changes in the global water cycle functioning or
to evaluate its representation in climatic models. We also expect future
research to apply similar partitioning in the other water cycle components,
such as evaporation and runoff. When these variables will have also been
analyzed, we will have a more consistent picture of the moisture exchange
between the land and the atmosphere, as well as its storage across land.
Terrestrial precipitation is a good place to start, due to the increasing data
availability which has also been exploited in this study.

Following the same principle, all the global water cycle studies use
terrestrial precipitation as the most reliable component for estimating the
global mass budget. Our results of 114 thousand km3 per year show a good
match with the pioneering studies of Oki and Kanae9 and Trenberth et al.7,
where the total terrestrial precipitation was reported at 111 and 113 thou-
sandkm3per year, respectively. In addition, looking into the global estimates
of terrestrial precipitation in more recent studies, our global estimate
appears to be very close to their median. In their chronological literature
review on global water budget studies, Vargas Godoy et al.1 show that the
11 studieswhichhave beenpublished since 2009have amedian of terrestrial
precipitationat 113 thousandkm3peryear (range110 to 126 thousandkm3).
All these results advocate that in the last two decades we have increased our
confidence about the estimate of total terrestrial precipitation by sig-
nificantly constraining its uncertainty.

If we look at the spatial partitioning by Oki and Kanae9, we observe
small deviations in the three land cover typespresented there.Forests appear

to receive 54 thousand km3 per year versus 47 thousand in our study,
grassland 31 versus 28 thousand km3 per year, and cropland 11 versus 18
thousand km3 per year. These differences could be attributed to the satellite
advancements in land type characterization, but also to the land cover
changes that occurred in the last 15 years. Nevertheless, the adjacency of the
results is encouraging and supports the distribution among the other land
cover types.When compared with the results of Schlesinger and Jasechko14,
we also see someagreement in the relative partitioningover biomes. The two
dominantbiomes, i.e., tropical rainforests andgrasslands, appear to receive a
larger fraction of precipitation in our study, i.e., 42% vs. 35% and 18% vs.
14%, respectively.On the contrary, there is up to 1%difference on temperate
forests (14% of total precipitation in our analysis), boreal forests (8%),
temperate grasslands (5%), deserts (4%), steppes (2%), Mediterranean
biomes (1%). The most likely reason for the discrepancy could be found in
the fact that Schlesinger and Jasechko14 omit the estimation for subtropical
forests and grasslands, which if taken into account would result to com-
parable values toourfindings.An interesting implication of thismatch is the
potential to use the biomes with high dataset agreement as predictors in the
extrapolation schemes for generating gridded datasets.

The merits of the dataset agreement approach
All the precipitation estimates are dependent to each other. There is a large
degree of overlap in the source data, i.e., the gauge station networks, that go
into the different observational data products, as well as the use of some
datasets by some other (Fig. 5a). Thus, it is no surprise that the majority of
the cross-correlation coefficients of global annual precipitation lies above 0.8
for the annual precipitation time series (Fig. 5b). This is a result of the
different methodological approaches applied to the same raw data records.
Either it is the calibration process of the satellite sensors, the assimilation
schemes of the reanalyses, or the extrapolation method of the gridded sta-
tion products, in principle each method uses a transfer function to predict
the areal precipitation sum for each grid cell. If datasets use similarmethods
and/or sources which result in high cross-correlation, the mean estimates
will be inevitably affected because in our study all observations are con-
sidered equally plausible estimates. This would imply that there is some sort
of “observational democracy”, which dampens any strongly opposing
“opinion” or outlier.

A similar issue has risen in the case of climate model simulations. It
soonbecameapparent that the “model democracy” assumption can result to
significant biases in the estimates of the ensemble statistics17. In the same
study, it is also argued that taking the “model democracy” approach of the
large model ensembles, could be a more robust method compared to
weighting or sub-sampling approaches without out-of-sample testing. In
the case of gridded observations, an objective out of-sample testing or any
other formof evaluation is not possible as there is noground truth.There are
very few regions with high-resolution (<10 km) gauge networks, for dif-
ferent climatologies, elevations, etc. to make them suitable for global scale
evaluation. Therefore, despite the on-going research in the data fusion
techniques or the climate model ensemble validation, there is no straight-
forward way to tackle this challenge, because the true value of each grid cell
remains unknown18.

Is there a way to distinguish whether high correlation (Fig. 5b) and
similar mean values (Fig. 5c) are due to structural similarities between the
datasets (same sources/methods) and not a confirmation of lower
uncertainty? By simply using the cross-correlation or mean distance
metrics, it is hard to say. However, if we look in the “genealogic” infor-
mation among the datasets (Fig. 5a), we can disentangle if what we see is a
robust or a biased estimate (Fig. 5d). If twodatasets have a direct structural
relationship and share high correlation and low mean distance, they can
be regarded as alternative versions of the same dataset. This is, for
example, the case of GPCC and MSWEP. On the contrary, in most cases
data products from the same family do not agree in terms of cross-
correlation and mean distance, e.g., ERA5-Land and EM-Earth. Here, we
can assume that the datasets offer extra insight to the dataset ensemble
with far less structural overlap.

Table 1 | Mean annual precipitation volume (km3) for the main
Köppen–Geiger climatic classes per dataset type and their
terrestrial sum

Source Tropical Arid Temperate Continental Polar Global

All 51,259 11,528 22,966 20,129 4415 111,650

Stations 49,596 10,583 22,637 18,198 4113 105,721

Reanalyses 53,668 12,630 24,227 22,658 5036 119,006

Remote
sensing

50,726 11,417 22,300 19,383 4017 109,932

The standard deviation of each value can be found in Supplementary Table S2, while the individual
values for each data product are presented in Supplementary Table S3.
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By applying this methodology, “observational democracy” can pro-
vide reasonable results by keeping the datasets that appear to significantly
diverge from the ensemble mean. Hence, we propose to first present the
whole range of data source variability, and then address the observational
fidelity in terms of quantifying the dataset agreement. In this manner, we
enhance the explanatory capability of the results at a cost of predictability
strength due to increaseduncertainty. Inevitably, this approach is prone to
the threshold selection that determines which datasets are considered
similar and which not. Despite that, it can be very insightful in deter-
mining the influence of these relationships to our global estimates as we
will see below.

The impact of dataset disagreement in the global
precipitation fluxes
Even if we cannot be absolutely confident about the dataset dependencies
and overlap, the dataset agreement framework can function as an indicator
of themost plausible bias sources. In our case, it is easy to see thatMSWEP is
very similar to GPCC, and GPCP to GPM-IMERG (Fig. 5d and Supple-
mentary Table S3). In addition, all four of them are linked with numerous
other datasets (Fig. 5a), implying that their estimates could be repeatedly
diffused to the other data products. To explore the impact of the potential
overlapping, we repeated our global estimations, excluding these four
datasets in multiple combinations. In all cases, the differences were not

Fig. 1 | Spatial partitioning of terrestrial precipitation. Global precipitation
volume per year and the main Köppen–Geiger classification classes (A: Tropical, B:
Dry, C: Temperate, D: Continental, E: Polar) partitioned by (a) land cover types, (b)
biomes (T/S Forests: Tropical & Sub-tropical Forests, T/S Grasslands: Tropical &
Subtropical Grasslands, Savannas & Shrublands, T. Forests: Temperate Forests, B.

Forests: Boreal Forests/Taiga, T. Grasslands: Temperate Grasslands, Savannas &
Shrublands, Savannas & Shrublands, Deserts & Xeric Shrublands, Tundra, M.
Grasslands: Montane Grasslands & Shrublands, Flooded: Mangroves & Flooded
Grasslands/Savannas, Mediterranean: Mediterranean Forests, Woodlands &
Scrublands), (c) elevation zones, and (d) precipitation intensity classes.
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higher than 1% for the mean global precipitation volume and 3% for cli-
matic means. This is because their estimates are so close to the ensemble
mean that it makes the estimation of the mean insensitive to their removal.
Correspondingly, we can investigate the consequences of removing some
obvious outliers, i.e., CPC and theNCEP family (NCAR, DOE, and CMAP;
Figs. 4 and 5b, c). Again, the results remain below 1%,most likely due to the
high number of datasets and the symmetry of the outliers, as two of them
underestimate and twooverestimate the globalmean. Therefore, by keeping
all the datasets, we preserve the maximum information, with no severe
consequences to the estimation of global or climatic means.

The other side of the coin is the uncertainty due to dataset disagree-
ment. Since it is strongly dependent to precipitation intensity, reaching its
top over arid andmountainous regions, its impact in our results is quite low
(Fig. 3 and Supplementary Figs. S6–S9). However, looking more into the
regionswith high dataset disagreement should be one of the cornerstones of
future research. Even though the grid cells with the low dataset agreement

receive a small fraction of the global precipitation total, they can be found in
regions of high environmental and socioeconomic significance.We see that
the strongest inconsistencies lie over arid zones covering approximately 41%
of the Earth’s land surface with a population above two billion, mainly
engaged in agricultural and pastoral activities that are sensitive to water
availability19. Similarly, mountains or high elevation zones that also show
high discrepancies, play an important role in the formation of glaciers,
snowfields, and aquifers that store water over extended periods. An
exception to this is barren land, where there is enhanced agreement between
reanalyses and the other data sources. This could mean that the reanalyses
land surface schemes are not ideal and overestimate transpiration andwater
flux to the atmosphere and thus higher local recycling of rainfall. Finally,
future changes in precipitation patterns and amounts may have critical
impacts on water availability and ecological functioning over arid or
mountainous areas. Thus, improving our estimation of the water cycle
components, particularly in regionswith lowobservationalfidelity, is crucial

Fig. 2 | Maps of dataset agreement. a Standardized interquartile range is derived by all grid cells, b Standardized interquartile range is conditioned over each precipitation
intensity class.
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for better managing water resources and mitigating the impacts of extreme
climatic fluctuations.

The best way to increase observational fidelity is by extending the
in-situmonitoring networks. A simplified example for the importance of
ground stations to dataset fidelity can be demonstrated if we consider the
stations fromGHCNnetwork (Supplementary Fig. S11). Although, each
data product uses a slightly different station network for interpolation,
validation or assimilation, examining the relationship between GHCN
stations locations and grid cell dataset agreement is quite informative.
Approximately 60% grid cells with at least one station of the GHCN
network have above-average and high dataset agreement. Unfortu-
nately, this covers only 5% of the grid. In the rest 95% of the grid cells
with no stations, only 30% show above-average or high dataset agree-
ment. If this is the case for annual values at 0.25° resolution, then we
should expect even stronger disagreement at higher spatio-temporal
resolutions. Increasing the number of precipitation stations world-wide

is the only tangible approach to remedy this issue and improve obser-
vational fidelity.

Conclusions
In this study, a detailed estimation of the spatial partitioning of precipitation
over land is presented for the first time. The partitioning is supported by, a
conceptual framework based on dataset agreement to determine the impact
of the uncertainty in the precipitation fluxes. We see that despite the pro-
gress in precipitation measurement the global estimate of total terrestrial
precipitation remains very close to the values reported at earlier studies1.
Hence, we can be quite confident that the mean global terrestrial pre-
cipitation lies close to 114,000 ± 9400 km3. However, the rise in the number
of precipitation datasets also revealed the uncertainties at regional scale. The
reason that the local precipitation variability does not affect the globalmean
much, is that it largely appears over arid regions. As a rule of thumb the
lower the precipitation, the higher the uncertainty.

Fig. 3 | Mean annual precipitation of all datasets for each land cover and data set type. The black line and the box plot correspond to all three sources. Points represent
annual values from individual data sets.
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By utilizing the concept of dataset agreement, we mapped the global
uncertainty not by comparing the precipitation datasets to the “ground
truth”, but to their ensemble spread. In thismanner, we assume that dataset
agreement can be regarded as the quantification of the current research
status quo in the estimation the total precipitation over land. If themajority
of the research is close to the true value of precipitation then our results will
be unintentionally skill-weighted by the inclusion of multiple versions of
datasets which are closer to the reality. In addition, looking deeper into the
reasons of dataset disagreement over regions with different geographical
features can result in improvements for thenext generationofdataproducts.
Correspondingly, areas of strong dataset agreement can be used for evalu-
ating the performance of climate model simulations, and benchmark pre-
cipitation shifts as seen in the climate projections that can be of paramount
importance for climate resilience studies.

Future research could further explore these directions and as well
determine the partitioning and dataset agreement of the other components
of terrestrial water cycle. In addition, even though the suggested metho-
dological framework is applied here at global scale, it can be easily down-
scaled up to regional or catchment scale in order to map the local
atmospheric moisture recycling. Finally, a plausible followup will be to
investigate the partitioning of the current terrestrial precipitation dynamics

and its change across the globe over the last decades. All these future steps
can offer new insights in the study of global water cycle and the quantifi-
cation of its budget.

Going back to our initial question about howmuch water precipitates
over the boreal forests, our results show that it is still difficult to give an
accurate estimate.Nevertheless, our studyoffers an entrypoint to the answer
with an estimate of the annual mean between 8219–10,650 km3 or
535–693mm. Station observations would report an annual average at
8219 km3, satellite estimates would be around 8760 km3, while reanalyses
would show a quite higher value (10,650 km3). This example highlights that
a lot remains to be done to narrow down the uncertainty of the estimates
between the data products at regional scale, but we hope that this study can
provide a solid starting point to resolve the challenges that lay ahead.

Methods
Data
To quantify the global terrestrial precipitation we have used a homogenized
inventory of 17 precipitation datasets that cover the period 1/2000–12/2019.
These include:
• Five gauge-based products: CPC-Global20, CRU TS v4.0621, EM-

EARTH22, GPCC v202023, and PREC/L24

Fig. 4 | Dataset (dis-)agreement of individual data products per climate class. The three datasets with annual estimates closest to the ensemble mean and the two with the
lowest/highest means.
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• Seven satellite-based products: CHIRPS v2.025, CMAP26, CMORPH27,
GPCP v2.328, GPM IMERGM v0629, MSWEP v2.830, and
PERSIANN-CDR31.

• Five reanalysis products: ERA532, JRA5533, MERRA234, NCEP/NCAR
R15, and NCEP/DOE R235.

A detailed description of the datasets used can be found in Supporting
Information (Supplementary Text S2 and Supplementary Table S1).

The analysis was performed at annual time step and 0.25° resolution.
To achieve this, data homogenization was performed over four stages that
address the variable type, measuring units, time step/period, and spatial

resolution, respectively. First, data products containing precipitation rates
were transformed into total precipitation, and the measuring units were
converted initially tommand then tokm3/grid cell to address thedifferences
in grid cell area. Thedatasetswith daily time stepswere aggregated to annual
and subset for the selected period whichmaximizes the number of datasets
(1/2000–12/2019). In the last step, spatial remapping was performed using
Climate Data Operators (CDO)36. Datasets with resolutions coarser than
0.25° were regridded by repeating the values over the finer resolutions (i.e.,
nearest neighbor remapping), while datasets with resolutions finer than
0.25° were upscaled through area-weighted averages and remapped (using
the same procedure as for the coarser datasets) in the case when 0.25° was

Fig. 5 | Qualitative and quantitative dataset relationships. a Generation dataset
relationships (dataset “genealogies''). The arrows show the direction of data appli-
cation (e.g., GPCC employs CRU-TS). Same color suggest a data product family that
share sources. GPM-IMERG and MSWEP are considered an individual family as
they only employ data from five or more sources but are not used in any other data
product. b Dataset cross-correlation network. The network edges represent the

highest one-third of the correlated pairs among the datasets. cDatasetmean distance
network. The network edges represent the smallest one-third of the mean distance
among each dataset pair. CMORPH, CHIRPS and PERSIANN not included due to
the limitation on global coverage. d Dataset generation relationships after keeping
only the cross-correlation and mean distance network edges that appear in b and c.
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not divisible by the original resolution of a given dataset. The annual mass
budget of the regridded datasets were approximately 0.01% lower than the
original data. Additionally, we filtered out all the grid cells covered by less
than 10 datasets to remove the dissimilarities found in the coastal bound-
aries of the datasets. Antarctica was not included in the analysis, due to
extremely low station coverage. Instead, the estimate of 2.3 thousand km3 by
Rodell et al.15 and Bromwich et al.16 was added only to the global volume to
have a complete estimate of the terrestrial precipitation. Three out of 17
datasets do not have global coverage (CHIRPS, CMORPH, PERSIANN),
and hence were not used for the estimation of the global precipitation sum.
The annual records were then uploaded to zenodo repository (https://
zenodo.org/records/7078097) and are freely available for download through
the pRecipe package37.

Partition categories
The terrestrial precipitationmeanswere estimated globally, aswell as per the
Köppen–Geiger climate classes, land cover types, biome categories, eleva-
tion zones, and precipitation intensity classes. For the climate partitioning,
we use the main five Köppen–Geiger classes (A: Tropical, B: Dry, C:
Temperate, D: Continental, E: Polar) of the recent classification of Beck
et al.38. The14 land cover typesof the “MODISMOD12C10.25DegreeLand
Cover” data product39 were aggregated to nine by merging together the
different forest types (e.g., broadleaf and conifer; (Supplementary Fig. S1)).
We have also aggregated the 14 biome categories as identified byDinerstein
et al.40 to 10 bymerging together open and closed shrublands, permanent ice
and snow, water and wetlands, and by removing the urban and unclassified
categories as they covered a negligible fraction of the total area (Supple-
mentary Fig. S2). The elevation zones were determined using the topo-
graphyofERA5 reanalysis41 (Supplementary Fig. S3). Finally,wepartitioned
the grid cells into 10 precipitation intensity classes, based on the deciles of
the distribution of the total annual precipitation over all grid cells (Sup-
plementary Fig. S4).

Dataset agreement
It is well-known that each data product comes with its strengths and
weaknesses. At grid scale all of them depend on either an extrapolation
scheme (observational datasets), either to a physical model combined to an
assimilation framework (reanalysis simulations), or to some transfer func-
tion and a calibration approach (satellite data products). Hence, none of
them can be considered as “ground truth”.

As an alternative approach we propose the concept of “dataset agree-
ment”. To quantify the consensus between the available datasets we calcu-
lated the standardized interquartile range of the dataset 20-year
precipitation means at each grid cell D ¼ QP

0:75�QP
0:25

m , where ðQP
0:25Þ and

ðQP
0:75Þ, are respectively the first and third quartile, andm themean value of

all datasets.
We thenclassified the standardized interquartile range tofive subsetsof

agreement ranging from “High” to “Low”, according to its own quantiles
(QD) over all grid cells, i.e., “High”D <QD

0:1; “Above average”Q
D
0:1 ≤D<Q

D
0:3;

“Average” QD
0:3 ≤D<Q

D
0:7; “Below average” QD

0:7 ≤D<Q
D
0:9; “Low” D≥QD

0:9
(Fig. 2a).Hence, “Highdataset agreement” corresponds to the lowest 10%of
the dataset standardized interquartile ranges among all grid cells (low
dataset spread).

In our study, dataset agreement depends on precipitation intensity.
Therefore, to compare the dataset agreement for eachprecipitation intensity
(e.g., dataset agreement over heavy precipitation areas), we separately esti-
mated the dataset agreement for each of the ten precipitation intensity
classes. In this alternative approach, “Highdataset agreement”will represent
the 10% of the grid cells with the lowest spread of each intensity
class (Fig. 2b).

To understand the contribution of each dataset to dataset (dis-)
agreement, we performed two additional steps. Firstly, we estimated the
ratio of each dataset global and climatic mean to the ensemble mean of all
datasets (Fig. 4). In this manner, we have pinpointed the most/least repre-
sentative datasets, i.e., the ones that are closest/furthest to the ensemble

mean. Then, we used the complex network method42, to visualize the rela-
tionships between the datasets in terms of their usage by each other, their
correlation, and their distance to their means (Fig. 5). As a threshold for the
network edges, the highest one third of correlation values and the lowest one
third for mean distance values was chosen.

Data availability
All source data used are are freely available for download through the
pRecipe package37 or at the zenodo repository (https://zenodo.org/records/
7078097). The data relevant to the study outcomes at https://zenodo.org/
records/10836849.

Code availability
All code used in the analysis can be found at https://github.com/imarkonis/
ithaca/tree/main/projects/partition_prec.
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