Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Photoaffinity labelling with small molecules

Abstract

Small molecules can serve as leads for new therapeutics as well as powerful tools to investigate biological processes. Understanding the interactions of these molecules, particularly in native biological environments, is fundamentally critical to their utility. Photoaffinity labelling (PAL) represents one of the few strategies that enable the direct mapping of interactions of small molecules with proteins. PAL uses latent functional groups that form reactive intermediates only upon exposure to light of specific wavelengths that, subsequently, covalently adduct to proximal biomolecules, allowing for their enrichment and identification. Although the original applications of PAL date to six decades ago, the more recent integration with powerful mass spectrometry-based proteomic methods has profoundly impacted the ability to illuminate molecular interactions on a global scale. In this Primer, we discuss the current state-of-the-art of PAL-based strategies for studying molecular interactions in native systems, with a focus on investigations of small molecule–protein interactions. We cover topics including the basic principles of PAL chemistries, PAL probe design, experimental considerations, data analysis and applications of PAL illustrated by recent examples. Finally, we provide our perspective on persistent challenges and our outlook on the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interactome mapping in biological systems using photoaffinity labelling reagents.
Fig. 2: Mechanisms of photoactivation and cross-linking of various photoreactive functionalities.
Fig. 3: Experimental workflow to capture and identify interacting molecules in biological systems utilizing photoaffinity probes.
Fig. 4: Experimental controls commonly employed in photoaffinity labelling studies.
Fig. 5: Applications for photoaffinity labelling in target identification and ligandability studies.
Fig. 6: Examples of photoaffinity labelling applications to identify targets of bioactive molecules.

Similar content being viewed by others

References

  1. Singh, A., Thornton, E. R. & Westheimer, F. The photolysis of diazoacetylchymotrypsin. J. Biol. Chem. 237, PC3006–PC3008 (1962). To the best of our knowledge, this seminal work describes the first PAL reagent.

    Article  Google Scholar 

  2. Burton, N. R., Kim, P. & Backus, K. M. Photoaffinity labelling strategies for mapping the small molecule–protein interactome. Org. Biomol. Chem. 19, 7792–7809 (2021).

    Article  Google Scholar 

  3. Nguyen, T.-A., Cigler, M. & Lang, K. Expanding the genetic code to study protein–protein interactions. Angew. Chem. Int. Ed. 57, 14350–14361 (2018). This article reviews the use of PAL reagents to study PPIs.

    Article  Google Scholar 

  4. Gérard-Hirne, T. et al. Photoactivatable oligonucleotide probes to trap single-stranded DNA binding proteins: updating the potential of 4-thiothymidine from a comparative study. Biochimie 154, 164–175 (2018).

    Article  Google Scholar 

  5. Wilkinson, I. V. L., Pfanzelt, M. & Sieber, S. A. Functionalised cofactor mimics for interactome discovery and beyond. Angew. Chem. Int. Ed. 61, e202201136 (2022).

    Article  ADS  Google Scholar 

  6. Yu, W. & Baskin, J. M. Photoaffinity labeling approaches to elucidate lipid–protein interactions. Curr. Opin. Chem. Biol. 69, 102173 (2022).

    Article  Google Scholar 

  7. Wu, H. & Kohler, J. Photocrosslinking probes for capture of carbohydrate interactions. Curr. Opin. Chem. Biol. 53, 173–182 (2019).

    Article  Google Scholar 

  8. Jun, J. V., Petri, Y. D., Erickson, L. W. & Raines, R. T. Modular diazo compound for the bioreversible late-stage modification of proteins. J. Am. Chem. Soc. 145, 6615–6621 (2023).

    Article  Google Scholar 

  9. Fleet, G. W. J., Porter, R. R. & Knowles, J. R. Affinity labelling of antibodies with aryl nitrene as reactive group. Nature 224, 511–512 (1969). To the best of our knowledge, this research article presents the first application of the aryl azide as a PAL reagent in biological studies.

    Article  ADS  Google Scholar 

  10. Borden, W. T. et al. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res. 33, 765–771 (2000).

    Article  Google Scholar 

  11. Meng, G. et al. Modular click chemistry libraries for functional screens using a diazotizing reagent. Nature 574, 86–89 (2019).

    Article  ADS  Google Scholar 

  12. Bayley, H. & Knowles, J. R. Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer. Biochemistry 17, 2414–2419 (1978).

    Article  Google Scholar 

  13. Galardy, R. E., Craig, L. C., Jamieson, J. D. & Printz, M. P. Photoaffinity labeling of peptide hormone binding sites. J. Biol. Chem. 249, 3510–3518 (1974). To the best of our knowledge, this research article presents the first example of benzophenone PAL reagents to map ligand receptor binding sites.

    Article  Google Scholar 

  14. Kleiner, P., Heydenreuter, W., Stahl, M., Korotkov, V. S. & Sieber, S. A. A whole proteome inventory of background photocrosslinker binding. Angew. Chem. Int. Ed. 56, 1396–1401 (2017). This research article inventories the background proteomic interactions of diazirine, aryl azide and benzophenone PAL groups, commonly employed in chemoproteomic experiments.

    Article  Google Scholar 

  15. Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J. & Miranda, M. A. Benzophenone photosensitized DNA damage. Acc. Chem. Res. 45, 1558–1570 (2012).

    Article  Google Scholar 

  16. Dormán, G., Nakamura, H., Pulsipher, A. & Prestwich, G. D. The life of π*: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 116, 15284–15398 (2016).

    Article  Google Scholar 

  17. Zuhl, A. M. et al. Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors. Nat. Commun. 7, 13042 (2016).

    Article  ADS  Google Scholar 

  18. Hett, E. C. et al. Direct photocapture of bromodomains using tropolone chemical probes. Med. Chem. Commun. 6, 1018–1023 (2015).

    Article  Google Scholar 

  19. Cheng, K. et al. Developing isoxazole as a native photo-cross-linker for photoaffinity labeling and chemoproteomics. Angew. Chem. Int. Ed. 61, e202209947 (2022).

    Article  ADS  Google Scholar 

  20. Smith, R. A. & Knowles, J. R. Letter: Aryldiazirines. Potential reagents for photolabeling of biological receptor sites. J. Am. Chem. Soc. 95, 5072–5073 (1973). This article describes the photoreactivity of diazirines and their potential as PAL tools.

    Article  Google Scholar 

  21. Brunner, J. New photolabeling and crosslinking methods. Annu. Rev. Biochem. 62, 483–514 (1993).

    Article  Google Scholar 

  22. West, A. V. et al. Labeling preferences of diazirines with protein biomolecules. J. Am. Chem. Soc. 143, 6691–6700 (2021). This research article reports potential residue-dependent and environmental-dependent labelling biases by diazirine-based PAL probes in complex biological systems.

    Article  Google Scholar 

  23. Brunner, J., Senn, H. & Richards, F. M. 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents. J. Biol. Chem. 255, 3313–3318 (1980). This article reports the discovery and application of the 3-trifluoromethyl-3-phenyldiazirines for PAL investigations.

    Article  Google Scholar 

  24. Conway, L. P. et al. Evaluation of fully-functionalized diazirine tags for chemical proteomic applications. Chem. Sci. 12, 7839–7847 (2021). This research article evaluates the relative utility of commonly employed diazirine-based PAL tags for chemoproteomic investigations.

    Article  Google Scholar 

  25. Seath, C. P. et al. Tracking chromatin state changes using nanoscale photo-proximity labelling. Nature 616, 574–580 (2023).

    Article  ADS  Google Scholar 

  26. Huth, S. W. et al. μMap photoproximity labeling enables small molecule binding site mapping. J. Am. Chem. Soc. 145, 16289–16296 (2023).

    Article  Google Scholar 

  27. Meyer, C. F. et al. Photoproximity labeling of sialylated glycoproteins (GlycoMap) reveals sialylation-dependent regulation of ion transport. J. Am. Chem. Soc. 144, 23633–23641 (2022).

    Article  Google Scholar 

  28. Buksh, B. F. et al. μMap-red: proximity labeling by red light photocatalysis. J. Am. Chem. Soc. 144, 6154–6162 (2022).

    Article  Google Scholar 

  29. Geri, J. B. et al. Microenvironment mapping via dexter energy transfer on immune cells. Science 367, 1091–1097 (2020). To the best of our knowledge, this research article describes the first report of diazirine-based PAL reagents for photosensitized proximity labelling investigations.

    Article  ADS  Google Scholar 

  30. Li, Z. et al. Tetrazole photoclick chemistry: reinvestigating its suitability as a bioorthogonal reaction and potential applications. Angew. Chem. Int. Ed. 55, 2002–2006 (2016).

    Article  ADS  Google Scholar 

  31. Herner, A. et al. 2-Aryl-5-carboxytetrazole as a new photoaffinity label for drug target identification. J. Am. Chem. Soc. 138, 14609–14615 (2016).

    Article  Google Scholar 

  32. Berens, C., Courtoy, P. J. & Sonveaux, E. A fluorescent radioiodinated oligonucleotidic photoaffinity probe for protein labeling: synthesis and photolabeling of thrombin. Bioconjug. Chem. 10, 56–61 (1999).

    Article  Google Scholar 

  33. Filer, C. N. Tritium labelled photoaffinity agents. J. Radioanal. Nucl. Chem. 281, 521–530 (2009).

    Article  Google Scholar 

  34. Guo, L.-W. et al. Sulfhydryl-reactive, cleavable, and radioiodinatable benzophenone photoprobes for study of protein−protein interaction. Bioconjug. Chem. 16, 685–693 (2005).

    Article  Google Scholar 

  35. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020). This article extensively reviews the general principles and applications of CuAAC click chemistry in various proteomic investigations.

    Article  Google Scholar 

  36. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  Google Scholar 

  37. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2010). This article presents one of the initial descriptions of CuAAC click chemistry, which was part of the Nobel Prize in Chemistry 2022.

    Article  Google Scholar 

  38. Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003). To the best of our knowledge, this report describes the first application of CuAAC chemistry for proteomic investigations.

    Article  Google Scholar 

  39. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide−alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  Google Scholar 

  40. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl Acad. Sci. USA 104, 16793–16797 (2007).

    Article  ADS  Google Scholar 

  41. Seneviratne, U. et al. Photoaffinity labeling and quantitative chemical proteomics identify LXRβ as the functional target of enhancers of astrocytic apoE. Cell Chem. Biol. 28, 148–157.e7 (2021).

    Article  Google Scholar 

  42. Wilkinson, I. V. L. et al. Chemical proteomics and phenotypic profiling identifies the aryl hydrocarbon receptor as a molecular target of the utrophin modulator ezutromid. Angew. Chem. Int. Ed. 59, 2420–2428 (2020).

    Article  Google Scholar 

  43. Li, Z. et al. “Minimalist” cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J. Am. Chem. Soc. 136, 9990–9998 (2014).

    Article  Google Scholar 

  44. Chang, C.-F., Mfuh, A., Gao, J., Wu, H.-Y. & Woo, C. M. Synthesis of an electronically-tuned minimally interfering alkynyl photo-affinity label to measure small molecule–protein interactions. Tetrahedron 74, 3273–3277 (2018).

    Article  Google Scholar 

  45. Li, Z. et al. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. 52, 8551–8556 (2013).

    Article  Google Scholar 

  46. West, A. V., Amako, Y. & Woo, C. M. Design and evaluation of a cyclobutane diazirine alkyne tag for photoaffinity labeling in cells. J. Am. Chem. Soc. 144, 21174–21183 (2022).

    Article  Google Scholar 

  47. Xu, H. et al. A library approach to rapidly discover photoaffinity probes of the mRNA decapping scavenger enzyme DcpS. Mol. Biosyst. 11, 2709–2712 (2015).

    Article  Google Scholar 

  48. O’Brien, J. G. K., Jemas, A., Asare-Okai, P. N., am Ende, C. W. & Fox, J. M. Probing the mechanism of photoaffinity labeling by dialkyldiazirines through bioorthogonal capture of diazoalkanes. Org. Lett. 22, 9415–9420 (2020).

    Article  Google Scholar 

  49. Das, J. Aliphatic diazirines as photoaffinity probes for proteins: recent developments. Chem. Rev. 111, 4405–4417 (2011).

    Article  Google Scholar 

  50. Flaxman, H. A., Miyamoto, D. K. & Woo, C. M. Small molecule interactome mapping by photo-affinity labeling (SIM-PAL) to identify binding sites of small molecules on a proteome-wide scale. Curr. Protoc. Chem. Biol. 11, e75 (2019).

    Article  Google Scholar 

  51. Lee, W., Huang, Z., am Ende, C. W. & Seneviratne, U. Protocol for clickable photoaffinity labeling and quantitative chemical proteomics. STAR. Protoc. 2, 100593 (2021).

    Article  Google Scholar 

  52. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  Google Scholar 

  53. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  ADS  Google Scholar 

  54. Laughlin, S. T. & Bertozzi, C. R. In vivo imaging of Caenorhabditis elegans glycans. ACS Chem. Biol. 4, 1068–1072 (2009).

    Article  Google Scholar 

  55. Scinto, S. L. et al. Bioorthogonal chemistry. Nat. Rev. Methods Primers 1, 30 (2021).

    Article  Google Scholar 

  56. Oliveira, B., Guo, Z. & Bernardes, G. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895–4950 (2017).

    Article  Google Scholar 

  57. Rutkowska, A. et al. A modular probe strategy for drug localization, target identification and target occupancy measurement on single cell level. ACS Chem. Biol. 11, 2541–2550 (2016).

    Article  Google Scholar 

  58. Lang, K. & Chin, J. W. Bioorthogonal reactions for labelling proteins. ACS Chem. Biol. 9, 16–20 (2014).

    Article  Google Scholar 

  59. Murrey, H. E. et al. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: implications for intracellular imaging. J. Am. Chem. Soc. 137, 11461–11475 (2015).

    Article  Google Scholar 

  60. Yang, Y., Yang, X. & Verhelst, S. H. L. Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates. Molecules 18, 12599–12608 (2013).

    Article  Google Scholar 

  61. Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    Article  Google Scholar 

  62. Sibbersen, C., Lykke, L., Gregersen, N., Jørgensen, K. A. & Johannsen, M. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins. Chem. Commun. 50, 12098–12100 (2014).

    Article  Google Scholar 

  63. Punna, S., Kaltgrad, E. & Finn, M. G. “Clickable” agarose for affinity chromatography. Bioconjug Chem. 16, 1536–1541 (2005).

    Article  Google Scholar 

  64. Kozoriz, K. et al. Multifunctional photo-cross-linking probes: from target protein searching to imaging applications. Acc. Chem. Res. 56, 25–36 (2023).

    Article  Google Scholar 

  65. Ayele, T. M., Knutson, S. D., Ellipilli, S., Hwang, H. & Heemstra, J. M. Fluorogenic photoaffinity labeling of proteins in living cells. Bioconjug. Chem. 30, 1309–1313 (2019).

    Article  Google Scholar 

  66. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C. & Yates, J. R. III Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

    Article  Google Scholar 

  67. Brodbelt, J. S. Ion activation methods for peptides and proteins. Anal. Chem. 88, 30–51 (2016).

    Article  Google Scholar 

  68. Conway, L. P., Li, W. & Parker, C. G. Chemoproteomic-enabled phenotypic screening. Cell Chem. Biol. 28, 371–393 (2021).

    Article  Google Scholar 

  69. Forrest, I. & Parker, C. G. Proteome-wide fragment-based ligand and target discovery. Isr J. Chem. 63, e202200098 (2023).

    Article  Google Scholar 

  70. Wright, M. H. & Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Product. Rep. 33, 681–708 (2016).

    Article  Google Scholar 

  71. Qin, W., Yang, F. & Wang, C. Chemoproteomic profiling of protein–metabolite interactions. Curr. Opin. Chem. Biol. 54, 28–36 (2020).

    Article  Google Scholar 

  72. Muranaka, H., Momose, T., Handa, C. & Ozawa, T. Photoaffinity labeling of the human A2A adenosine receptor and cross-link position analysis by mass spectrometry. ACS Med. Chem. Lett. 8, 660–665 (2017).

    Article  Google Scholar 

  73. Seifert, T. et al. Identification of the binding site of chroman-4-one-based sirtuin 2-selective inhibitors using photoaffinity labeling in combination with tandem mass spectrometry. J. Med. Chem. 59, 10794–10799 (2016).

    Article  Google Scholar 

  74. Chiara, D. C. et al. Photoaffinity labeling the propofol binding site in GLIC. Biochemistry 53, 135–142 (2014).

    Article  ADS  Google Scholar 

  75. Lanyon-Hogg, T. et al. Photochemical probe identification of a small-molecule inhibitor binding site in hedgehog acyltransferase (HHAT)**. Angew. Chem. Int. Ed. 60, 13542–13547 (2021).

    Article  Google Scholar 

  76. Niphakis, M. J. et al. A global map of lipid-binding proteins and their ligandability in cells. Cell 161, 1668–1680 (2015).

    Article  Google Scholar 

  77. Speers, A. E. & Cravatt, B. F. A tandem orthogonal proteolysis strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127, 10018–10019 (2005).

    Article  Google Scholar 

  78. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  ADS  Google Scholar 

  79. Weerapana, E., Speers, A. E. & Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)—a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    Article  Google Scholar 

  80. Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541.e29 (2017). This article reports the integration of fragment-based ligand discovery and PAL-based chemoproteomics to broadly map small molecule–protein interactions directly in cells.

    Article  Google Scholar 

  81. Szychowski, J. et al. Cleavable biotin probes for labeling of biomolecules via azide−alkyne cycloaddition. J. Am. Chem. Soc. 132, 18351–18360 (2010).

    Article  Google Scholar 

  82. Rabalski, A. J., Bogdan, A. R. & Baranczak, A. Evaluation of chemically-cleavable linkers for quantitative mapping of small molecule–cysteinome reactivity. ACS Chem. Biol. 14, 1940–1950 (2019).

    Article  Google Scholar 

  83. Lin, Z. et al. Development of photolenalidomide for cellular target identification. J. Am. Chem. Soc. 144, 606–614 (2022).

    Article  Google Scholar 

  84. Flaxman, H. A., Chang, C.-F., Wu, H.-Y., Nakamoto, C. H. & Woo, C. M. A binding site hotspot map of the FKBP12–rapamycin–FRB ternary complex by photoaffinity labeling and mass spectrometry-based proteomics. J. Am. Chem. Soc. 141, 11759–11764 (2019).

    Article  Google Scholar 

  85. Wang, Y. et al. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs. Nat. Chem. 11, 1113–1123 (2019). To the best of our knowledge, this research article describes the first application of stereochemically matched PAL probes to rapidly identify ligandable proteins in cells.

    Article  Google Scholar 

  86. Gao, J., Mfuh, A., Amako, Y. & Woo, C. M. Small molecule interactome mapping by photoaffinity labeling reveals binding site hotspots for the NSAIDs. J. Am. Chem. Soc. 140, 4259–4268 (2018).

    Article  Google Scholar 

  87. Dziuba, D., Hoffmann, J. E., Hentze, M. W. & Schultz, C. A genetically encoded diazirine analogue for RNA-protein photo-crosslinking. Chembiochem 21, 88–93 (2020).

    Article  Google Scholar 

  88. Tanaka, Y. & Kohler, J. J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008). This seminal work describes metabolically incorporating diazirines into glycans to study glycan–protein interactions.

    Article  Google Scholar 

  89. Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat. Methods 2, 261–268 (2005).

    Article  Google Scholar 

  90. Eng, J. K., Jahan, T. A. & Hoopmann, M. R. Comet: an open-source MS/MS sequence database search tool. Proteomics 13, 22–24 (2013).

    Article  Google Scholar 

  91. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  Google Scholar 

  92. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976–989 (1994).

    Article  Google Scholar 

  93. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  Google Scholar 

  94. Xu, T. et al. ProLuCID: an improved SEQUEST-like algorithm with enhanced sensitivity and specificity. J. Proteom. 129, 16–24 (2015).

    Article  Google Scholar 

  95. Silverbush, D. & Sharan, R. A systematic approach to orient the human protein–protein interaction network. Nat. Commun. 10, 3015 (2019).

    Article  ADS  Google Scholar 

  96. Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2014).

    Article  Google Scholar 

  97. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    Article  Google Scholar 

  98. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  Google Scholar 

  99. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  Google Scholar 

  100. Jeong, K., Kim, S. & Bandeira, N. False discovery rates in spectral identification. BMC Bioinformatics 13, S2 (2012).

    Article  Google Scholar 

  101. Schork, K., Turewicz, M., Uszkoreit, J., Rahnenfuhrer, J. & Eisenacher, M. Characterization of peptide–protein relationships in protein ambiguity groups via bipartite graphs. PLoS ONE 17, e0276401 (2022).

    Article  Google Scholar 

  102. The, M., Tasnim, A. & Kall, L. How to talk about protein-level false discovery rates in shotgun proteomics. Proteomics 16, 2461–2469 (2016).

    Article  Google Scholar 

  103. Reiter, L. et al. Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell Proteom. 8, 2405–2417 (2009).

    Article  Google Scholar 

  104. Li, J. et al. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20, 2964–2972 (2021).

    Article  ADS  Google Scholar 

  105. Niessen, S. et al. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. Cell Chem. Biol. 24, 1388–1400.e7 (2017).

    Article  Google Scholar 

  106. Schweppe, D. K. et al. Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics. J. Proteome Res. 19, 2026–2034 (2020).

    Article  Google Scholar 

  107. Pappireddi, N., Martin, L. & Wuhr, M. A review on quantitative multiplexed proteomics. Chembiochem 20, 1210–1224 (2019).

    Article  Google Scholar 

  108. Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

    Article  Google Scholar 

  109. Yang, F., Jia, G. G., Guo, J. Z., Liu, Y. & Wang, C. Quantitative chemoproteomic profiling with data-independent acquisition-based mass spectrometry. J. Am. Chem. Soc. 144, 901–911 (2022).

    Article  Google Scholar 

  110. Vidova, V. & Spacil, Z. A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal. Chim. Acta 964, 7–23 (2017).

    Article  Google Scholar 

  111. Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

    Article  Google Scholar 

  112. Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell Proteom. 11, 1475–1488 (2012).

    Article  Google Scholar 

  113. Li, J., Smith, L. S. & Zhu, H. J. Data-independent acquisition (DIA): an emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters. Drug. Discov. Today Technol. 39, 49–56 (2021).

    Article  Google Scholar 

  114. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  Google Scholar 

  115. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  ADS  Google Scholar 

  116. Parker, B. W. et al. Mapping low-affinity/high-specificity peptide–protein interactions using ligand-footprinting mass spectrometry. Proc. Natl Acad. Sci. USA 116, 21001–21011 (2019).

    Article  ADS  Google Scholar 

  117. Korovesis, D. et al. Mapping peptide–protein interactions by amine-reactive cleavable photoaffinity reagents. ACS Omega 8, 25487–25495 (2023).

    Article  Google Scholar 

  118. Gertsik, N. et al. Mapping the binding site of BMS-708163 on γ-secretase with cleavable photoprobes. Cell Chem. Biol. 24, 3–8 (2017).

    Article  Google Scholar 

  119. Qian, Y. et al. An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. Chembiochem 14, 1410–1414 (2013).

    Article  Google Scholar 

  120. Verhelst, S. H., Fonovic, M. & Bogyo, M. A mild chemically cleavable linker system for functional proteomic applications. Angew. Chem. Int. Ed. 46, 1284–1286 (2007).

    Article  Google Scholar 

  121. Ziemianowicz, D. S., Bomgarden, R., Etienne, C. & Schriemer, D. C. Amino acid insertion frequencies arising from photoproducts generated using aliphatic diazirines. J. Am. Soc. Mass. Spectrom. 28, 2011–2021 (2017).

    Article  ADS  Google Scholar 

  122. Iacobucci, C. et al. Carboxyl-photo-reactive MS-cleavable cross-linkers: unveiling a hidden aspect of diazirine-based reagents. Anal. Chem. 90, 2805–2809 (2018).

    Article  Google Scholar 

  123. Wang, M. R., He, J. Y., He, J. X., Liu, K. K. & Yang, J. A Paal–Knorr agent for chemoproteomic profiling of targets of isoketals in cells. Chem. Sci. 12, 14557–14563 (2021).

    Article  Google Scholar 

  124. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  Google Scholar 

  125. Mertins, P. et al. iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell Proteom. 11, M111.014423 (2012).

    Article  Google Scholar 

  126. Wozniak, J. M. et al. Enhanced mapping of small-molecule binding sites in cells. Nat. Chem. Biol. 20, 261 (2024).

    Article  Google Scholar 

  127. Bern, M., Cai, Y. & Goldberg, D. Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal. Chem. 79, 1393–1400 (2007).

    Article  Google Scholar 

  128. Bastos, M. et al. Isothermal titration calorimetry. Nat. Rev. Methods Primers 3, 17 (2023).

    Article  Google Scholar 

  129. Bakhtiar, R. Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox. J. Chem. Educ. 90, 203–209 (2013).

    Article  Google Scholar 

  130. Shi, Y. A glimpse of structural biology through X-ray crystallography. Cell 159, 995–1014 (2014).

    Article  Google Scholar 

  131. Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84–87 (2013).

    Article  ADS  Google Scholar 

  132. Lanneau, C., Kalouche, G., Cai, X., Lo-Presti, F. & Potting, C. Target Discovery and Validation: Methods and Strategies for Drug Discovery 233–276 (Wiley-VCH, 2019).

  133. Hahn, C. K. et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16, 281–294 (2009).

    Article  Google Scholar 

  134. Kirsch, V. C. et al. The cytotoxic natural product vioprolide A targets nucleolar protein 14, which is essential for ribosome biogenesis. Angew. Chem. Int. Ed. 59, 1595–1600 (2020).

    Article  Google Scholar 

  135. Park, H. & Park, S. B. Label-free target identification reveals oxidative DNA damage as the mechanism of a selective cytotoxic agent. Chem. Sci. 10, 3449–3458 (2019).

    Article  Google Scholar 

  136. Vincent, F. et al. Hit triage and validation in phenotypic screening: considerations and strategies. Cell Chem. Biol. 27, 1332–1346 (2020).

    Article  Google Scholar 

  137. Vincent, F. et al. Phenotypic drug discovery: recent successes, lessons learned and new directions. Nat. Rev. Drug. Discov. 21, 899–914 (2022).

    Article  Google Scholar 

  138. Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    Article  ADS  Google Scholar 

  139. Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA–protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).

    Article  ADS  Google Scholar 

  140. Van Goor, F. et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl Acad. Sci. USA 108, 18843–18848 (2011).

    Article  ADS  Google Scholar 

  141. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug. Discov. 16, 531–543 (2017).

    Article  Google Scholar 

  142. Wilkinson, I. V. L., Terstappen, G. C. & Russell, A. J. Combining experimental strategies for successful target deconvolution. Drug Discov. Today 25, 1998–2005 (2020).

    Article  Google Scholar 

  143. Oeljeklaus, J., Kaschani, F. & Kaiser, M. Streamlining chemical probe discovery: libraries of “fully functionalized” small molecules for phenotypic screening. Angew. Chem. Int. Ed. 52, 1368–1370 (2013).

    Article  Google Scholar 

  144. Schenone, M., Dancik, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    Article  Google Scholar 

  145. Lucki, N. C. et al. A cell type-selective apoptosis-inducing small molecule for the treatment of brain cancer. Proc. Natl Acad. Sci. USA 116, 6435–6440 (2019).

    Article  ADS  Google Scholar 

  146. Bollong, M. J. et al. A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2 signalling. Nature 562, 600–604 (2018).

    Article  ADS  Google Scholar 

  147. Bollong, M. J. et al. A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proc. Natl Acad. Sci. USA 114, E9903–E9912 (2017).

    Article  Google Scholar 

  148. Cisar, J. S. & Cravatt, B. F. Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J. Am. Chem. Soc. 134, 10385–10388 (2012).

    Article  Google Scholar 

  149. Ogasawara, D. et al. Chemical tools to expand the ligandable proteome: diversity-oriented synthesis-based photoreactive stereoprobes. Preprint at bioRxiv https://doi.org/10.1101/2024.02.27.582206 (2024).

  150. Liao, Y. et al. Chemical proteomics with novel fully functionalized fragments and stringent target prioritization identifies the glutathione-dependent isomerase GSTZ1 as a lung cancer target. ACS Chem. Biol. 18, 251–264 (2023).

    Article  ADS  Google Scholar 

  151. Chiu, T. Y. et al. Chemoproteomic development of SLC15A4 inhibitors with anti-inflammatory activity. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01527-8 (2024).

    Article  Google Scholar 

  152. Galmozzi, A. et al. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 576, 138–142 (2019).

    Article  ADS  Google Scholar 

  153. Bantscheff, M. & Drewes, G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med. Chem. 20, 1973–1978 (2012).

    Article  Google Scholar 

  154. Lee, J. & Bogyo, M. Target deconvolution techniques in modern phenotypic profiling. Curr. Opin. Chem. Biol. 17, 118–126 (2013).

    Article  Google Scholar 

  155. Moellering, R. E. & Cravatt, B. F. How chemoproteomics can enable drug discovery and development. Chem. Biol. 19, 11–22 (2012).

    Article  Google Scholar 

  156. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  Google Scholar 

  157. Li, Y.-M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  ADS  Google Scholar 

  158. Pozdnyakov, N. et al. γ-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin. J. Biol. Chem. 288, 9710–9720 (2013).

    Article  Google Scholar 

  159. Hur, J. Y. et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer’s disease. Nature 586, 735–740 (2020).

    Article  ADS  Google Scholar 

  160. Fischer, J. J. et al. Dasatinib, imatinib and staurosporine capture compounds—complementary tools for the profiling of kinases by capture compound mass spectrometry (CCMS). J. Proteom. 75, 160–168 (2011).

    Article  Google Scholar 

  161. Grant, E. K. et al. A photoaffinity displacement assay and probes to study the cyclin-dependent kinase family. Angew. Chem. Int. Ed. 58, 17322–17327 (2019).

    Article  Google Scholar 

  162. Korovesis, D., Rufo, N., Derua, R., Agostinis, P. & Verhelst, S. H. L. Kinase photoaffinity labeling reveals low selectivity profile of the IRE1 targeting imidazopyrazine-based KIRA6 inhibitor. ACS Chem. Biol. 15, 3106–3111 (2020).

    Article  Google Scholar 

  163. Liu, Y., Patricelli, M. P. & Cravatt, B. F. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA 96, 14694–14699 (1999).

    Article  ADS  Google Scholar 

  164. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  Google Scholar 

  165. Greenbaum, D., Medzihradszky, K. F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  Google Scholar 

  166. Sanman, L. E. & Bogyo, M. Activity-based profiling of proteases. Annu. Rev. Biochem. 83, 249–273 (2014).

    Article  Google Scholar 

  167. Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  Google Scholar 

  168. Cravatt, B. F. Activity-based protein profiling—finding general solutions to specific problems. Isr. J. Chem. 63, e202300029 (2023).

    Article  Google Scholar 

  169. Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug. Discov. 21, 881–898 (2022).

    Article  Google Scholar 

  170. Rimann, I. et al. The solute carrier SLC15A4 is required for optimal trafficking of nucleic acid-sensing TLRs and ligands to endolysosomes. Proc. Natl Acad. Sci. USA 119, e2200544119 (2022).

    Article  Google Scholar 

  171. Hu, Y., Song, F., Jiang, H., Nuñez, G. & Smith, D. E. SLC15A2 and SLC15A4 mediate the transport of bacterially derived di/tripeptides to enhance the nucleotide-binding oligomerization domain-dependent immune response in mouse bone marrow-derived macrophages. J. Immunol. 201, 652–662 (2018).

    Article  Google Scholar 

  172. Grant, E. K. et al. A photoaffinity-based fragment-screening platform for efficient identification of protein ligands. Angew. Chem. Int. Ed. 59, 21096–21105 (2020).

    Article  Google Scholar 

  173. Thomas, R. P. et al. A direct-to-biology high-throughput chemistry approach to reactive fragment screening. Chem. Sci. 12, 12098–12106 (2021).

    Article  Google Scholar 

  174. Ma, H. et al. PAC-FragmentDEL—photoactivated covalent capture of DNA-encoded fragments for hit discovery. RSC Med. Chem. 13, 1341–1349 (2022).

    Article  Google Scholar 

  175. Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

    Article  ADS  Google Scholar 

  176. Hedin, L. E., Illergård, K. & Elofsson, A. An introduction to membrane proteins. J. Proteome Res. 10, 3324–3331 (2011).

    Article  Google Scholar 

  177. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  Google Scholar 

  178. Sunshine, H. & Iruela-Arispe, M. L. Membrane lipids and cell signaling. Curr. Opin. Lipidol. 28, 408–413 (2017).

    Article  Google Scholar 

  179. Wymann, M. P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    Article  Google Scholar 

  180. Harter, C., Baechi, T., Semenza, G. & Brunner, J. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH. Biochemistry 27, 1856–1864 (1988).

    Article  Google Scholar 

  181. Brunner, J., Spiess, M., Aggeler, R., Huber, P. & Semenza, G. Hydrophobic labeling of a single leaflet of the human erythrocyte membrane. Biochemistry 22, 3812–3820 (1983).

    Article  Google Scholar 

  182. Brunner, J. & Richards, F. M. Analysis of membranes photolabeled with lipid analogues. Reaction of phospholipids containing a disulfide group and a nitrene or carbene precursor with lipids and with gramicidin A. J. Biol. Chem. 255, 3319–3329 (1980). This research article is one of the first examples of incorporating PAL groups into the structure of phospholipids to study lipid membrane–protein interactions.

    Article  Google Scholar 

  183. Gao, Z. & Bäuerlein, E. Identifying subunits of ATP synthase TF0·F1 in contact with phospholipid head groups. α-Subunits are labelled selectively by a new photoreactive phospholipid designed for hydrophilic photolabelling. FEBS Lett. 223, 366–370 (1987).

    Article  Google Scholar 

  184. Schroit, A. J., Madsen, J. & Ruoho, A. E. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins. Biochemistry 26, 1812–1819 (1987).

    Article  Google Scholar 

  185. Takagaki, Y., Radhakrishnan, R., Gupta, C. M. & Khorana, H. G. The membrane-embedded segment of cytochrome b5 as studied by cross-linking with photoactivatable phospholipids. J. Biol. Chem. 258, 9128–9135 (1983).

    Article  Google Scholar 

  186. UVAROV, V. Y. et al. Determination of membrane-bound fragments of cytochrome P-450 2B4. Eur. J. Biochem. 222, 483–489 (1994).

    Article  Google Scholar 

  187. Li, G., Samadder, P., Arthur, G. & Bittman, R. Synthesis and antiproliferative properties of a photoactivatable analogue of ET-18-OCH3. Tetrahedron 57, 8925–8932 (2001).

    Article  Google Scholar 

  188. Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E. & Cravatt, B. F. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat. Methods 10, 259–264 (2013).

    Article  Google Scholar 

  189. Haberkant, P. et al. In vivo profiling and visualization of cellular protein–lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed. 52, 4033–4038 (2013).

    Article  Google Scholar 

  190. Haberkant, P. et al. Protein–sphingolipid interactions within cellular membranes. J. Lipid Res. 49, 251–262 (2008).

    Article  Google Scholar 

  191. Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481, 525–529 (2012).

    Article  ADS  Google Scholar 

  192. Haberkant, P. et al. Bifunctional sphingosine for cell-based analysis of protein–sphingolipid interactions. ACS Chem. Biol. 11, 222–230 (2016).

    Article  Google Scholar 

  193. Höglinger, D. et al. Trifunctional lipid probes for comprehensive studies of single lipid species in living cells. Proc. Natl Acad. Sci. USA 114, 1566–1571 (2017).

    Article  ADS  Google Scholar 

  194. Sakurai, K., Yamaguchi, T. & Mizuno, S. Design and synthesis of fluorescent glycolipid photoaffinity probes and their photoreactivity. Bioorg. Med. Chem. Lett. 26, 5110–5115 (2016).

    Article  Google Scholar 

  195. Kavunja, H. W. et al. Photoactivatable glycolipid probes for identifying mycolate–protein interactions in live mycobacteria. J. Am. Chem. Soc. 142, 7725–7731 (2020).

    Article  Google Scholar 

  196. Lauc, G., Lee, R. T., Dumiæ, J. & Lee, Y. C. Photoaffinity glycoprobes—a new tool for the identification of lectins. Glycobiology 10, 357–364 (2000).

    Article  Google Scholar 

  197. Rowland, M. M. et al. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 50, 11143–11161 (2011).

    Article  Google Scholar 

  198. Wang, D. et al. Global mapping of protein–lipid interactions by using modified choline-containing phospholipids metabolically synthesized in live cells. Angew. Chem. Int. Ed. 56, 5829–5833 (2017).

    Article  ADS  Google Scholar 

  199. Wichroski, M. et al. DGKα/ζ inhibitors combine with PD-1 checkpoint therapy to promote T cell-mediated antitumor immunity. Sci. Transl. Med. 15, eadh1892 (2023).

    Article  Google Scholar 

  200. Peng, T., Yuan, X. & Hang, H. C. Turning the spotlight on protein–lipid interactions in cells. Curr. Opin. Chem. Biol. 21, 144–153 (2014).

    Article  Google Scholar 

  201. Laguerre, A. & Schultz, C. Novel lipid tools and probes for biological investigations. Curr. Opin. Cell Biol. 53, 97–104 (2018).

    Article  Google Scholar 

  202. Fischer, J. D., Holliday, G. L., Rahman, S. A. & Thornton, J. M. The structures and physicochemical properties of organic cofactors in biocatalysis. J. Mol. Biol. 403, 803–824 (2010).

    Article  Google Scholar 

  203. Baker, S. A. & Rutter, J. Metabolites as signalling molecules. Nat. Rev. Mol. Cell Biol. 24, 355–374 (2023).

    Article  Google Scholar 

  204. Massey, V., Ghisla, S. & Yagi, K. 6-Azido- and 6-aminoflavins as active-site probes of flavin enzymes. Biochemistry 25, 8095–8102 (1986).

    Article  Google Scholar 

  205. Anderson, L. N. et al. Live cell discovery of microbial vitamin transport and enzyme–cofactor interactions. ACS Chem. Biol. 11, 345–354 (2016).

    Article  Google Scholar 

  206. Romine, M. F. et al. Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism. Proc. Natl Acad. Sci. USA 114, E1205–E1214 (2017).

    Article  Google Scholar 

  207. Jelcic, M. et al. A photo-clickable ATP-mimetic reveals nucleotide interactors in the membrane proteome. Cell Chem. Biol. 27, 1073–1083.e12 (2020).

    Article  Google Scholar 

  208. Montgomery, D. C., Sorum, A. W. & Meier, J. L. Chemoproteomic profiling of lysine acetyltransferases highlights an expanded landscape of catalytic acetylation. J. Am. Chem. Soc. 136, 8669–8676 (2014).

    Article  Google Scholar 

  209. Šileikytė, J., Sundalam, S., David, L. L. & Cohen, M. S. Chemical proteomics approach for profiling the NAD interactome. J. Am. Chem. Soc. 143, 6787–6791 (2021).

    Article  Google Scholar 

  210. Campbell, S., Kim, H., Doukas, M. & Haley, B. Photoaffinity labeling of ATP and NAD+ binding sites on recombinant human interleukin 2. Proc. Natl Acad. Sci. USA 87, 1243–1246 (1990).

    Article  ADS  Google Scholar 

  211. George Cisar, E. A., Nguyen, N. & Rosen, H. A GTP affinity probe for proteomics highlights flexibility in purine nucleotide selectivity. J. Am. Chem. Soc. 135, 4676–4679 (2013).

    Article  Google Scholar 

  212. Dalhoff, C. et al. Synthesis of S-adenosyl-l-homocysteine capture compounds for selective photoinduced isolation of methyltransferases. ChemBioChem 11, 256–265 (2010).

    Article  Google Scholar 

  213. Horning, B. D. et al. Chemical proteomic profiling of human methyltransferases. J. Am. Chem. Soc. 138, 13335–13343 (2016).

    Article  Google Scholar 

  214. Homan, R. A., Jadhav, A. M., Conway, L. P. & Parker, C. G. A chemical proteomic map of heme–protein interactions. J. Am. Chem. Soc. 144, 15013–15019 (2022).

    Article  Google Scholar 

  215. Wilkinson, I. V. L., Bottlinger, M., El Harraoui, Y. & Sieber, S. A. Profiling the heme-binding proteomes of bacteria using chemical proteomics. Angew. Chem. Int. Ed. 62, e202212111 (2022).

    Article  Google Scholar 

  216. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Products 83, 770–803 (2020).

    Article  Google Scholar 

  217. Lachance, H., Wetzel, S., Kumar, K. & Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 55, 5989–6001 (2012).

    Article  Google Scholar 

  218. Carlson, E. E. Natural products as chemical probes. ACS Chem. Biol. 5, 639–653 (2010).

    Article  Google Scholar 

  219. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug. Discovery 14, 111–129 (2015).

    Article  Google Scholar 

  220. Wang, D. et al. Identification of Annexin A2 as a target protein for plant alkaloid matrine. Chem. Commun. 53, 5020–5023 (2017).

    Article  ADS  Google Scholar 

  221. Guo, H., Xu, J., Hao, P., Ding, K. & Li, Z. Competitive affinity-based proteome profiling and imaging to reveal potential cellular targets of betulinic acid. Chem. Commun. 53, 9620–9623 (2017).

    Article  Google Scholar 

  222. Konziase, B. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins. Anal. Biochem. 482, 25–31 (2015).

    Article  Google Scholar 

  223. Eirich, J., Orth, R. & Sieber, S. A. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J. Am. Chem. Soc. 133, 12144–12153 (2011).

    Article  Google Scholar 

  224. Zhou, Y. et al. Chemical proteomics reveal CD147 as a functional target of pseudolaric acid B in human cancer cells. Chem. Commun. 53, 8671–8674 (2017).

    Article  ADS  Google Scholar 

  225. Lehmann, J., Richers, J., Pöthig, A. & Sieber, S. A. Synthesis of ramariolide natural products and discovery of their targets in mycobacteria. Chem. Commun. 53, 107–110 (2017).

    Article  Google Scholar 

  226. Shi, H., Cheng, X., Sze, S. K. & Yao, S. Q. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe. Chem. Commun. 47, 11306–11308 (2011).

    Article  Google Scholar 

  227. Chen, X. et al. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal. Transduct. Target. Ther. 5, 72 (2020).

    Article  Google Scholar 

  228. Parker, C. G. et al. Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs. ACS Cent. Sci. 3, 1276–1285 (2017).

    Article  Google Scholar 

  229. Levine, D. P. Vancomycin: a history. Clin. Infect. Dis. 42, S5–S12 (2006).

    Article  Google Scholar 

  230. Koteva, K. et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat. Chem. Biol. 6, 327–329 (2010).

    Article  Google Scholar 

  231. Tang, J. et al. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 622, 507–513 (2023).

    Article  ADS  Google Scholar 

  232. Taunton, J., Collins, J. L. & Schreiber, S. L. Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. J. Am. Chem. Soc. 118, 10412–10422 (1996).

    Article  Google Scholar 

  233. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  ADS  Google Scholar 

  234. Adam, G. C., Vanderwal, C. D., Sorensen, E. J. & Cravatt, B. F. (−)-FR182877 is a potent and selective inhibitor of carboxylesterase-1. Angew. Chem. Int. Ed. 42, 5480–5484 (2003).

    Article  Google Scholar 

  235. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  Google Scholar 

  236. Wang, G., Shang, L., Burgett, A. W. G., Harran, P. G. & Wang, X. Diazonamide toxins reveal an unexpected function for ornithine δ-amino transferase in mitotic cell division. Proc. Natl Acad. Sci. USA 104, 2068–2073 (2007).

    Article  ADS  Google Scholar 

  237. Staub, I. & Sieber, S. A. β-Lactams as selective chemical probes for the in vivo labeling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. J. Am. Chem. Soc. 130, 13400–13409 (2008).

    Article  Google Scholar 

  238. Smith, B. A. H. & Bertozzi, C. R. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat. Rev. Drug. Discov. 20, 217–243 (2021).

    Article  Google Scholar 

  239. Prescher, J. A. & Bertozzi, C. R. Chemical technologies for probing glycans. Cell 126, 851–854 (2006).

    Article  Google Scholar 

  240. Rillahan, C. D. & Paulson, J. C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011).

    Article  Google Scholar 

  241. Ruhaak, L. R., Xu, G., Li, Q., Goonatilleke, E. & Lebrilla, C. B. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev. 118, 7886–7930 (2018).

    Article  Google Scholar 

  242. Lemieux, G. A. & Bertozzi, C. R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16, 506–513 (1998).

    Article  Google Scholar 

  243. Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  Google Scholar 

  244. Prescher, J. A., Dube, D. H. & Bertozzi, C. R. Chemical remodelling of cell surfaces in living animals. Nature 430, 873–877 (2004).

    Article  ADS  Google Scholar 

  245. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    Article  Google Scholar 

  246. Hunter, C. D., Guo, T., Daskhan, G., Richards, M. R. & Cairo, C. W. Synthetic strategies for modified glycosphingolipids and their design as probes. Chem. Rev. 118, 8188–8241 (2018).

    Article  Google Scholar 

  247. Yarravarapu, N. et al. Exo-enzymatic addition of diazirine-modified sialic acid to cell surfaces enables photocrosslinking of glycoproteins. Bioconjug. Chem. 33, 781–787 (2022).

    Article  Google Scholar 

  248. Hassan, A. A. et al. Chemoproteomic mapping of human milk oligosaccharide (HMO) interactions in cells. RSC Chem. Biol. 3, 1369–1374 (2022).

    Article  Google Scholar 

  249. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article  Google Scholar 

  250. Turro, N. J., Cha, Y., Gould, I. R. & Moss, R. A. Direct photochemical population of triplet diazirines: comparison of triplet energies by direct excitation and by energy transfer. J. Photochem. 37, 81–86 (1987).

    Article  Google Scholar 

  251. Bartholow, T. G. et al. Site-specific proximity labeling at single residue resolution for identification of protein partners in vitro and on cells. Preprint at bioRxiv https://doi.org/10.1101/2023.07.27.550738 (2023).

  252. Seath, C. P., Trowbridge, A. D., Muir, T. W. & MacMillan, D. W. C. Reactive intermediates for interactome mapping. Chem. Soc. Rev. 50, 2911–2926 (2021).

    Article  Google Scholar 

  253. Admasu, A. et al. A laser flash photolysis study of p-tolyl(trifluoromethyl)carbene. J. Chem. Soc. Perkin Trans. 2, 1093–1100 (1998).

    Article  Google Scholar 

  254. Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).

    Article  Google Scholar 

  255. Chin, J. W., Martin, A. B., King, D. S., Wang, L. & Schultz, P. G. Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 11020–11024 (2002). To the best of our knowledge, this research article presents the first example of genetic incorporation of a PAL-functionalized UAA for the capture of PPIs in cells.

    Article  ADS  Google Scholar 

  256. Chin, J. W. & Schultz, P. G. In vivo photocrosslinking with unnatural amino acid mutagenesis. ChemBioChem 3, 1135–1137 (2002).

    Article  Google Scholar 

  257. Farrell, I. S., Toroney, R., Hazen, J. L., Mehl, R. A. & Chin, J. W. Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat. Methods 2, 377–384 (2005).

    Article  Google Scholar 

  258. Dugan, A. et al. Discovery of enzymatic targets of transcriptional activators via in vivo covalent chemical capture. J. Am. Chem. Soc. 138, 12629–12635 (2016).

    Article  Google Scholar 

  259. Lin, S. et al. Genetically encoded cleavable protein photo-cross-linker. J. Am. Chem. Soc. 136, 11860–11863 (2014).

    Article  Google Scholar 

  260. Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).

    Article  ADS  Google Scholar 

  261. Li, X. & Kapoor, T. M. Approach to profile proteins that recognize post-translationally modified histone “tails”. J. Am. Chem. Soc. 132, 2504–2505 (2010).

    Article  Google Scholar 

  262. Bai, X. et al. Development of a DNA-templated peptide probe for photoaffinity labeling and enrichment of the histone modification reader proteins. Angew. Chem. Int. Ed. 55, 7993–7997 (2016).

    Article  Google Scholar 

  263. Hafner, M. et al. CLIP and complimentary methods. Nat. Rev. Methods Primers 1, 20 (2021).

    Article  Google Scholar 

  264. Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA–protein interactions. Nat. Methods 16, 225–234 (2019).

    Article  Google Scholar 

  265. Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein–RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

    Article  Google Scholar 

  266. Tong, Y. et al. Transcriptome-wide mapping of small-molecule RNA-binding sites in cells informs an isoform-specific degrader of QSOX1 mRNA. J. Am. Chem. Soc. 144, 11620–11625 (2022).

    Article  Google Scholar 

  267. Gibaut, Q. M. R. et al. Transcriptome-wide studies of RNA-targeted small molecules provide a simple and selective r(CUG)exp degrader in myotonic dystrophy. ACS Cent. Sci. 9, 1342–1353 (2023).

    Article  Google Scholar 

  268. Suresh, B. M. et al. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proc. Natl Acad. Sci. USA 117, 33197–33203 (2020).

    Article  ADS  Google Scholar 

  269. Suresh, B. M., Taghavi, A., Childs-Disney, J. L. & Disney, M. D. Fragment-based approaches to identify RNA binders. J. Medicinal Chem. 66, 6523–6541 (2023).

    Article  Google Scholar 

  270. Garner, A. L. Contemporary progress and opportunities in RNA-targeted drug discovery. ACS Med. Chem. Lett. 14, 251–259 (2023).

    Article  Google Scholar 

  271. Morishita, E. C. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert. Opin. Drug. Discov. 18, 207–226 (2023).

    Article  Google Scholar 

  272. Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug. Discovery 21, 736–762 (2022).

    Article  Google Scholar 

  273. Poulos, R. C. et al. Strategies to enable large-scale proteomics for reproducible research. Nat. Commun. 11, 3793 (2020).

    Article  ADS  Google Scholar 

  274. Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2022).

    Article  Google Scholar 

  275. Martens, L. et al. PRIDE: the proteomics identifications database. Proteomics 5, 3537–3545 (2005).

    Article  Google Scholar 

  276. Bunnage, M. E., Chekler, E. L. & Jones, L. H. Target validation using chemical probes. Nat. Chem. Biol. 9, 195–199 (2013).

    Article  Google Scholar 

  277. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Article  Google Scholar 

  278. Rauniyar, N. & Yates, J. R. III Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13, 5293–5309 (2014).

    Article  Google Scholar 

  279. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light–tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    Article  Google Scholar 

  280. Dai, S.-Y. & Yang, D. A visible and near-infrared light activatable diazocoumarin probe for fluorogenic protein labeling in living cells. J. Am. Chem. Soc. 142, 17156–17166 (2020).

    Article  Google Scholar 

  281. Kawamata, Y. et al. An electroaffinity labelling platform for chemoproteomic-based target identification. Nat. Chem. 15, 1267–1275 (2023).

    Article  Google Scholar 

  282. Swan, A. L., Mobasheri, A., Allaway, D., Liddell, S. & Bacardit, J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 17, 595–610 (2013).

    Article  Google Scholar 

  283. Neely, B. A. et al. Toward an integrated machine learning model of a proteomics experiment. J. Proteome Res. 22, 681–696 (2023).

    Article  Google Scholar 

  284. Meyer, J. G. Deep learning neural network tools for proteomics. Cell Rep. Methods 1, 100003 (2021).

    Article  Google Scholar 

  285. Burton, N. & Backus, K. M. sCIP-ing towards streamlined chemoproteomics. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-0szhj (2023).

  286. Yang, L. et al. Accelerating multiplexed profiling of protein-ligand interactions: high-throughput plate-based reactive cysteine profiling with minimal input. Cell Chem. Biol. 31, 565–576.e4 (2024).

    Article  Google Scholar 

  287. Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.G.P. acknowledges support from the National Institute of Allergic and Infectious Diseases (NIAID/ R01 AI156258).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.A.H., C.M.W. and C.G.P.); Experimentation (R.A.H., C.M.W., L.H.J. and C.G.P.); Results (R.A.H., J.D.L., C.M.W., L.H.J., S.N. and C.G.P.); Applications (R.A.H., L.H.J. and S.N.); Reproducibility and data deposition (R.A.H. and C.G.P.); Limitations and optimizations (R.A.H., L.H.J. and C.G.P.); Outlook (R.A.H. and C.G.P.); Overview of the Primer (C.G.P.).

Corresponding author

Correspondence to Christopher G. Parker.

Ethics declarations

Competing interests

L.H.J. serves on the scientific advisory boards for, and holds equity in, Interline Therapeutics, Rapafusyn Pharmaceuticals, Ananke Therapeutics and Hyku Biosciences; consults for Matchpoint Therapeutics; holds equity in Jnana Therapeutics; and as the Director of the Center for Protein Degradation at DFCI receives research funding from Deerfield. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Douglas Johnson, Euna Yoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comet: https://uwpr.github.io/Comet/

MaxQuant: https://maxquant.org/

MSFragger: https://msfragger.nesvilab.org/

PRIDE: https://www.ebi.ac.uk/pride/

Proteome Xchange: https://www.proteomexchange.org/

Skyline: https://www.skyline.ms/project/home/begin.view

Supplementary information

Glossary

Chemoproteomics

(Also known as chemical proteomics). An area of chemical biology focused on designing and employing chemical probes to profile small molecule–protein interactions, often through mass spectrometry-based proteomics.

Click chemistry

The ‘click’ reaction classically refers to the reaction between an azide and a terminal alkyne to form a 1,2,3-triazole, although is often used to loosely describe a set of spring-loaded chemical reactions that selectively and efficiently occur between two functional groups.

Proximity labelling

A technique used to identify and study interactions between proteins or other biomolecules in nearby space to a small molecule, protein or other biomolecule of interest. This method involves the introduction of a reactive chemical label, such as a biotin tag or photoreactive group, to catalytically react with nearby molecules within a certain spatial range.

Reductive dimethylation

(ReDiMe). A quantitation method in mass spectrometry-based proteomics wherein peptide amino termini and lysine ε-amines are covalently labelled with isotopically encoded dimethyl groups via reaction of formaldehyde (CH2O/13CD2O) and a reducing agent (for example, sodium cyanoborohydride).

Stable isotope labelling by amino acids in cell culture

(SILAC). A labelling technique used in proteomic investigations to quantify differences in protein abundance between samples, where two populations of cells are cultivated with isotopically pure heavy or light amino acids, namely lysine and arginine with either 13C or 15N in lieu of 12C and 14N.

Tandem mass tagging

(TMT). A quantitation method in mass spectrometry-based proteomics wherein peptide amino termini and lysine ε-amines are covalently labelled with an isobaric chemical tag with varying masses via N-hydroxysuccinimde ester amidation, enabling multiplexing of several conditions within a single experiment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homan, R.A., Lapek, J.D., Woo, C.M. et al. Photoaffinity labelling with small molecules. Nat Rev Methods Primers 4, 30 (2024). https://doi.org/10.1038/s43586-024-00308-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00308-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research