Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease

Abstract

The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mCa2+ influx and efflux machinery.
Fig. 2: mtCU-gatekeeping characteristics based on MICU association.
Fig. 3: MICU1 performs a variety of functions in the mitochondria.
Fig. 4: Tight regulation of mCa2+ is required to maintain basal physiological function.

Similar content being viewed by others

References

  1. Glancy, B., Willis, W. T., Chess, D. J. & Balaban, R. S. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52, 2793–2809 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Denton, R. M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787, 1309–1316 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Lawlis, V. B. & Roche, T. E. Effect of micromolar Ca2+ on NADH inhibition of bovine kidney α-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification. Mol. Cell. Biochem.32, 147–152 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Rutter, G. A. & Denton, R. M. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem. J. 252, 181–189 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Arco, A., Contreras, L., Pardo, B. & Satrustegui, J. Calcium regulation of mitochondrial carriers. Biochim. Biophys. Acta1863, 2413–2421 (2016).

    Article  PubMed  Google Scholar 

  6. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, J. et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch. Biochem. Biophys. 702, 108698 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Tsao, C. W. et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  9. Schaper, J., Meiser, E. & Stämmler, G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ. Res. 56, 377–391 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, B. & Tian, R. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest. 128, 3716–3726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bauer, T. M. & Murphy, E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126, 280–293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lambert, J. P. et al. MCUB regulates the molecular composition of the mitochondrial calcium uniporter channel to limit mitochondrial calcium overload during stress. Circulation 140, 1720–1733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luongo, T. S. et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12, 23–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai, M.-F. et al. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex. eLife 5, e15545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Waldeck-Weiermair, M. et al. Rearrangement of MICU1 multimers for activation of MCU is solely controlled by cytosolic Ca2+. Sci. Rep. 5, 15602 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, Y. et al. Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter. eLife 9, e60513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, C. et al. Structures reveal gatekeeping of the mitochondrial Ca2+ uniporter by MICU1–MICU2. eLife 9, e59991 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garbincius, J. F. & Elrod, J. W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev. 102, 893–992 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, J. C. et al. EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. JCI Insight 5, e134063 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sancak, Y. et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342, 1379–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raffaello, A. et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32, 2362–2376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matesanz-Isabel, J. et al. Functional roles of MICU1 and MICU2 in mitochondrial Ca2+ uptake. Biochim. Biophys. Acta 1858, 1110–1117 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Csordás, G. et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 17, 976–987 (2013). This paper determined that MICU1 is localized on the IMS-facing side within the IMM and has a critical Ca2+-sensing function, acting as a gatekeeper that both restricts and promotes mCa2+ uptake based on [cCa2+].

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perocchi, F. et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010). This paper initially characterized MICU1 as a Ca2+-sensing protein within the mitochondria, having an essential role in cCa2+ sensing and mCa2+ uptake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tufi, R. et al. Comprehensive genetic characterization of mitochondrial Ca2+ uniporter components reveals their different physiological requirements in vivo. Cell Rep. 27, 1541–1550 (2019). This paper determined that MICU1 is indispensable for survival, which cannot be rescued through the ablation of other mtCU components, highlighting that MICU1 likely has uniporter-independent functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bick, A. G., Calvo, S. E. & Mootha, V. K. Evolutionary diversity of the mitochondrial calcium uniporter. Science 336, 886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reane, D. V. et al. A MICU1 splice variant confers high sensitivity to the mitochondrial Ca2+ uptake machinery of skeletal muscle. Mol. Cell 64, 760–773 (2016).

    Article  Google Scholar 

  28. Reane, D. V. et al. The splicing of the mitochondrial calcium uniporter genuine activator MICU1 is driven by RBFOX2 splicing factor during myogenic differentiation. Int. J. Mol. Sci. 23, 2517 (2022).

    Article  Google Scholar 

  29. Shanmughapriya, S. et al. FOXD1-dependent MICU1 expression regulates mitochondrial activity and cell differentiation. Nat. Commun. 9, 3449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xue, Q. et al. MICU1 protects against myocardial ischemia/reperfusion injury and its control by the importer receptor Tom70. Cell Death Dis. 8, e2923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matteucci, A. et al. Parkin-dependent regulation of the MCU complex component MICU1. Sci. Rep. 8, 14199 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stoll, S. et al. The valosin-containing protein protects the heart against pathological Ca2+ overload by modulating Ca2+ uptake proteins. Toxicol. Sci. 171, 473–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banavath, H. N. et al. miR-181c activates mitochondrial calcium uptake by regulating MICU1 in the heart. J. Am. Heart Assoc. 8, e012919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rao, G. et al. MicroRNA-195 controls MICU1 expression and tumor growth in ovarian cancer. EMBO Rep. 21, e48483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, Z. et al. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem. Biol. Interact. 358, 109899 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Ali, M. et al. MICU1-dependent mitochondrial calcium uptake regulates lung alveolar type 2 cell plasticity and lung regeneration. JCI Insight 7, e154447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. de la Fuente, S. et al. Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells. Biochem. J. 458, 33–40 (2014).

    Article  PubMed  Google Scholar 

  38. Lombardi, A. A. et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat. Commun. 10, 4509 (2019). This paper established a connection between fibrotic signaling and MICU1-dependent mCa2+ uptake in regard to myofibroblast differentiation, highlighting that MICU1 has a critical role in cardiac function outside of the cardiomyocyte.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Antony, A. N. et al. MICU1 regulation of mitochondrial Ca2+ uptake dictates survival and tissue regeneration. Nat. Commun. 7, 10955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paillard, M. et al. Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep. 18, 2291–2300 (2017). This paper describes the differential MICU1/MCU expression ratios in different cell types, detailing unique Ca2+ uptake parameters through the mitochondrial uniporter in various tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patron, M. et al. MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ. 26, 179–195 (2019). This paper evaluated the function of MICU3 in regard to mtCU function, describing it as an enhancer of Ca2+ uptake and indicating that MICU2 and MICU3 activities depend on the binding and interaction of MICU1.

    Article  CAS  PubMed  Google Scholar 

  42. Mallilankaraman, K. et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. Cell 151, 630–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen, J. G. & Tessem, J. S. Ca2+ sensors assemble: function of the MCU complex in the pancreatic beta cell. Cells 11, 1993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017, bax028 (2017).

    Article  PubMed  Google Scholar 

  45. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Plovanich, M. et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS ONE 8, e55785 (2013). This paper initially described the two paralogs of MICU1 (MICU2 and MICU3) and their evolutionary relationships to one another, along with the unique functions of MICU2 that were described to contribute toward tissue-specific regulation of the mtCU.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamer, K. J. & Mootha, V. K. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 15, 299–307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Payne, R., Hoff, H., Roskowski, A. & Foskett, J. K. MICU2 restricts spatial crosstalk between InsP3R and MCU channels by regulating threshold and gain of MICU1-mediated inhibition and activation of MCU. Cell Rep. 21, 3141–3154 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bick, A. G. et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc. Natl Acad. Sci. USA 114, E9096–E9104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamer, K. J., Grabarek, Z. & Mootha, V. K. High-affinity cooperative Ca2+ binding by MICU1–MICU2 serves as an on–off switch for the uniporter. EMBO Rep. 18, 1397–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai, C. W. et al. Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol. Cell 82, 3661–3676 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patron, M. et al. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell 53, 726–737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vishnu, N. et al. Mitochondrial clearance of calcium facilitated by MICU2 controls insulin secretion. Mol. Metab. 51, 101239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Puente, B. N. et al. MICU3 plays an important role in cardiovascular function. Circ. Res. 127, 1571–1573 (2020). This paper highlights that MICU3 contributes toward cardiac function, disputing previous ideas that MICU3 expression is negligible in the heart, and suggests that MICU3 may contribute to heart health following cardiac stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh, R. et al. Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. Sci. Adv. 8, eabj4716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xing, Y. et al. Dimerization of MICU proteins controls Ca2+ influx through the mitochondrial Ca2+ uniporter. Cell Rep. 26, 1203–1212 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Ashrafi, G., de Juan-Sanz, J., Farrell, R. J. & Ryan, T. A. Molecular tuning of the axonal mitochondrial Ca2+ uniporter ensures metabolic flexibility of neurotransmission. Neuron 105, 678–687 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Roman, B. et al. Loss of mitochondrial Ca2+ uptake protein 3 impairs skeletal muscle calcium handling and exercise capacity. J. Physiol. 602, 113–128 (2024).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, J. C. et al. MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell Rep. 16, 1561–1573 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Debattisti, V. et al. Dysregulation of mitochondrial Ca2+ uptake and sarcolemma repair underlie muscle weakness and wasting in patients and mice lacking MICU1. Cell Rep. 29, 1274–1286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lewis-Smith, D. et al. Homozygous deletion in MICU1 presenting with fatigue and lethargy in childhood. Neurol. Genet. 2, e59 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ji, L. et al. MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca2+-dependent antioxidant response. Diabetes 66, 1586–1600 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, Y.-F. et al. MICU3 regulates mitochondrial Ca2+-dependent antioxidant response in skeletal muscle aging. Cell Death Dis. 12, 1115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Paillard, M. et al. Altered composition of the mitochondrial Ca2+ uniporter in the failing human heart. Cell Calcium 105, 102618 (2022). This paper determined an upregulation of MICU1 and MICU2, as well as MICU1/MCU expression, in failing human hearts, suggesting that changes in mtCU composition may be a response to stress conditions that can become maladaptive.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chapoy-Villanueva, H. et al. Changes in the stoichiometry of uniplex decrease mitochondrial calcium overload and contribute to tolerance of cardiac ischemia/reperfusion injury in hypothyroidism. Thyroid 29, 1755–1764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luongo, T. S. et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545, 93–97 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie, A. et al. Mitochondrial Ca2+ influx contributes to arrhythmic risk in nonischemic cardiomyopathy. J. Am. Heart Assoc. 7, e007805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bland, A., Chuah, E., Meere, W. & Ford, T. J. Targeted therapies for microvascular disease. Heart Fail. Clin. 20, 91–99 (2024).

    Article  PubMed  Google Scholar 

  69. Laakso, M. Heart in diabetes: a microvascular disease. Diabetes Care 34, S145–S149 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chang, X. et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics 11, 6766–6785 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patel, A. et al. Modulation of the mitochondrial Ca2+ uniporter complex subunit expression by different shear stress patterns in vascular endothelial cells. Physiol. Rep. 11, e15588 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, X. et al. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury. Cardiovasc. Diabetol. 22, 216 (2023). This paper describes the importance of MICU1 in endothelial cell function, particularly in a diabetic background, and that loss of MICU1 contributes toward hypertrophy, fibrosis and impaired cardiac output, highlighting the importance of mtCU function in noncardiomyocyte cells in the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, F. et al. Fundamental mechanisms of the cell death caused by nitrosative stress. Front. Cell Dev. Biol. 9, 742483 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jiang, M. et al. Protein tyrosine nitration in atherosclerotic endothelial dysfunction. Clin. Chim. Acta 529, 34–41 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  76. Brutsaert, D. L. Cardiac endothelial–myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 83, 59–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Akiyama, E. et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 60, 1778–1786 (2012).

    Article  PubMed  Google Scholar 

  78. Schulz, E. et al. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid. Redox Signal. 10, 1115–1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, K. et al. Expression of MICU1 after experimental focal cerebral ischemia in adult rats. Chin. Neurosurg. J. 3, 13 (2017).

    Article  Google Scholar 

  80. Wang, J. et al. Downregulation of mitochondrial calcium uptake family 3 attenuates secondary brain injury after intracerebral hemorrhage in rats. Exp. Neurol. 361, 114302 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Huo, J. et al. MCUb induction protects the heart from postischemic remodeling. Circ. Res. 127, 379–390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lambert, J. P., Murray, E. K. & Elrod, J. W. MCUB and mitochondrial calcium uptake—modeling, function, and therapeutic potential. Expert Opin. Ther. Targets 24, 163–169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Logan, C. V. et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 46, 188–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Shamseldin, H. E. et al. A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder. Brain 140, 2806–2813 (2017).

    Article  PubMed  Google Scholar 

  85. Kwong, J. Q. et al. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 12, 15–22 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Woods, J. J. & Wilson, J. J. Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr. Opin. Chem. Biol. 55, 9–18 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Woods, J. J. et al. A selective and cell-permeable mitochondrial calcium uniporter (MCU) inhibitor preserves mitochondrial bioenergetics after hypoxia/reoxygenation injury. ACS Cent. Sci. 5, 153–166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Di Marco, G. et al. A high-throughput screening identifies MICU1 targeting compounds. Cell Rep. 30, 2321–2331 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bertero, E. & Maack, C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122, 1460–1478 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Tomar, D. et al. MICU1 regulates mitochondrial cristae structure and function independently of the mitochondrial Ca2+ uniporter channel. Sci. Signal. 16, eabi8948 (2023). This paper describes a unique mtCU-independent function of MICU1, concluding that MICU1 is an essential contributor toward cristae structure through the MICOS complex to regulate mitochondrial ultrastructure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gottschalk, B. et al. MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex. Nat. Commun. 10, 3732 (2019). This paper discusses the importance of MICU1 toward the regulation of cristae structure, which controls cytochrome c release, and anchoring of the mtCU toward the inner boundary membrane in a calcium-dependent manner.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gottschalk, B. et al. MICU1 controls spatial membrane potential gradients and guides Ca2+ fluxes within mitochondrial substructures. Commun. Biol. 5, 649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garbincius, J. F. et al. Enhanced NCLX-dependent mitochondrial Ca2+ efflux attenuates pathological remodeling in heart failure. J. Mol. Cell. Cardiol. 167, 52–66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Eisner, D. A., Caldwell, J. L., Kistamas, K. & Trafford, A. W. Calcium and excitation–contraction coupling in the heart. Circ. Res. 121, 181–195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Raturi, A. & Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim. Biophys. Acta 1833, 213–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Hajnóczky, G., Csordás, G., Madesh, M. & Pacher, P. The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J. Physiol. 529, 69–81 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  98. García-Pérez, C., Hajnóczky, G. & Csordás, G. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J. Biol. Chem. 283, 32771–32780 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. et al. Mitofusin 2-containing mitochondrial–reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca2+ crosstalk. Circ. Res. 111, 863–875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    Article  PubMed  Google Scholar 

  101. Naón, D. et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 380, eadh9351 (2023).

    Article  PubMed  Google Scholar 

  102. Hirabayashi, Y. et al. ER–mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Szabadkai, G. et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Min, C. K. et al. Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem. J. 447, 371–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Tan, W. & Colombini, M. VDAC closure increases calcium ion flux. Biochim. Biophys. Acta 1768, 2510–2515 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Beutner, G. et al. Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 276, 21482–21488 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Jiang, D., Zhao, L. & Clapham, D. E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Waldeck-Weiermair, M. et al. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. J. Biol. Chem. 286, 28444–28455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jung, D. W., Baysal, K. & Brierley, G. P. The sodium–calcium antiport of heart mitochondria is not electroneutral. J. Biol. Chem. 270, 672–678 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Smets, I. et al. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am. J. Physiol. Renal Physiol. 286, F784–F794 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Dash, R. K. & Beard, D. A. Analysis of cardiac mitochondrial Na+–Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry. J. Physiol. 586, 3267–3285 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Agarwal, A. et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93, 587–605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Elrod, J. W. et al. Cyclophilin D controls mitochondrial pore-dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. 120, 3680–3687 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sambri, I. et al. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine 61, 103050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ichas, F., Jouaville, L. S. & Mazat, J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89, 1145–1153 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Hausenloy, D., Wynne, A., Duchen, M. & Yellon, D. Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109, 1714–1717 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Nowikovsky, K. et al. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J. Gen. Physiol. 139, 445–454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Austin, S. et al. TMBIM5 is the Ca2+/H+ antiporter of mammalian mitochondria. EMBO Rep. 23, e54978 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patron, M. et al. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J. 41, e110476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, L. et al. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Sci. Alliance 5, e202201478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. M’Angale, P. G. & Staveley, B. E. Inhibition of mitochondrial calcium uptake 1 in Drosophila neurons. Genet. Mol. Res. https://doi.org/10.4238/gmr16019436 (2017).

    Article  PubMed  Google Scholar 

  123. Wang, L. et al. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 33, 594–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kamer, K. J. et al. Crystal structure of MICU2 and comparison with MICU1 reveal insights into the uniporter gating mechanism. Proc. Natl Acad. Sci. USA 116, 3546–3555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stathopulos, P. B. et al. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Fan, M. et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 582, 129–133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Paillard, M. et al. MICU1 interacts with the D-ring of the MCU pore to control its Ca2+ flux and sensitivity to Ru360. Mol. Cell 72, 778–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Phillips, C. B., Tsai, C.-W. & Tsai, M.-F. The conserved aspartate ring of MCU mediates MICU1 binding and regulation in the mitochondrial calcium uniporter complex. eLife 8, e41112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wu, W. et al. The structure of the MICU1–MICU2 complex unveils the regulation of the mitochondrial calcium uniporter. EMBO J. 39, e104285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hoffman, N. E. et al. MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell Rep. 5, 1576–1588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu, W. et al. The crystal structure of MICU2 provides insight into Ca2+ binding and MICU1–MICU2 heterodimer formation. EMBO Rep. 20, e47488 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Li, D. et al. Expression and preliminary characterization of human MICU2. Biol. Open 5, 962–969 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ghosh, S. et al. An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter. Proc. Natl Acad. Sci. USA 117, 16383–16390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ikon, N. & Ryan, R. O. Cardiolipin and mitochondrial cristae organization. Biochim. Biophys. Acta Biomembr. 1859, 1156–1163 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Prola, A. et al. Cardiolipin content controls mitochondrial coupling and energetic efficiency in muscle. Sci. Adv. 7, eabd6322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dong, Z. et al. Perfluorooctane sulfonate induces mitochondrial calcium overload and early hepatic insulin resistance via autophagy/detyrosinated α-tubulin-regulated IP3R2–VDAC1–MICU1 interaction. Sci. Total Environ. 825, 153933 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) to J.W.E.: R01NS121379, P01HL147841 and an award from the American Heart Association to J.W.E.: 20EIA35320226.

Author information

Authors and Affiliations

Authors

Contributions

T.L.S., H.M.C., J.F.G. and J.W.E. all contributed toward the planning, writing and editing of this review.

Corresponding author

Correspondence to John W. Elrod.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, T.L., Cohen, H.M., Garbincius, J.F. et al. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. Nat Cardiovasc Res 3, 500–514 (2024). https://doi.org/10.1038/s44161-024-00463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-024-00463-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing