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AI tools intend to transformmental healthcare by providing remote estimates of depression risk using
behavioral data collected by sensors embedded in smartphones. While these tools accurately predict
elevated depression symptoms in small, homogenous populations, recent studies show that these
tools are less accurate in larger, more diverse populations. In this work, we show that accuracy is
reduced because sensed-behaviors are unreliable predictors of depression across individuals:
sensed-behaviors that predict depression risk are inconsistent across demographic and
socioeconomic subgroups. We first identified subgroups where a developed AI tool underperformed
by measuring algorithmic bias, where subgroups with depression were incorrectly predicted to be at
lower risk than healthier subgroups. We then found inconsistencies between sensed-behaviors
predictive of depression across these subgroups.Our findings suggest that researchers developingAI
tools predicting mental health from sensed-behaviors should think critically about the generalizability
of these tools, and consider tailored solutions for targeted populations.

Mental healthcare systems are simultaneously facing a shortage of mental
health specialty care providers and a large number of patients whose
treatment needs remain unmet1,2. This service gap is driving research into
AI-driven mental health monitoring tools, where sensed-behavioral data,
defined as inferred behavioral data gathered by sensors and software
embedded in everyday devices (e.g. smartphones, wearables), are repur-
posed to remotelymonitor depression symptoms3–7. Sensed-behavioral data
has also been referred to as personal, behavioral, or passive sensing data in
other work7. AI tools that leverage sensed-behavioral data intend to near-
continuously identify individuals experiencing elevated depression symp-
toms in-between clinical encounters and consequently deliver preventive
care8. These tools can also be integrated into digital therapeutics to automate
precision interventions9. Initial work showed that depression risk could be
predicted from sensed-behavioral data at a similar accuracy to general
practitioners10 in small populations5,11. More recent work shows that these
AI tools predictdepression risk at anaccuracyonly slightly better thana coin
flip in larger,morediverse samples4,6,12,13. This priorworkhasnot specifically

exploredwhy accuracy is reduced in larger samples, and it is unclear how to
improve AI tools for clinical use.

In this work, we hypothesized that accuracy is reduced in larger, more
diverse populations because sensed-behaviors are unreliable predictors of
depression risk: sensed-behaviors that predict depression are inconsistent
across demographic and socioeconomic (SES) subgroups14. We intention-
ally use the term reliability due to its importance in both a psychometric and
AI context. In a psychometric context, reliability refers to the consistency of
a tool, typically a symptom assessment, across different contexts (e.g. raters,
time)14,15. In AI, reliability is related to generalizability, if an AI tool is
consistently accurate in different contexts (e.g. different populations, over
time, etc.)12. Given these definitions, researchers in AI fairness have argued
that aspects of psychometric reliability are important in an AI context:
similar inputs (e.g. sensed-behaviors) to an AI model should yield similar
outputs (e.g. estimated depression risk)16.

In this paper, we adapt these ideas to study a specific aspect of reliability
important for mental health AI tools deployed in large populations, i.e. if
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similar sensed-behaviors are consistently related to depression risk across
different subgroups of individuals. We hypothesize that if the sensed-
behaviors predictive of depression risk are inconsistent across subgroups,AI
models that use sensed-behaviors to predict depression risk will be inac-
curate because similar sensed-behavioral patterns will indicate different
levels of depression risk for different subgroups. For example, imagine that
mobility positively correlates with depression risk in subgroup A, and
negatively correlates with depression risk in subgroup B. An AI model
trained across subgroups using exclusively mobility data, blind to subgroup
information as is typically the case in this literature3–5,17, will receive unre-
liable information–highmobility can simultaneously indicate both low and
high depression risk – and will make incorrect predictions for one of the
subgroups. We note upfront that in this manuscript we do not consider
temporal aspects of reliability, thoughwe acknowledge that this is important
in discussions of psychometric reliability, specifically if the AI tool is con-
sistently accurate for the same individual, with predictions made under
similar conditions18.

We tested our hypothesis by identifying population subgroupswhere a
depression risk prediction tool underperformed, and then analyzed sensed-
behavioral differences across these subgroups. We identified subgroups
where the tool underperformed by measuring algorithmic ranking bias
(hereafter referred to as “bias”), which measures the degree to which indi-
viduals experiencing depression from one subgroup (e.g. older individuals)
are incorrectly ranked by the tool to be at lower risk than healthier indivi-
duals from other subgroups (e.g. younger individuals)19–22. Reliability was
analyzed by measuring ranking bias because if individuals in large popu-
lations have inconsistent relationships between sensed-behaviors and
mental health, behaviors that represent high depression risk for one sub-
groupmay represent lower risk for another subgroup. For example, imagine

an AI tool predicting that higher phone use increases depression risk.
Studies23,24 show that younger individuals have higher phone use than older
individuals. Thus, the AI tool may incorrectly rank older individuals with
depression to be at lower risk than healthier younger individuals, decreasing
model accuracy (Fig. 1a).

Against this backdrop, we developed an AI tool that estimated
depression symptom risk using behavioral data collected from individuals’
smartphones, using similar sensed-behaviors and outcome measures from
recentwork3–5,13,25 (Fig. 1b). The dataused to develop and analyze theAI tool
was collected during a U.S.-based National Institute of Mental Health
(NIMH)-funded study3,25–29, one of the largest, most geographically diverse
studies of its kind. We then measured bias across attributes including age,
sex at birth, race, family income, health insurance, and employment to
identify subgroups where the tool underperformed. We studied these spe-
cific attributes because of known behavioral differences across demographic
and SES subgroups23,24,30–32 that could impact the reliability of the developed
AI tool. Finally, we interpreted why the tool underperformed by identifying
inconsistencies between the AI tool and sensed-behaviors predicting
depression across subgroups. A summary of this analysis can be found in
Fig. 1.

Results
Data collection
We analyzed data from a U.S.-based, NIMH-funded study conducted from
2019–2021 to identify associations between behavioral data collected from
smartphones and depression symptoms3,25–29. Smartphone sensed-
behavioral data on GPS location, phone usage (timestamp of screen
unlock), and sleep were near-continuously collected from participants
across the United States for 16 weeks and the PHQ-8, a self-reported

Fig. 1 | Analyzing reliability in AI tools that predict depression symptom risk.
aWe hypothesized that sensed-behaviors, like phone use, unreliably predict
depression in larger populations because behaviors representing high depression
risk for some subgroups (e.g. older individuals) may represent lower risk for other
subgroups (e.g. younger individuals). RH is relatively healthy and CSD is clinically-
significant depression. Histograms show simulated data describing the count of
individuals (y-axis) with specific daytime phone usage (x-axis). Colors indicate
individuals experiencing CSD (orange) versus RH (light-blue). Plots are split by age
subgroups. Black boxes show that increased phone usage is not a reliable predictor of
depression because RH younger individuals have higher phone use than CSD older

individuals. b The analysis pipeline. Behavioral data from smartphones and mental
health outcomes collected during a U.S.-based NIMH-funded study3,25–29 were used
to train and validate AI models that predicted depression symptom risk from the
behavioral data.We thenmeasured algorithmic ranking bias in the developed tool to
identify subgroups where the predicted CSD risk was incorrectly ranked lower than
RH subgroups, and compared sensed-behaviors across subgroups where algorithms
underperformed. c Similar to prior work3,25, 14 days of sensed-behavioral data were
used to predict whether the PHQ-8 value across each weekly reported period indi-
cated clinically-significant depression symptoms (PHQ-8 ≥ 1033).
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measure of two week depression symptoms33,34 frequently used in mental
health research3,5,25,27, was administered multiple times a week every three
weeks (on weeks 1, 4, 7, …, known as weekly reporting periods). Sensed-
behaviors were summarized over two weeks to align with collected PHQ-8
depression symptoms for prediction (see Table 1). For example, sensed-
behaviors collected duringweeks 3 and 4were summarized to predict PHQ-
8 responses collected during week 4.

Table 2 summarizes the data used for analysis. 3900 samples were
analyzed from 650 individuals, a large cohort and sample size compared to
most studies to date analyzing associations between sensed-behaviors
and mental health4,5,25,35,36. A sample was a set of sensed-behaviors,
summarized over 2 weeks, corresponding to the average PHQ-8 response
collected during a single weekly reporting period. 46% of the average
self-reported PHQ-8 values were ≥10, indicating clinically-significant
depression (CSD)33. The majority of participants were relatively young to

middle aged (75% 25 to 54 years old), female (74%), white (82%), middle to
high income (61% annual family income ≥$ 40,000), insured (93%) and
employed (62%). We focused our results on subgroups with at least 15
participants37. The sensed-behavior distributions across the population for
each subgroup can be found in the supplementary materials.

Identifying subgroups where AI models underperform
The PHQ-8 asked participants to self-report depression symptoms
experienced over 14 days, and PHQ-8’s were delivered multiple times
throughout each weekly reporting period. We trained AI models using
14 days of smartphone sensed-behavioral data to predict if the average
PHQ-8 value across each weekly reporting period (days 7 through 14, see
Fig. 1c) indicated clinically-significant depression (CSD, PHQ-8 score
≥1033) symptoms. While the PHQ-8 asks participants to self-report 2 week
depression symptoms, studies suggest that individual assessments may

Table 1 | Sensed-behaviors

Category Derived sensed-behaviors

Location Variance (variability in GPS location), number of unique locations, entropy (variability in unique locations), normalized entropy (entropy normalized by the
number of unique locations), duration of time spent at home, percentage of collected samples in-transition (participantmoving at >1 km/h), and circadian
movement (24 hour regularity in movement). Location sensed-behaviors were directly calculated over 2 week periods. For example, we calculated the
number of unique locations over 2 weeks.

Phone usage Duration of phone usage and number of screen unlocks each day and within four 6 hour periods (12–6 AM, 6–12 PM, 12–6 PM, 6–12 AM). The average
and standard deviation of each phone usage sensed-behavior was calculated over 2 weeks, and the number of days with daily phone use within each
6 hour period was summed.

Sleep Average sleep onset (beginning of sleep), average duration, and variability in duration over 2 weeks.

Anoverviewof the sensed-behavioral data used in this analysis. The sameset of sensed-behaviorswere collected fromall participants, andwere summarizedover 2 weekperiods to alignwith self-reported
PHQ-8 symptoms. Please see the methods for more details.

Table 2 | Study cohort

Entire Study Number of participants 650

Samples per participant 6

Total number of samples 3900

% Clinically-significant depression 46

Attribute Group Number of participants (%) Attribute Group Number of participants (%)

Age 18 to 25 60 (9) Family Income <20,000 98 (15)

25 to 34 181 (28) 20,000 to 39,999 144 (22)

35 to 44 168 (26) 40,000 to 59,999 124 (19)

45 to 54 135 (21) 60,000 to 99,999 161 (25)

55 to 64 81 (12) 100,000+ 110 (17)

65 to 74 22 (3) Don’t know 10 (2)

75 to 84 3 (0) Prefer not to answer 3 (0)

Sex at Birth Female 482 (74) Health Insurance Status Insured 603 (93)

Male 168 (26) Uninsured 43 (7)

Race White 534 (82) Don’t know 3 (0)

Black/African American 61 (9) Prefer not to answer 1 (0)

Asian/Asian American 22 (3) Employment Status Employed 401 (62)

More than one race 24 (4) Unemployed 90 (14)

Other 6 (1) Disability 72 (11)

Prefer not to answer 3 (0) Retired 34 (5)

Other 52 (8)

Prefer not to answer 1 (0)

Data was collected within an NIMH-funded study to understand the relationships between digitally-collected behavioral data and depression symptoms3,25–29. Participants contributed six total samples
(summarized behavioral data and depression outcome measures) throughout the course of the study. A sample was a set of sensed-behaviors, summarized over 2 weeks, with a corresponding PHQ-8
self-report.

https://doi.org/10.1038/s44184-024-00057-y Article

npj Mental Health Research |            (2024) 3:17 3



suffer from recency bias38 or indicate “briefly” elevated depression
symptoms39. For this reason, PHQ-8 values were averaged over eachweekly
reporting period to predict a more stable estimate of self-reported
symptoms.

Model performance was assessed by performing 5-fold cross-valida-
tion, partitioning on subjects, and predictions across folds were con-
catenated to calculate model performance. Similar to prior work4,6, within
each cross-validation split, models were trained using data collected from
80% of the participants (520 participants), and the trained model was
applied to predict CSD in the remaining 20% (130 participants). To analyze
performance variability due to specific cross-validation splits, we performed
100 cross-validation trials, shuffling participants into different folds during
each trial.

AImodels output a predicted risk score from0–1 of experiencingCSD.
We used the predicted risk to calculate common ranking bias metrics20–22

(Fig. 2) across the subgroups in Table 2. These metrics were based upon the
area under the receiver operating curve (AUC), which measured the
probability models correctly predicted that CSD samples were ranked
higher (in the predicted risk) than relatively healthy (RH, PHQ-8 < 10)
samples.We first calculated the AUCwithin each subgroup (the “Subgroup
AUC”). Note that equal SubgroupAUCsdo not guarantee highAUCacross
an entire sample. For example, Fig. 2a shows simulated data where an
algorithm correctly predicted CSD risk within subgroups, but younger
individuals, compared to older individuals, have a higher overall predicted
risk. Thus, across subgroups, healthy younger individuals may be incor-
rectly predicted tobe at higher risk thanolder individuals experiencingCSD.
Two additional performance metrics assessed such errors. Specifically, the
background-negative-subgroup-positive, or BNSPAUC (Fig. 2b)measured
the probability that individuals experiencingCSD(the “positive” label) from
a subgroup were correctly predicted to have higher risk than RH (the
“negative label”) individuals from other subgroups (“the background”), and
the background-positive-subgroup-negative, or BPSN AUC (Fig. 2c),
measured the probability RH individuals from a subgroup were correctly
predicted tohave lower risk thanbackground individuals experiencingCSD.

The highest performing AI model (a random forest, 100 trees, max
depth of 10, balanced class weights, see methods) achieved a median (95%
confidence interval, CI) AUC of 0.55 (0.54 to 0.57) across trials. Note that

this low AUC was expected: it is comparable to the cross-validation per-
formance of similar depression symptom prediction tools developed in
larger, more diverse populations4,6,13, and motivates the objective of this
work to study the reliability of these tools in larger populations.

Figure 3 shows the model results by each metric across subgroups.
The Subgroup AUC was lower for males (median, 95% CI 0.52, 0.49 to
0.55), Black/African Americans (0.50, 0.46 to 0.54), individuals from
low income families (<$ 20,000, 0.46, 0.43 to 0.50), uninsured (0.45,
0.41 to 0.51), and unemployed (0.46, 0.42 to 0.50) individuals, com-
pared to the median subgroup AUC for each attribute (e.g. “Sex at
Birth”) across trials. The BNSPAUC increased with age (from 0.50, 0.46
to 0.52 for 18 to 25 year olds, to 0.67, 0.62 to 0.73 for 65 to 74 year olds),
but decreased with family income (from 0.60, 0.58 to 0.63 for indivi-
duals from <$ 20,000 income families, to 0.45, 0.42 to 0.48 for indivi-
duals from $ 100,000+ income families). Individuals who were White
(0.49, 0.46 to 0.52), male (0.52, 0.49 to 0.55), insured (0.47, 0.43 to 0.50),
employed (0.43, 0.41 to 0.45), or identified with an “Other” type of
employment (0.55, 0.52 to 0.59) also had lower BNSP AUC, compared
to the median BNSP AUC for each attribute.

The BPSN AUC findings showed complementary trends: RH older
individuals (e.g. 65 to 74, 0.46, 0.40 to 0.50), unemployed (0.38, 0.36 to 0.41),
uninsured (0.47, 0.43 to 0.50), Black/African American (0.48, 0.45 to 0.50),
females (0.52, 0.49 to 0.55), and individuals coming from lower income
families (e.g. <$ 20,000 0.42, 0.39 to 0.44) had a lower BPSN AUC. Results
were reasonably consistent across different types of models, within sub-
group base rates (% samples with PHQ-8 ≥ 10) were sometimes, but not
always, associated with the BNSP/BPSN AUC, and subgroup sample size
did not appear to be associatedwith the SubgroupAUC (see supplementary
materials).

Isolating the effects of subgroup membership
We wished to account for intersectional identities (e.g. female and
employed) and isolate the effect of subgroup membership on model
underperformance. For an ideal classifier, the predicted risk would be
low for RH subgroups, and high for CSD subgroups. In addition, we
would expect subgroups with higher base rates (% of samples with

Fig. 2 | Measuring algorithmic ranking bias. We considered three metrics from
prior work to assess algorithmic ranking bias20–22. The predicted risk is the prob-
ability, output by the AI tool, that individuals were experiencing clinically-
significant depression (CSD). Histograms show simulated example predictions from
an AI tool, describing the count of individuals (y-axis) who fell into a predicted risk
bin (x-axis). Colors indicate individuals experiencing CSD (orange) versus RH
(light-blue). Plots are split by age subgroups (younger/older). The AUC is the area
under the receiver operating curve. The red and dark-blue boxes, and corresponding
text color below each plot, highlight the subgroups compared for each metric. a The
high Subgroup AUCs show that the predicted risk for individuals experiencing CSD
was greater than the predicted risk for relatively healthy (RH) individuals within

both age subgroups. But, this AI tool was biased to predict higher risk for younger
individuals, overall, than older individuals. This bias is quantified using the (b)
Background-Negative-Subgroup-Positive (BNSP) AUC and (c) Background-
Positive-Subgroup-Negative (BPSN) AUC, which respectively show that younger
individuals withCSD (“positive samples”) were correctly ranked higher (high BNSP)
than RH (“negative samples”) samples from all other subgroups (older individuals,
the “background”), but RH younger individuals were incorrectly ranked higher (low
BPSN) than background samples with CSD. Older individuals show the com-
plementary result (low BNSP, high BPSN). This bias reduces the model AUC when
measured across the entire sample (assuming equal number of older and younger
individuals, AUC = 0.75), compared to the AUC in each subgroup (1.00).
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PHQ-8 ≥ 10) to have a higher average predicted risk. We thus modeled
expected differences from subgroups with either the lowest (for RH) or
highest (for CSD) average risk across trials. Generalized estimating
equations (GEE, exchangeable correlation structure)40, a type of linear

regression, was used to estimate the average effect of subgroup mem-
bership on the predicted risk after controlling across all other attributes.
GEE was used instead of linear regression to correct for the non-
independence of repeated samples across trials40.

Fig. 3 | Measuring bias in predicted depression risk. Bias was assessed by mea-
suring the area under the receiver operating curve comparing positive (clinically-
significant depression, CSD) and negative (relatively healthy, RH) samples within
subgroups (Subgroup AUC, left column), subgroup positive samples to negative
samples from all other subgroups, called “the background” (background-negative-
subgroup-positive, or BNSP AUC, middle column), and subgroup negative samples

to background positive samples (background-positive-subgroup-negative, or BPSN
AUC, right column)20,22. Point values indicate the median value across trials. Error
bars show 95% confidence intervals (2.5 and 97.5 percentiles). Dotted lines and
shaded areas show the distribution (median and 95% confidence intervals) of either
the median (if >2 subgroups) or highest performing subgroups across trials.
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The regression results can be found in Fig. 4. The RH individuals
with the lowest average predicted risk were 18 to 25 years old, male,
White, had a family income of $ 100,000+ , were insured, and
employed. The predicted risk was expected to be higher than these
subgroups (95% CI lower-bound >0) for RH individuals who were
older than 34 (e.g. for 65 to 74 year olds, mean, 95% confidence
interval 0.02, 0.01 to 0.04), identified as Asian/Asian American (0.02,
0.01 to 0.03), Black/African American (0.01, 0.00 to 0.01), came from
<$ 60,000 income families (e.g. for <$ 20,000, 0.02, 0.01 to 0.03), were
unemployed (0.03, 0.03 to 0.04), and/or on disability (0.01, 0.00
to 0.02).

For individuals who were experiencing CSD, models predicted the
highest average risk for 65 to 74 year olds, Females, Asian/AsianAmericans,
individuals who came from families with incomes of $ 20,000 to $ 39,999,
were insured, and/or retired. The predicted risk for individuals experiencing
CSDwas expected to be lower (95%CI upper-bound <0) if individuals were
18 to 25 (–0.02, –0.04 to –0.01), male (–0.01, –0.02 to –0.00), Black/African
American (–0.02, –0.03 to –0.00), more than one race (–0.02, –0.03 to
–0.00),White (–0.02, –0.03 to –0.01), came from any family with an annual
income <$ 20,000 or ≥$ 40,000 (e.g. $100,000+ –0.03, –0.03 to –0.02), and/
or were employed (–0.02, –0.03 to –0.01). Predicted risk distributions often
overlapped across subgroups with higher or lower risk, though there were
general trends across subgroups (e.g. the predicted risk increased with age
and unemployment in RH individuals, and risk decreasedwith income level
for both CSD and RH individuals, see Fig. 4 for more details).

Interpreting sensed-behaviors
We hypothesized that models underperformed because sensed-behaviors
predictive of CSD were inconsistent across subgroups. We thus conducted
an analysis to understand differences between how AI tools predicted CSD
risk and the different relationships between sensed-behaviors and CSD
across subgroups. First, we retrained the AI model on the entire data, and
used Shapley additive explanations (SHAP)41 to interpret how the AI tool
predicted CSD risk from sensed-behaviors. We then compared SHAP
values with coefficients from explanatory logistic regression models esti-
mating how subgroup membership affected the relationship between each
sensed-behavior and depression.

We found different relationships between the SHAP values (Fig. 5a)
and sensed-behaviors associated with CSD across subgroups (Fig. 5b,
comparisons across each attribute and feature can be found in the supple-
mentarymaterials). For example, the AI tool predicted that highermorning
phone usage (6–12PM) was generally associated with lower predicted
depression risk. Higher morning phone usage decreased depression risk for
18 to 25 year olds (mean, 95% CI effect on depression, standardized units:
–0.77, –1.07 to –0.47), but increased risk for 65 to 74 year olds (0.60, 0.07 to
1.12). Younger individuals, overall, also had higher morning phone use
(standardized median, 95% CI 18 to 25 year olds: 0.32, –2.27 to 1.60)
compared to older individuals (65 to 74 year olds: –0.62, –1.96 to 0.76).

Figure 5a also shows that specific mobility features, including the cir-
cadian movement (regularity in 24 hour movement), location entropy
(regularity in travel to unique locations), and the percentage of collected

Fig. 4 | Isolating subgroups wheremodels underperformed. For an ideal classifier,
the predicted risk would be low for relatively healthy (RH) individuals, and high for
individuals with clinically-significant depression (CSD). We thus modeled expected
differences from the subgroups with either the lowest (for RH, left) or highest (for
CSD, right) average predicted risk across trials. Subgroup effects were calculated
using generalized estimating equations (GEE)40, a type of linearmodel, to analyze the

average effect of subgroup membership on the predicted risk, controlling across all
attributes. GEE accounted for the non-independence of repeated samples across
trials40. Separate regression models were created for each outcome (RH, CSD) to
remove the effects of the subgroup base rate. Points represent the GEE coefficient
(expected effect), and error bars are 95% confidence intervals around the estimated
effect. Dotted vertical lines highlight an expected subgroup effect of 0.
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GPS samples in transition (approximated speed >1 km/h) were often
associated with lower predicted CSD risk. Circadian movement decreased
CSD risk for employed individuals (–0.16, –0.24 to –0.07), but increased
CSD risk for individuals who were on disability (0.44, 0.21 to 0.66). Circa-
dian movement and location entropy also decreased depression risk for
individuals from middle income ($ 60,000 to $ 99,999) families (circadian
movement: –0.21, –0.35 to –0.07; location entropy: –0.34, –0.48 to –0.20),
but increased risk for individuals from low income (<$ 20,000) families
(circadianmovement: 0.30, 0.09 to 0.51; location entropy: 0.35, 0.14 to 0.57).
Finally, a higher percentage of GPS samples in transition decreased
depression risk for insured individuals (–0.15, –0.22 to –0.08), but increased
risk for uninsured individuals (0.32, 0.11 to 0.52).

Discussion
In this study, we hypothesized that sensed-behaviors are unreliable
measures of depression in larger populations, reducing the accuracy of
AI tools that use sensed-behaviors to predict depression risk. To test
this hypothesis, we developed an AI tool that predicted clinically-
significant depression (CSD) from sensed-behaviors and measured
algorithmic bias to identify specific age, race, sex at birth, and socio-
economic subgroups where the tool underperformed. We then found
differences between SHAP values estimating how the AI tool predicted
CSD from sensed-behaviors, and explanatory logistic regression
models estimating the associations between sensed-behaviors and CSD
across subgroups. In this discussion, we show how differences in

Fig. 5 | Interpreting the relationships between sensed-behaviors and depression.
a Shapley additive explanations (SHAP)41 were used to interpret how the AI tool
predicted depression risk using sensed-behaviors. Sensed-behaviors are ordered,
descending, on the y-axis by their average impact on the predicted risk (the “SHAP
value”, x-axis). Only the top 10 sensed-behaviors with the highest average impact are
listed, for space. Colors dictate whether a higher sensed-behavior “feature” value
(red) is associated with higher or lower predicted risk. For example, higher average

(“Avg”) phone unlocks from 6–12 PM were generally associated with lower pre-
dicted risk. Averages and deviations summarize sensed-behaviors over 14 days (see
Fig. 1c). b Example coefficients (β, 95% CI, standardized units) from explanatory
logistic regressionmodels estimating the associations between sensed-behaviors and
depression across subgroups, as well as the median and 95% CI of the sensed-
behavior distribution. Full coefficients and statistics can be found in the supple-
mentary materials.
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sensed-behaviors across subgroups may explain the identified bias and
AI underperformance in larger, more diverse populations.

Measuring bias showed that models predicted older, female, Black/
African American, low income, unemployed, and individuals on disability
were at higher risk of experiencing CSD (high BNSP, low BPSNAUC), and
younger,male,White, high income, insured, and employed individualswere
at lower risk of experiencing CSD (high BPSN, low BNSP AUC), inde-
pendent of outcomes. Comparing SHAP values to explanatory logistic
regression coefficients suggests why AI models incorrectly predicted
depression risk. For example, our findings show that younger individuals
had higher daytime phone usage than older individuals. Models predicted
that higher daytime phone usage was associated with lower CSD risk
(Fig. 5a), potentially explaining why younger individuals, overall, had lower
predicted risk, and older adults had higher predicted risk (Fig. 3). Differ-
ences could be attributed to younger individuals using phones for enter-
tainment and social activities that support well-being, while older
individuals may prefer to use their phones for necessary communication or
information gathering23.

In another example, the model predicted that mobility, measured
through circadian movement, location entropy, and GPS samples in tran-
sition, was associated with lower CSD risk (see Fig. 5). Prior work has
identified a negative association between these same mobility features and
CSD5,25, suggesting that mobility decreases depression risk.While we found
the expected negative associations across majority, higher SES ($ 60,000 to
$ 99,999 family income, insured, and employed) subgroups, we found the
opposite, positive association across less-represented lower SES (<$ 20,000
family income, on disability, uninsured) subgroups, potentially explaining
the reducedmodel performance (lowerSubgroupAUC) in these subgroups.
There are many possible explanations for the identified differences in
behavior. First, underlying reasons to bemobile (e.g. navigating bureaucracy
to receive government payments) may increase stress for individuals who
are lower income and/or on disability31, increasing depression risk. Second,
the analyzed data was collected during the early-to-mid stages of the
COVID-19 pandemic, when mobility for low SES essential workers may
indicate work travel and increased COVID-19 risk, contributing to stress32

and depression. These findings suggest that sensed-behaviors approx-
imatingphoneuse andmobility used topredict depression inpriorwork3–6,25

do not reliably predict depression in larger populations because of subgroup
differences.

While existing work developing similar AI tools has strived to achieve
generalizability4,42, our findings question this goal. Instead, it may be more
practical to improve reliability by developing models for specific, targeted
populations43,44. In addition, it may be helpful to train AImodels using both
sensed-behaviors and demographic information. In prior work and this
study, AImodels were trained using exclusively sensed-behavioral data3–5,17.
However, prior work suggests that modelsmay not bemore predictive even
with addeddemographic information45. This shows that additionalmethods
are needed to clearly define subgroups, beyond demographics, with more
homogenous relationships between sensed-behaviors and depression
symptoms.

Another method to improve reliability is to develop personalized
models, trained on participants’ data over time6,46. While personalization
seems appealing, researchers should ensure that personalized predictions
are meaningful. For example, we experimented with personalized models
using a procedure suggested from prior work46. The model AUC improved
(0.68) compared to the presented results (0.55), but we achieved a higher
AUC (>0.80) by developing a naive model re-predicting participants’ first
self-reported PHQ-8 value for all future outcomes. Given at least one par-
ticipant self-report is often needed for personalization, models should show
greater accuracy than these naive benchmarks.

Even if accuracy improves, models can still be biased19,37, and it is
important to consider the clinical and public health implications of using
biased risk scores for depression screening. For example, more frequent
exposure to stress47 contributes to higher rates of depression in lower SES
populations48, but overestimating depression risk for healthy low SES

individuals allocates mental health resources away from other individuals
who need care. Similar issues persist for underestimating depression risk.
For example,models predicted lower risk formales experiencing depression
compared to healthier females (see Fig. 3). Males are less likely to seek
treatment for their mental health than females49, and AI tools under-
estimating male depression risk may further reduce the likelihood that
males seek care. Uncovering these biases are important before algorithmic
tools are used in clinical settings.

To reduce these harms, researchers can use methods described in this
and other work37 to identify subgroups where AI tools underperform by
measuring bias. Resources could then be directed to develop new or retrain
existing models for these subgroups. Simultaneously, clinical personnel
using these tools can be trained to identify algorithmic bias and mitigate its
effects50. In addition, depositing de-identified sensed-behavior and mental
health outcomes data in research repositories could increase available data
to analyze the reliability of AI tools12. Finally, our findings show the
importance of developing AI tools using data from populations that have
similar behavioral patterns to the populations where these tools will be
deployed. More thorough reporting of model training data51, and mon-
itoringAI tools in “silentmode”, inwhichpredictions aremade but not used
for decision making52, could prevent AI tools developed in dissimilar
populations from causing harm.

Finally, it is important to consider how the choice to classify
depression symptom severity influenced our results, specifically
choosing to predict binarized PHQ-8 values instead of raw PHQ-8
scores. Predicting binarized symptom scores is a fairly common
practice in both the depression prediction literature3–5,17, as well as in
the clinical AI literature, broadly53,54. This practice is motivated by an
interest to use AI tools for near-continuous symptom monitoring, in
which an action (e.g. follow-up by a care provider) is triggered at a
specific elevated symptom threshold. This motivation may be difficult
to realize if the field continues to use depression symptom scales as
outcomes. As recent work shows, symptom scales do not produce
categorical response distributions, with a clear decision boundary
distinguishing individuals experiencing versus not experiencing
symptoms14. Instead, responses tend to exist along a continuum14. It
is also important to consider if subgroup differences affect the
interpretation and self-reporting of depression symptom scales.
Despite this consideration, prior work provides evidence that the
PHQ-8 exhibits measurement invariance across demographic and
socioeconomic subgroups55,56. Thus, it may be unlikely that the bias
identified in this work was due to subgroup differences in self-
reporting symptoms, but our findings could be partially attributed to
the mistreatment of depression symptom scales as categorical in
nature.

This work had limitations. First, we analyzed data from a single study,
though the studied cohort was larger in size, geographic representation, and
timespan compared to prior work. In addition, the study cohort was
majorityWhite, employed, and female, though we did not find that sample
size was associated with classification accuracy. Only inter-individual
variability was considered, not intra-individual variability, and thus these
findings do not extend to longitudinal monitoring contexts, where changes
in sensed-behaviors may indicate changes in depression risk. In addition,
data was only analyzed fromparticipants who provided complete outcomes
data (participantswho reported at least one PHQ-8 value during each of the
6 weekly reporting periods). Data was exclusively collected from individuals
who owned Android devices, and only specific data types (GPS and phone
usage) were analyzed. Only smartphone sensed-behaviors were analyzed,
and data collected from other devices (e.g. wearables) and platforms (e.g.
social media) were not analyzed. Finally, data collection took place from
2019–2021, when COVID-19 restrictions varied across the United States,
which may influence our findings. Future work can examine if these results
replicate over larger, more diverse cohorts, in both demographic and
socioeconomic attributes, as well as the data collection devices and plat-
forms. In addition, future work can explore if sensed-behaviors are reliable
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predictors of depression in longitudinalmonitoring contexts, though recent
work suggests that sensed-behaviors have low predictive power, even when
used for longitudinal monitoring25.

In conclusion,wepresent onemethod toassess the reliability ofAI tools
that use sensed-behaviors to predict depression risk. Specifically we mea-
sured ranking bias in a developed AI tool to identify subgroups where the
tool underperformed, and thenwe interpretedwhymodels underperformed
by comparing the AI tool to sensed-behaviors predictive of depression
across subgroups. Researchers and practitioners developing AI-driven
mental healthmonitoring tools using behavioral data should think critically
about whether these tools are likely to generalize, and consider developing
tailored solutions that are well-validated in specific, targeted populations.

Methods
Cohort
In this work, we performed a secondary analysis of data collected during a
U.S.-based National Institute of Mental Health (NIMH) funded study. The
motivation for this study was to identify smartphone sensed-behavioral
patterns predictive of depression symptoms3,25–29. Participants were recrui-
ted from across theUnited States using socialmedia, online advertisements,
and an internally maintained registry of individuals interested in partici-
pating in digital mental health research. Participants were also recruited
throughFocusPointeGlobal, a national researchpanel. FocusPointeGlobal
merged with the Schlesinger Group during data collection.

Eligible participants lived in the United States, could read/write Eng-
lish, and owned an Android smartphone and data plan. In addition, eligible
participantswith at leastmoderatedepression symptomseverity basedupon
the Patient Health Questionnaire-8 (PHQ-8) ≥ 10 were intentionally
oversampled to create a sample with elevated depression symptoms. Indi-
viduals were excluded from the study if they self-reported a diagnosis of
bipolar disorder, any psychotic disorder, shared a smartphone with another
individual, or were unwilling to share data. Eligible participants were asked
to provide electronic informed consent after receiving a complete descrip-
tion of the study. Eligible participants had the option to not provide consent,
and could withdraw from the study at any point.

Consented participants downloaded a study smartphone application57

and completed a baseline assessment to self-report demographic and life-
style information. The study application passively collected GPS location,
sampled every 5min, and smartphone interactions (screen unlock and time
of unlock) for 16 weeks. Individuals completed depression symptom
assessments every 3 weeks within the smartphone application (the PHQ-
833,34). Data collection took place from 2019–2021, and all study procedures
were approved by the Northwestern University Institutional Review Board
(study #STU00205316).

Sensed-behavioral features
Wecalculated sensed-behavioral features from the collected smartphonedata
to predict depression risk. Following established methods from prior
work3,5,25, we calculatedGPSmobility features including the location variance
(variability inGPS), number of unique locations, location entropy (variability
in unique locations), normalized location entropy (entropy normalized by
number of unique locations), duration of time spent at home, percentage of
collected samples in-transition (participant moving at >1 km/h), and circa-
dianmovement (24 hour regularity inmovement)5.Wealsocalculatedphone
usage features from the screen unlock data42, including the duration of phone
use and the number of screen unlocks each day and within four 6 hour
periods (12–6AM, 6–12 PM, 12–6 PM, 6–12 AM). Finally, we used a stan-
dard algorithm42,58 to approximate daily sleep onset andduration from screen
unlock data.

Depression symptom classification
The PHQ-8 asks participants to self-report depression symptoms that
occurred during the past 2 weeks. Symptoms are reported from 0 (not
experiencing the symptom) to 3 (frequently experiencing the symptom).
Scores are summed and thresholded to classify severity, where summed

scores of 10 or greater indicate a higher likelihood of experiencing a
clinically-significant depression33. We thus followed prior work5,25 to cal-
culate sensed-behavioral features in the 2 week period up to and including
each weekly PHQ-8 reporting period. Behavioral features were input into
machine learning models to predict clinically-significant symptoms
(PHQ-8 ≥ 10).

Data preprocessing
Screen unlock and sleep features were summarized to align with the PHQ-
842. The average and standard deviation of each daily and 6 hour epoch
featurewere calculated across the 2 week prediction period, and the number
of days with daily phone use and within each 6 hour epoch were summed.
GPS featureswere directly calculated over the 2 weeks. As recommended by
Saeb et al.5, skewed features were log-transformed. Missing data was filled
usingmultivariate imputation59 and then standardized (mean = 0, standard
deviation = 1) based upon each training dataset prior to being input into
predictive models.

AI model training and validation
We trained machine learning models commonly used to predict mental
health status from smartphone behavioral data including regularized (L2-
norm) logistic regression (LR)3,5, support vector machines (SVM)4,60, and
tree-based ensemble models including random forest (RF) and gradient
boosting trees (GBT)3,42. We varied the strength of the LR and SVM reg-
ularization parameter (0.01, 0.1, 1.0), used a radial basis function SVM
kernel, varied class balancing weights in the RF and SVM (unbalanced/
balanced), varied the number of ensemble tree estimators (10, 100), depth
(3, 10, or until pure), and the GBT learning rate (0.01, 0.1, 1.0) and loss
(deviance and exponential). Non-logistic predictionmodels were calibrated
using Platt scaling to approximately match the predicted risk to the pro-
portion of individuals experiencing clinically-significant symptoms at each
risk level61. Logistic regression models, as shown in prior work61, output
calibrated probabilities. Models were implemented using the scikit-learn
Python library62.

Multiple PHQ-8 surveys were administered each weekly reporting
period (e.g. week 1, 4, 7, etc.). Survey scores in each reporting week were
averaged to remove overlap between sensor and outcomes data. Data was
analyzed from study participants who self-reported at least one PHQ-8
during each reporting week, resulting in 6 predictions per participant. Data
fromall other participantswere removed (288 participants removed, 31%of
938 total, leaving 650 participants for analysis) to focus this analysis towards
algorithmic bias due to subgroup differences rather than bias due tomissing
outcomes data.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Sensed-behavioral data cannot bemade publicly available due to potentially
identifying information (e.g. GPS location) that may compromise partici-
pant privacy. De-identified self-reported data (the PHQ-8) will be made
available through the NIMH Data Archive.

Code availability
A repository for all code used for analysis can be found at the following link:
https://github.com/dadler6/reliability_depression_ml.
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