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The impact of antibiotics on the gut
microbiota of children recovering from
watery diarrhoea
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Infectiousdiarrhoeal diseases remain a substantial health burden in young children in low- andmiddle-
income countries. The disease and its variable treatment options significantly alter the gut
microbiome, which may affect clinical outcomes and overall gut health. Antibiotics are often
prescribed, but their impact on the gut microbiome during recovery is unclear. Here, we used 16S
rRNA sequencing to investigate changes in the gut microbiota in Vietnamese children with acute
watery diarrhoea, and highlight the impact of antibiotic treatment on these changes. Our analyses
identified that, regardless of treatment, recovery was characterised by reductions in Streptococcus
and Rothia species and expansion of Bacteroides/Phocaeicola, Lachnospiraceae and
Ruminococcacae taxa. Antibiotic treatment significantly delayed the temporal increases in alpha- and
beta-diversity within patients, resulting in distinctive patterns of taxonomic change. These changes
included a pronounced, transient overabundance of Enterococcus species and depletion of
Bifidobacterium pseudocatenulatum. Our findings demonstrate that antibiotic treatment slows gut
microbiota recovery in children following watery diarrhoea.

Infectious diarrhoeal diseases remain a leading cause of death in children
under five in low- and middle-income countries (LMICs)1,2. It is defined as
having more than three loose or watery stools within 24 h and is caused by
bacteria, viruses, and/or parasites. Apart from direct assaults by the
pathogen, the gut environment also undergoes increased bowelmovements
and fluid secretion during diarrhoea3. This exerts a significant perturbation
to the inhabiting microbial communities (microbiota) and the encom-
passing environment (gut microbiome). Furthermore, children with diar-
rhoea are usually treated with oral rehydration, probiotics, and in some
instances, antibiotics4,5. These treatments add another layer of complexity to
the interaction with the gut microbiota by inducing indirect killing
(antibiotic)6 or replenishing (probiotic) effects3.

The healthy gut microbiota in children is predominated with obligate
anaerobes belonging to the three phyla: Actinobacteria, Bacteroidetes, and
Firmicutes7. The exact taxonomical composition is dependent on factors as
varied as the birth-deliverymethod, breastfeeding, age, time of weaning and
nutritional status8–10.Wepreviously showed that some of these factors could

help shape the gutmicrobiota state during the early phase of diarrhoea (Day
1–5 of dysbiosis), which was predominated by the facultative anaerobes
Escherichia and Streptococcus3,11,12. Previous studies employing shotgun
metagenomic sequencing on Bangladeshi children with diarrhoea docu-
mented the gut microbiome succession during the course of disease3,13.
While the transiently oxygenated gut facilitates the expansion of facultative
anaerobes in the early phase, diarrhoea recovery is marked by the growth of
anaerobic Bacteroides during the mid-phase (Day 7–10) and of a highly
diverse community of Firmicutes at the late phase (Day 14 onward)3.
Nevertheless, such changes are predicted to be highly variable between
individuals, notably in response to the treatment during diarrhoea. Previous
studies, though incorporating longitudinal design, have not addressed the
impact of treatment on the gut microbiome dynamic during diarrhoea
recovery.

Antibiotics are known to destabilise the gut microbiome in healthy
individuals8,14,15. The gutmicrobiome acts as amajor reservoir for antibiotic-
resistant bacteria16,17. Therefore, antibiotic treatment does not only diminish
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species richness but also give rise to adapted resistant bacteria, frequently
through the horizontal transfer of antimicrobial resistance (AMR) genes
within and between species18–20. However, it is unclear to what extent
antibiotic treatment affects the gut microbiome in children with diarrhoea,
especially during recovery. To investigate this question, we studied children
enroled on a previously published trial of probiotics for diarrhoea
treatment21.

Results
Our study utilised stool samples collected from a longitudinal cohort of a
recent randomised control probiotic trial in Vietnam (Longitudinal study),
demonstrating that supplementation with Lactobacillus acidophilus did not
shorten diarrhoeal duration21. The collected samples (n = 218) here origi-
nated from 90 diarrhoeal patients, mostly belonging to the probiotic arm
(n = 85/90) (Table 1). The study recruited patients with acute watery diar-
rhoea,whoprovided stool samples at hospital admission (day1–D1), thenat
day 7 (D7) and 14 (D14). FromD7, most patients ceased to have diarrhoea
(n = 85/90). The majority of patients were diagnosed with Rotavirus or
Norovirus infections (mono- or mixed, >80%) using real-time PCR. Nearly
one-third of patients (n = 28/90) were breastfed, and themedian age was 16
months (interquartile range [IQR]: 11.80–21.75). Nearly 40% of patients
(n = 35/90) were treated with antibiotics, most commonly ciprofloxacin or
3rd generation cephalosporins. Antibiotics were prescribed to patients dur-
ing the first week (medianDay 2; range: Day 1–6), and themedian duration
of therapywas 6 days (range: 3–10). Themedian duration of hospitalisation
was four days (IQR: 2–5), and the median diarrhoea duration recorded in
the hospital was 44 h (IQR: 21–74). Stool samples were subjected to DNA
extraction and 16S rRNA gene amplification and sequencing. Additionally,
we included 16S rRNA sequencing data from our previous cross-sectional
study on the diarrhoeal microbiota of Vietnamese children, which
employed a similar sequencing and analysis approach12. A preliminary
quality check showed that therewasno apparent study-wise clusteringwhen
combining these two datasets (Supplementary Fig. 1).

We found that antibiotic treatmentwas the sole significant predictor of
hospitalisation duration (Multiple Linear Regression, p-value = 0.001).
Antibiotic treatment was linked to prolonged hospitalisation (mean dif-
ference of 1.8 days,Wilcoxon test, p = 0.002) (Supplementary Fig. 2) butwas
not associated with different diarrhoeal etiologies (Chi’s square test,
p = 0.81). Since antibiotics are known to impact the gut microbiome22,23, we
set out to investigate their influences on the longitudinal recovery of the gut
microbiota in our cohort. Due to the small sample size of antibiotic-treated
group, we did not divide the study population by antibiotic classes for
downstream analyses.

Antibiotic treatment delayed increases in alpha-diversity of the
gut microbiota
The gut microbiota’ alpha diversity, representing species richness and
evenness, at diarrhoea onset (D1) was significantly different when com-
paring between the longitudinal and cross-sectional studies (Wilcoxon
signed-rank test, p-value = 0.006) (Fig. 1a). While these two groups had the
same age-month distribution (Wilcoxon signed-rank test, p-value = 0.14),
the weight-for-age z-scores were higher in the Longitudinal group (Wil-
coxon signed-rank test, p-value < 0.001), which might explain the heigh-
tened richness observed in patients in this cohort. Once we compared
between time points, particularly within the longitudinal study cohort, the
microbiota of early diarrhoea onset (D1) showed the lowest diversity (mean
of indices: Shannon: 2.41, Chao1: 60.8, Simpson: 0.73; Wilcoxon signed-
rank test p-values < 0.01) (Fig. 1a). In contrast, diversity was highest onD14
(mean of indices: Shannon: 2.88, Chao1: 76.0, Simpson: 0.83; p-values <
0.0001). The control groupwere age-matchedVietnamese childrenwithout
diarrhoea in the cross-sectional study, and its alpha diversity was com-
parative to that ofD7 andD14 in the longitudinal study (Tukeyposthoc test,
p-values ranging from 0.24 to 0.69). This implies that diarrhoea caused a
transient drop in alpha diversity at onset, which is ameliorated during
recovery and approaching that of healthy state at D7 and D14.

To track the temporal change of the microbiota within patients, we
only utilised data from the longitudinal study. Patients receiving antibiotics
experienced a less pronounced difference in Shannon diversity during the
first week (D1–D7) compared to thosewithout treatment (Wilcoxon signed
rank test, p = 0.004) (Fig. 1c). This suggests that antibiotic usage led to a
slower recovery of the gut microbiota diversity initially. However, this was
followedby adramatic increase indiversity for the antibiotic treatedpatients
during the second week (p = 0.044). In contrast, the non-antibiotic group’s
Shannon index remained relatively static during this period. This obser-
vation was again captured when we mapped the changes in alpha diversity
within each patient. Antibiotic administration delayed the increase in
diversity initially (D7), but diversity eventually increased at D14 to levels
similar to those observed in the non-antibiotic group (Fig. 1d). This could be
explained by opposite trends of diversity change induced by antibiotics
(with nearly equal proportion), resulting in an overall negligible change
observed atD7 in treatedpatients. Furthermore, antibiotic induced adrop in
all diversity measures at D7 (but not D14) when compared to the non-
antibiotic group, with estimated changes of −9.5 (Chao1), −0.53 (Shan-
non), and−0.12 (Simpson) (antibiotic treatment:day7, Linearmixed-effects
model - LMM, p-value < 0.01, Supplementary Table 1).

The effects of antibiotics on inter- and intra-individual gut
microbiota configurations
We next used beta-diversity to explore the dissimilarity in the gut micro-
biota structure between samples, as well as to map the intra-individual
temporal dynamic24,25.We transformed the raw count data using the PhILR
method, and beta-diversity was calculated using Euclidean distance.We did
not observe separate clustering of the microbiota based on sampling time
points (Fig. 2a), but these were shown to contribute significantly in
explaining the microbiota variation (PERMANOVA, p = 0.001 for age-
month and sampling day). This likely indicates that microbiota succession
varies depending on the patient’s condition, and there was no general
configuration denoting the recovering gut microbiota. Likewise, though the
beta-diversity calculated between patients (separately for each timepoint)
was higher than that of within-patients (conducted for pairs of consecutive
time points) (Wilcoxon signed rank test, p < 0.001), this difference was
negligible. This suggests that intra-individual taxonomical changes during
microbiome recoverywerenearly as significant as inter-individual variation.

Comparison between time points showed that between-patient dif-
ferences at D1 were significantly lower than that of D7 and D14 (p-
values < 0.05), though these differences were small (0.9 and 0.6, respec-
tively). Since treatments (antibiotic, probiotic) and diarrhoea itself could
destabilise the gut microbiome in diverging trajectories14, the microbiota
composition could be more variable in later periods compared to the first
day. Indeed, the gut microbiota of patients receiving antibiotics displayed
more compositional variation than those without antibiotic use, which was
consistent for both D7 and D14 (Wilcoxon signed-rank test, p-values <
0.05) (Fig. 2b). Similar to its effect on alpha-diversity, antibiotic treatment
resulted in a lesser degree of change in beta-diversity within patients (LMM,
antibiotic treatment estimate =−3.63, p < 0.01, Supplementary Table 2),
particularly visible during the first week (Wilcoxon signed-rank test,
p = 0.024; Fig. 2c).Thesefindings indicate that antibiotic usage likely leads to
a slower recovery in the microbiota composition.

Antibiotic treatment induces differing patterns of microbiota
recovery post-diarrhoea
We next focus on specific taxonomic changes in gut microbiota during
diarrhoea recovery using samples from the longitudinal study. The top four
dominant phyla (Firmicutes, Actinobacteria, Bacteroidetes, and Proteo-
bacteria)made up themajority of the gutmicrobiota (>98% at all three time
points) (Fig. 1b). At the genus level, the most abundant genera included
Bifidobacterium, Streptococcus, Bacteroides, Escherichia, Veillonella and
Phocaeicola (Supplementary Fig. 3). Tracking the temporal trend revealed a
marked shift in the phyla’s relative abundance, inwhichBacteroidetes (from
8% to 20%) gradually replaced Proteobacteria (from 16% to 6%) to become
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the third-most prevalent at D14. This was mainly due to the gradual
increases in the abundances of Bacteroides and Phocaeicola post diarrhoea,
accompanied by the reducingEscherichia (Supplementary Fig. 3). However,
these changes were less visible in patients treated with antibiotics, especially
during the first week. In order to produce insights into changes at the
species/OTU level between time points, we next employed differential
abundance (DA) analyses on pairedmicrobiota (from the same patients) to
account for inter-individual variation.We separately analysed patients with
and without antibiotic treatment to infer the differential effects of such
treatment on the microbiota dynamics (Figs. 3–5). Four DA approaches
(ANCOMBC, DESeq2, MaAsLin2, and Limma Voom) were employed for
eachcomparison, andonly taxa identifiedby at least twoof these approaches
were determined as differentially abundant and reported in the following
discussion.

Our analyses identified several patterns of gut microbiota succession
consistent in both antibiotic and non-antibiotic treatment groups. For
instance, taxonomic shifts in the first week were characterised by dramatic
reductions of oral or ileal-originated bacteria, including Streptococcus spp.

(S. thermophilus, S. salivarius, S. lutetiensis) and Rothia mucilaginosa (log2
foldchange of −4.0 to −0.9; Figs. 3a, c and 4)24. Such decline was more
profound in the non-antibiotic group, exemplified by the higher reduction
of R. mucinlaginosa (4 folds versus 2 folds) and the exclusive depletion of a
major S. thermophilusOTU(log2 fold change of−4) found in these patients
(Fig. 4, Supplementary Data). Consistent with their changes in relative
abundances (Supplementary Fig. 3), Bacteroidaceae commensals (Bacter-
oides and Phocaeicola) underwent substantial expansion in the gut micro-
biota at D7, with increases of Bacteroides fragilis (6.5 folds), Bacteroides
uniformis (5 folds), Phocaeicola dorei (2.5 folds), Phocaeicola vulgatus (4
folds), and Bacteroides caccae (3 folds) (Supplementary Data). Particularly,
the proliferation ofB. fragiliswasmost visible in terms of relative proportion
(Fig. 5). Likewise, commensal anaerobes such as Clostridioides difficile,
Enterocloster bolteae, and Ruthenibacterium lactatiformans showed a con-
sistent enrichment in both patient groups atD7 (log2 fold change of 0.8–2.2,
Figs. 3a, c and 4, Supplementary Data). Since the majority of our patients
(n = 85/90) received Lactobacillus probiotics for initial treatment, its pro-
liferation was also visible at D7, with more remarkable enrichment in the
non-antibiotic group (eight-fold versus three-fold increase; Fig. 4). Never-
theless, the abundance of these taxa decreased at D14 in the non-antibiotic
group (log2 fold change of −1.1 to −2.7), while they remained slightly
enriched in patients receiving antibiotics up till the second week (log2 fold
change of 0.5–1.1) (Fig. 4, Supplementary Data). Recovery in the second
week was consistently marked by the continuing decline of dysbiosis-
associated Streptococcus and Escherichia species at D14, (log2 foldchange
ranging from−0.04 to−4.7) (Figs. 3b, d and 4). This was accompanied by
the expansion of many gut commensals of Lachnospiraceae and Rumino-
coccaceae taxa, including Tyzzerella, Anaerotignum lactatifermentans,
Blautia argi,Hungatella effluvii, Clostridium leptum, R. lactatiformans, and
Butyricicoccus pullicaecorum (Fig. 4). Notably, Clostridium innocuum
showed the highest level of enrichment in both patient groups but with
much higher foldchange in patients treated with antibiotics (64 versus 8
foldchange; Figs. 3b, d and 4). Similarly, though B. caccae expanded in both
groups, its elevation wasmore pronounced in the antibiotic group (3 versus
1.4 foldchange, Supplementary Data, Fig. 3).

Alongside the general recovery trends observed in all patients, anti-
biotic treatment could exert a distinct effect on the gut microbiota, some-
timeswithopposite impacts on the same taxon. For example,while the short
chain fatty acid (SCFA)-producing Eubacterium limosum and Blautia
wexleraewere enriched atD7 for the non-antibiotic group (log2 fold change
up to 2.8), their abundance plummeted in the antibiotic treated patients
(log2 fold change of −1.7) (Figs. 3a, c, 4 and 5). Moreover, we observed
specific effects exclusive to the antibiotic group, such as a four-fold decline in
Bifidobacterium pseudocatenulatum (p-value = 4e−11) at D7 (Fig. 3c),
mirroring the general trend of decreasing abundance in Bifidobacterium
post-D1 (Supplementary Fig. 3). In antibiotic treated patients, the most
significant enrichment at D7 was for Enterococcus (>32-fold increase, p-
value = 10−9 in all 4 DA methods; Fig. 3c), followed by Finegoldia magna
(~8-fold increase, Fig. 3c). However,Enterococcus abundancewasmarkedly
reduced at D14 (log2 foldchange of−4.6; detected by 3 DAmethods) (Figs.
3d and 5), demonstrating that its enrichment was probably transient fol-
lowing antibiotic use. Besides, compared to D7, D14 witnessed the dimin-
ishing of Faecalbacterium prausnitzii and Prevotella copri (log2 foldchange
of −2.3 and −2.7, respectively) in antibiotic treated patients, coupled with
expansions of Parabacteroides distasonis and Collinsella aerofaciens (log2
foldchange of 2.6 and 2 respectively) (Supplementary Data).

In contrast, for patients without antibiotic use, recovery at D7 was
specifically accompanied by substantial increase of SCFA-producing
Bifidobacterium breve, Phascolarctobacterium faecium, and Rumino-
coccus gnavus (Fig. 3a, log2 foldchange from 1.45 to 3), which were not
observed in antibiotic treated patients. At D14, the shrinkage of Bifi-
dobacterium breve was most noticeable (log2 foldchange of −4.33; Fig.
3b), signifying its transient overabundance in the post-perturbed gut.
D14 recovery was also characterised by the substantial rise of Erysipe-
latoclostridium ramosum (6-fold increase) and several Peptoniphilaceae

Table 1 | Demographic and clinical data of the
longitudinal study

Total (% or IQR)

Sex

Male 60 (66.67)

Female 30 (33.33)

Age months

Median (IQR) 15.95 (11.80–21.75)

Infection typesa

Rotavirus only 33 (36.67)

Virus+Bacteria 21 (23.33)

Virus+ Parasite 9 (10.00)

unknown 8 (8.89)

Norovirus 7 (7.78)

Bacteria only 5 (5.56)

Adenovirus 2 (2.22)

Norovirus+Rotavirus 2 (2.22)

Adenovirus+Norovirus+Rotavirus 1 (1.11)

Adenovirus+Rotavirus 1 (1.11)

Adenovirus+Norovirus 1 (1.11)

Breastfeeding

No 62 (68.89)

Yes 28 (31.11)

Antibiotic treatment

No 55 (61.11)

Yes 35 (38.89)

Probiotic treatment

Yes 85 (94.44)

No 5 (5.56)

Hospitalisation duration (days)

Median (IQR) 4.00 (2.00–5.00)

Diarrhoea duration (hours)

Median (IQR) 43.50 (21–74)

wfa z-score

Median (IQR) −0.04 (−0.91–1.16)
aPathogens: Virus: Adenovirus, Norovirus, Rotavirus; Bacteria: diarrheagenic E. coli, Campylo-
bacter, Salmonella, Shigella; Parasite: Cryptosporodium, Giardia.
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members (F. magna, Anaerococcus obesiensis, Peptoniphilus coxii) (Fig.
3b; Supplementary Data).

Discussion
Our study provides an understanding of the longitudinal dynamics in gut
microbiota as children recover from diarrhoea, and the short-term effects
induced by antibiotic treatment. Diarrhoea onset is associated with the
elevation of oxygen levels in the gut environment, which enables the pro-
liferation of facultative anaerobes such as Escherichia and Streptococcus3,24.
Our findings showed that these taxa, together with oral/ileal-originating
bacteria such as Rothia, acted as transient colonisers in the gut and are
diminished during the first week26. Similar to previous findings, recovery
post diarrhoeawasmarked by the expansion ofBacteroides and Phocaeicola
probably due to their expansive repertoires of carbohydrate-degrading
enzymes (notably targeting mucins and fibre)3,11,12. These catabolic poten-
tialsmayhave allowedBacteroidetes to capitalise on thehost-derived carbon
resource in a low-competition environment post-diarrhoea. Themicrobiota
at D7 and D14 were further characterised by the return of anaerobic Fir-
micutes, including SCFA producers such as Faecalibacterium prausnitzii,
Clostridium leptum, Eubacterium, and Blautia22,23. It was noticeable that
probiotic treatment resulted in a transient and low-abundance colonisation
of Lactobacillus, likely explaining its inefficacy in improving clinical out-
comes in our patient cohort.

Significantly, we found that antibiotic treatment delayed the
increase in alpha- and beta-diversity within patients during recovery,

exemplified by a lesser degree of taxonomic changes at week 1 post-
treatment. This was notified as a weaker trend both in the decline of oral-
associated taxa (Rothia, Streptococcus) and the elevation of SCFA-
producers (Blautia, Eubacterium) at D7, possibly signalling a slower rate
in gut microbiota recovery in treated patients. Though the rise in
diversity eventually approximated that of the non-antibiotic patients in
the second week, certain markers of the healthy gut (such as SCFA-
producing F. prausnitzii and P. copri) remained depleted at D14 for
treated patients. This suggests that despite the transient effect of anti-
biotics on gut microbiota diversity, the taxonomic composition may
remain divergent to that of non-antibiotic recovery. Interestingly, we
found that the common spore-forming C. difficile and E. bolteae
increased in similar foldchange at D7 regardless of antibiotic treatment,
and C. innocuum experienced the highest foldchange in antibiotic
condition at D14. This indicates that the sporobiota are unaffected by
antibiotic exposure, and they may even proliferate better in the absence
of other competitive commensals, faciliated by antibiotic use25,27.

Our findings showed that antibiotic treatment exclusively affected
some taxa. The most remarkable was the signature expansion of
Enterococcus in the early recovery phase following treatment, which is in
line with previous research26,28. As early as 1978, Goldmann and col-
leagues have reported notable Enterococuss enrichment post-antibiotic
exposure in neonates admitted to intensive care29. The bloom of this
genus, together with other Gram-positive bacteria, was also observed
following treatment with amoxicillin-clavulanate in the previous

Fig. 1 | Temporal changes in alpha-diversity and phylum abundances in the gut
microbiome of children recovering from diarrhoea. a Alpha diversity indices
(Shannon, Simpson, and Chao1) calculated and grouped by timepoints (Days 1, 7,
14 since hospitalisation by diarrhoea) and coloured by studies (longitudinal – coral,
cross-sectional – gold). Group C denotes non-diarrhoea controls (see Legend).
Pairwise comparisons were performed using Analysis of variance (ANOVA) with
Tukey post-hoc tests, with p-values attached. b Relative abundances of different
phyla, calculated as the mean value separately for each timepoint and antibiotic
treatment group. c The boxplot illustrates temporal changes of the alpha diversity in

the two diarrhoeal weeks, calculated as the difference in Shannon index between two
consecutive timepoints (D7–D1 for week 1; D14–D7 for week 2) and grouped by
antibiotic treatment. d Intra-patient temporal trend of alpha diversity (Shannon
index), grouped by antibiotic treatment. Only patients with samples collected at at
least two consecutive time points were included (D1–D7, and D1–D7–D14). Each
continuous line represents a patient, coloured by their hospitalisation duration. The
dashed line is visualised by fitting a Local Polynomial Regression Fitting (LOESS) on
the temporal data. Results from panels b–d were derived from the longitudinal
study only.

https://doi.org/10.1038/s44259-024-00030-x Article

npj Antimicrobials & Resistance |            (2024) 2:12 4



research30. Furthermore, treatment with most classes of bactericidal
antibiotics, including extended-spectrum cephalosporins and fluor-
oquinolones as administered in our cohort, has been associated with
Enterococcus overabundance31,32. This could be explained by the intrinsic
or sporadic resistance in Enterococcus to most commonly used anti-
biotics, aiding its survival and replication in the gut environment created
by antibiotic clearance19,33,34. Similar to previous reports, our findings
illustrated that Enterococcus dominance appears transient and dimin-
ished markedly during the second week31,35. Though this transient
colonisation might not affect the patient’s clinical outcomes, its over-
growth could instigate horizontal transfer of AMR genes to other gut
commensals18. Multiple AMR determinants in Enterococcus are known
to bemobilised by plasmids or transposons19. Additionally, Enterococcus
has immunomodulatory properties that support the metabolism of
nutrients in the gut, but also possesses complex virulence traits36,37. Thus,
the overabundance of Enterococcus post-antibiotic warrantsmore future
in-depth research to understand its impact on gut health. On the other
hand, it was noted that B. pseudocatenulatum was the most susceptible
member of Bifidobacterium to antibiotics. Our previous research has
shown that this species was prevalent and abundant in the gut micro-
biotas of Vietnamese children38, and it contributes to gut health through
the degradation of complex plant-based carbohydrates and ameliorates

pro-inflammation responses39,40. Thus, its shrinkage could lead to
deleterious consequences on gut health.

Moreover, antibiotics could act as a selective factor in differentiating
the gut microbiota configuration at the species or strain level. Particularly,
Bacteroides abundance was shown to increase after a course of first/second
generation of cephalosporins or amoxicillin/clavulanate14,41. Still, its abun-
dance would decrease initially following treatment with carbapenems or
cephalosporins of later generations14,42. Besides, Our findings highlight that
several Bacteroides OTUs, classified as B. fragilis, B. uniformis, and B. fae-
cichinchillae, showed remarkable increases at D7 post-antibiotic treatment,
while B. cacae and P. vulgatus were more enriched in the non-antibiotic
group. Differing mucin-degrading capability and AMR profiles among the
Bacteroides/Phocaeicola genomes probably determine which species or
strains could persist and thrive during the early recovery phase43–45. Variable
distribution, even at the subspecies level, in key enzymes acting on terminal
mucin capping structures, including sulfatases and specific glycosyl
hydrolases (GH33: sialidase; GH29 & GH95: fucosidases) have been
observed in Bacteroides/Phocaeicola genera46–48. Besides, AMR determi-
nants in Bacteroides were recently shown to mobilise via integrative con-
jugative elements49. Therefore, it is difficult to precisely predict which taxa
could predominate in the gut microbiota since the accessory genome could
significantly contribute to their competitive advantages. Metabolic

Fig. 2 | Temporal changes in beta-diversity in the gut microbiome of children
recovering from diarrhoea. a Principal Coordination Analysis (PCoA), performed
on the phylogenetic-assisted isometric log-ratio (PhILR) transformed data (with
Euclidean distance). Points are coloured by sampling timepoints (Days 1, 7, and 14
for diarrhoeal gut microbiomes) and non-diarrhoeal controls (grey). bDistribution

of inter-patient beta-diversity, calculated separately for each sampling timepoints
and antibiotic treatment. c Temporal changes of intra-patient beta-diversity, cal-
culated as differences between two consecutive timepoints and grouped by antibiotic
treatment. P-values denote results of statistical significance by Wilcoxon’s signed
rank test. Results from panels b and cwere derived from the longitudinal study only.
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activeness of the Bacteroides/Phocaeicola genera could then contribute
positively to the growth of other commensals. Particularly, sialic acid
released from the host mucus by B. thetaiotaomicron served as a substrate
for developingC. difficile inmousemodels50, which could explainC. difficile
overabundance at D7 in our patient cohort.

In summary, we evaluated the changes in diarrhoeal gut microbiota
that occur following the treatment of watery diarrhoea with antibiotics.
Given the probiotic trial design and the consistent treatment guideline
implemented in a single hospital, we envision that the effects generated by
other factors (rehydration, nutrition, different infection aetiologies, etc.) on
the gut microbiota were less significant compared to antibiotic treatment.
This study is limited to taxonomic profiling in only three consecutive time
points. Future approaches should utilise well-designed longitudinal clinical
cohorts, with denser sampling time points, longer follow-up timeframe, and
high-resolution shotgun metagenomic or long read sequencing, to fully

characterise the correlation between gut microbiome dynamic and clinical
outcomes.

Methods
Sample collection and DNA sequencing
The samples used in this study were taken from a previously published
double-blind, randomised, placebo-controlled trial of Lactobacillus acid-
ophilus for treatment of acute watery diarrhoea (trial number: ISRCTN/
ISRCTN88101063, approved byHo ChiMinh City ChildrenHospital no. 2
and the Oxford Tropical Research Ethics Committee)21. Vietnamese chil-
drenaged9 to60monthswerehospitalisedwithacutewaterydiarrhoeawith
a history of less than three days and were recruited into the trial upon
obtaining written informed consent from their parents/guardians. In this
study, acute watery diarrhoea was defined as the passage of loose or watery
stools at least three times in 24 hbutdidnot containedbloodormucus in the

Fig. 3 | Bacterial taxa showing significant differential abundance during the
diarrhoea recovery phase. Panels a and c illustrate differential abundance between
days 7 and 1, while panels b and d illustrate differential abundance between days 14
and 7 (without and with antibiotic treatment, respectively for each pair). For each
panel, OTUs (points) were defined as significant and plotted if they were detected in
at least two of the four tested methods (ANCOMBC, DESeq2, MaAsLin2, Limma-
Voom; adjusted p-values ≤ 0.05). The x-axis denotes the log2 fold change (Log2FC)
of OTUs between two examined time points, and the y-axis denotes the negative
log10 of the adjusted p-value of each comparison. Log2 fold change was

preferentially derived fromANCOMBC test output (circle shape), and fromDESeq2
(square shape) if ANCOMBC did not generate significant results. The vertical lines
delineate log2 fold change of (−0.5) and 0.5, and the horizontal lines delineates
adjusted p-values at 0.05 and pseudo-value of 0 (broken line; for ANCOMBC test
output). OTUs were coloured by phylum, with their size proportional to the number
of tests supporting their significant results. For readability, species classification is
only labelled to OTUs with significance supported by at least three tested methods.
“unc_” stands for unclassified.
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Fig. 4 |Antibiotic treatment inducing differing effects on abundances of bacterial
taxa during diarrhoeal recovery. The two panels respectively show bacterial taxa
(OTUs) detected as differentially abundant in both conditions (with and without
antibiotic treatment) for comparisons in weeks 1 (D1–D7) and 2 (D7–D14). Log2

fold change (log2FC) was derived from ANCOMBC test output. For each taxon, if
the line (connecting log2FC values of two conditions) intersects 0, it is suggested that
antibiotic treatment likely induced contrasting effect on the taxon during diarrhoeal
recovery.

Fig. 5 | Temporal changes of selected bacterial taxa during diarrhoeal recovery.Multiple line plots illustrate the changes in mean relative abundances of specific taxa,
separated by the condition of antibiotic treatment.
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past three days. The participants were followed up for two weeks, and stool
samples were collected at three-time points: day 1 (at admission), day 7, and
day 14. The trial enroled 300 patients. For this study, we selected data and
samples from 85 patients from the probiotic arm to minimise treatment
variability and to investigate the colonisation efficacy of the probiotic. We
also included five patients from the non-probiotic arm, of which three
received antibiotics, to increase thenumber of antibiotic-treatedpatients but
also control for treatment variability. We preferentially selected patients
who had samples at either two or three-time points, resulting in a total of
218 stool samples for microbiome sequencing.

DNA extraction was performed using the FastDNA SPIN Kit for Soil
(MP Biomedicals, California, USA), following the manufacturer’s protocol.
ExtractedDNAwas transferred to the Genome Institute of Singapore (GIS)
for 16S rRNA sequencing. All DNA samples were amplified using PCR and
the 338F-1061Rprimer set in order to achieve high taxonomic resolutionup
to the species level. This process resulted in >700 bp amplicons, which cover
a region from V3 to V6 of 16S rRNA and could be assembled to retrieve
>92% of the sequences in the Greengenes database51. PCR products were
cleaned with 1X AMPURE beads and randomly fragmented using Covaris
(model LE220) to obtain fragments of ~200 bp. GeneRead DNA Library I
Core Kit (Qiagen, Germany) was used to prepare a library subjected to
sequencing on an Illumina HiSeq2500 platform, producing 75 bp paired-
end reads. Additionally, we included published sequence data from a cross-
sectional study investigating the gutmicrobiota perturbation inVietnamese
children with diarrhoea, which was also generated by the aforementioned
methodology.This dataset consists of 200microbiome samples (55 controls,
145 diarrhoeal cases) collected from children under five years-old12.

Assembly of 16 rRNA sequences and OTU clustering
We pooled sequencing data from the probiotic trial and cross-sectional
studies for analysis. A pre-computed database containing SILVA 16S rRNA
SSU (small subunit) sequences clustered at 97% similarity was used as the
ref. 52 For each sample library, Sickle was used to remove read pairs with
quality <30 and length <6053. The resulting library and themodified SILVA
database were used as inputs for EMIRGE (Expectation Maximisation
Iterative Reconstruction of Genes from the Environment) to reconstruct
full-length 16S rRNA SSUDNA sequences with 40 iterations and a joining
threshold of 97%54,55. For each library, this process produced a set of
assembled and clustered lines, each with its corresponding abundance.
Sequences with sample-wise normalised relative abundances less than
0.001% were removed from further analysis. By scaling the number of
successfully mapped reads to the relative abundance of each sequence
assembled by EMIRGE, pseudo counts of each sequence were obtained.
Assembled sequences were aligned to the SILVA database, generating an
alignment of sequences containing only the amplified region (388F-1061R).
Only gap columns were eliminated, and sequences with more than eight
ambiguous sites were removed. For the remaining sequences, ambiguous
sites were assigned random nucleotides (A, T, G, C). Full sequence DECI-
PHERwas utilised to detect and remove potential chimeric sequences based
on the ‘gold’ database56. Furthermore, the resulting sequences were subject
to self-BLAST to identify and remove sequenceswith terminal repeats (low-
quality assemblies). The remaining non-chimeric sequences from all sam-
ples, as well as their corresponding abundances, were input into vsearch for
clustering at 97% similarity57. OTUs (Operational TaxaUnits) with the sum
of sample-wise relative abundances less than 1% were further removed,
resulting in 1,904 most prevalent OTUs across 416 samples. Ribosomal
DatabaseProject (RDP) classifier v1.36.0wasused to assign the taxonomyof
OTUs representatives up to genus level, with aminimum support threshold
of 80%58.

Microbiota data analytics
The OTU table, taxonomic classification and associated metadata were
combined into a phyloseq object59. Samples without associated metadata
(n = 6) were removed, resulting in 410 samples with 1,886 taxa (Long-
itudinal study: 218 samples; Cross-sectional study: 192 samples). All

downstream analyses were conducted in R Studio (version 4.2.1) with the
base functions and multiple packages such as phyloseq, dplyr, vegan,
ANCOMBC, DeSeq2, ggplot2, and other packages59–62. During preliminary
analysis, we detected the presence of many bacteria belonging to the oral
microbiome in our samples. These OTUs shared high nucleotide similarity
(by BLAST) with the references deposited in the expanded Human Oral
Microbiome Database (eHOMD; www.homd.org). Previous studies also
showed that the microbiome of the small intestine shares more similarities
with the oral cavity, such as the overabundance of Streptococcus,Rothia, and
Actinomyces24. Therefore, we divided the OTU collection based on their
likely niches: (1) colonic (n = 1734) and (2) oral and small intestinal
(n = 152), and the two alignments were conducted using PASTA63. Subse-
quently, phylogenetic reconstructionwasperformed independently for each
alignment using IQ-TREE, with default parameters and 1000 ultrafast
bootstraps64. These two trees were then joined at the basal internal node to
form the resulting phylogeny used for downstream analyses and were used
in the PhILR transformation of raw count data.

Alpha diversity illustrates the richness of the microbiota inside each
sample, whichwould help us track the changes inmicrobial diversity during
a diarrhoea episode65. In this study, three indices (Shannon, Simpson, and
Chao1)wereused to calculate the alphadiversity of themicrobiota, using the
function ‘estimate_richness’ implemented in the package phyloseq. The
measurements were then tested with analysis of variance (ANOVA) and
Tukey post-hoc test (function ‘TukeyHSD’ in ‘stats’ R package) to analyse
the statistical differences among time points and between the two antibiotic
usage groups.

Principal component analysis (PCA)
Sincemicrobiota data generally have a high degree of sparsity, we conducted
preliminary filtering and normalisation prior to visualisation by PCA.
Firstly, singleton OTUs were removed, resulting in 1,292 OTUs retained in
the filtered phyloseq object. We next performed imputation, using
“mbImpute”, to reduce the non-biological zeros and improve the perfor-
mance of differential abundance analyses (ANCOMBCandDESeq2)66. The
“mbImpute” used the OTU table, the sample data, and the pairwise phy-
logenetic distance to decrease the sparsity of the OTU table. Wrench was
then used to normalise the OTU count table. This method generalises zero-
inflated data for differential abundance analysis67, and it has been reported
to outperform other normalisation methods at all sparsity levels to handle
systematic biases68. The normalised OTU count table was transformed by
phILR (“philr” package) using default parameters, which utilised their
phylogenetic relationship62. This transformation created a table of isometric
log-ratio (ILR) “balances”, calculated as the log-ratios of the geometric
means of the relative abundances between two clades of taxa62. The resulting
“balances” were used to calculate an Euclidean distance matrix, which was
used for ordination using principal component analysis (PCA). This
method has been reported to be more suitable for the compositional nature
of microbiome data, and outperform other transformation approaches62,69.

Statistical analyses
Multivariate analysis was used to identify the predictors significantly asso-
ciated with differences in clinical outcomes and microbiota configurations.
For clinical data, the response variable (hospitalisation days) was fit into a
multiple linear regression model with the predictors for each patient:
“hospitalization_days ~ sex+wfa_zscore+ age_month+ Infection_
type+ breastfeeding+ antibiotic_trt”. For microbiota data, permutational
multivariate analysis of variance (PERMANOVA; implemented in the
function ‘adonis2’) was used to test the association of the aforementioned
demographic and clinical covariates, together with sampling day, with the
microbiota composition (using different distance matrices): “dis-
tance_matrix ~ age_month+ sex+wfa_zscore+ day+ breastfeeding”.
PERMANOVA is a non-parametric test that better suits the non-normally
distributed microbiota data. To account for intra-patient changes in alpha
(Shannon, Chao1, Simpson indices) and beta (PhILR-transformed Eucli-
dean distances) diversities, these diversity measurements were
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independently treated as the response variable and fit into a linear mixed
effects model (function ‘lmer’ in package ‘lme4’), with the aforementioned
clinical/demographic and the interaction term ‘day*antibiotic’ serving as
predictors, and patient ID as a random factor: “diversity index or beta-
diversity distance ~ sex+ age_month+wfa_zscore+ Infection_type+
day*antibiotic_trt+ (1|patient_ID)”.

Differential abundances analysis
The absence ofmicrobiome clustering based on sampling daysmotivated us
to conduct more in-depth differential abundance analyses. We focused on
218 samples of the longitudinal study, and split the dataset based on the
usage of antibiotics and consecutive time points, generating four compar-
ison groups (D1–7 with antibiotics, D1–7 without antibiotics, D7–14 with
antibiotics, and D7–14 without antibiotics). D1–7 subset includes
134 samples of 67 patients, in which patients have reported two time points
(D1 and D7). Similarly, the D7–14 subset had 76 samples (38 patients). We
performed differential abundance analyses to determine the significant
changes in OTU abundances in each comparison group. Rare taxa, with
prevalence less than 5%ofpatients per comparison group,were removed for
downstream analyses. The filtered dataset still retained more than 90% of
OTUs of the unfiltered data. Since differential abundance analysis is prone
to generate false positive findings, we conducted these analyses indepen-
dently using four R packages (ANCOMBC, DESeq2, MaAsLin2, and
Limma Voom), with correction for multiple hypothesis testing applied to
each method. For all comparisons, the model design was set to
“~ Patient+ day”, with the reduced model as “~Patient” (DESeq2) or
grouped by “day” (ANCOMBC), to account for variations observed within
individual patients, and taxa with adjusted p-value ≤ 0.05 (and base mean
>30 forDESeq2)were consideredsignificanthits. ForANCOMBC,we input
the unnormalised OTU count data with set parameters: prevalence cut at
0.001, library cut at 1000, and keeping structural zeros. For DESeq2, since
ourdata is highly sparse,weprepared the input by applying the zero-inflated
NB model implemented in the zinbwave packages70. The analysis was
conducted with a likelihood ratio test (LRT), “local” fit type, and minRe-
plicatesForReplace = 7. ForMaAsLin2, the inputwas aWrench-normalised
OTU count table with default settings but without filtering for OTU
abundance, prevalence, and application of other normalisations. For
Limma-Voom, we used the same input OTU count table as for DESeq2,
except for scaling down library sizes for TMMwsp normalisation. For each
comparison, only significant OTUs identified by at least two of the afore-
mentioned approaches were determined as differentially abundant and
retained for downstream interpretation and visualisation. Our results
showed that all significant OTUs (per comparison group) were covered
either by ANCOMBC or DESeq2, so estimated foldchanges and relevant
statistics from these twomethodswere preferentially used for summary and
visualisation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Raw sequence data are available in the National Center for Biotechnology
Information (NCBI) database under the project number PRJNA1055326.

Code availability
Source data and R codes used for analysis and visualisation are deposited in
Github (https://github.com/lhsnam/longitudinal_microbiome_2023).
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