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A primary challenge in understanding collective behavior is characterizing the spatiotemporal
dynamics of the group. We employ topological data analysis to explore the structure of honeybee
aggregations that form during trophallaxis, which is the direct exchange of food among nestmates.
From the positions of individual bees, we build topological summaries called CROCKER matrices to
track themorphology of the group as a function of scale and time. Each column of a CROCKERmatrix
records the number of topological features, such as the number of components or holes, that exist in
the data for a range of analysis scales, at a given point in time. To detect important changes in the
morphology of the group from this information, we first apply dimensionality reduction techniques to
thesematrices and then use classic clustering and change-point detection algorithms on the resulting
scalar data. A test of this methodology on synthetic data from an agent-based model of honeybees
and their trophallaxis behavior shows two distinct phases: a dispersed phase that occurs before food
is introduced, followed by a food-exchange phase during which aggregations form. We then move to
laboratory data, successfully detecting the same two phases across multiple experiments.
Interestingly, our method reveals an additional phase change towards the end of the experiments,
suggesting the possibility of another dispersed phase that follows the food-exchange phase.

The sophisticated social organization among honeybees (Apis mellifera L.)
involves intricate interaction networks that are critical to the function of the
hive. One important example is the exchange of food among colony
members, which is performed through a process called trophallaxis1, a
mutual feeding technique that involves the direct transfer of liquid food
among nestmates. Trophallaxis interactions cause aggregations to form in
the group2, as shown in Fig. 1b. Analysis of these patterns can help us
understand how this collective food-exchange network evolves over time,
which can in turn provide valuable information about the efficiency of
global food distribution among honeybees.

In this paper, we use topological data analysis (TDA) to perform a
rigorous spatiotemporal analysis of the morphology of honeybee groups
during the process of trophallaxis. TDA is a set of mathematical tools for

characterizing the shape of real-world data. One of those tools, known as
persistent homology3, takes a variable-resolution approach to the shape-
analysis problem, treating points as connected if they are within some dis-
tance ϵ of one another and counting the number of topological features—
connected components, two-dimensional holes, three-dimensional voids,
etc.—in the resulting simplicial complex. By repeating that analysis for a
range of values of the connectivity parameter ϵ, thismethodproduces a rich,
multi-scale signature of the spatial structure of a point cloud. This approach
has grown in popularity for a variety of applications over the past decade,
including anumberof biologyproblems4–10, but it hasnot yet beenapplied to
honeybee groups,whosepatterns have largely been studiedusing computer-
vision techniques2,11,12. These require a priori definitions of the specific scales
at which aggregation occurs, however. TDA offers a reliable way to perform
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a detailed spatiotemporal analysis of the aggregations without any such
assumptions.

Here, we use the tools of TDA to study honeybee aggregations in the
context of trophallaxis, with a particular emphasis on discerning how these
aggregations evolve over time. Our approach draws an analogy between
changes in these patterns, termed “phase changes” in the rest of this
document, and the density phase transitions observed in condensed
matter13–15. Notable density-related phases in this application encompass a
sparsephase (wherebees areuniformlydistributed across the arena), adense
phase (where bees form a cohesive cluster), as well as various intermediate
states characterized by combinations of dense and sparse clusters, such as
the presence of multiple smaller clusters or the coexistence of dense and
sparse configurations. In order to track the dynamical evolution of the
topological signatures produced during our analysis of these changing
patterns, we use the CROCKER method (Contour Realization Of Com-
puted k-dimensional hole Evolution in the Rips complex), a matrix-based
representation that captures the morphology of a point cloud as a function
of both scale and time6. Each columnof aCROCKERmatrix corresponds to
a particular time point in the experiment. The elements of that column
vector record the number of topological features that exist in that data
snapshot for a range of analysis scales—e.g., the number of ϵ-connected
components for a range of values of the scale parameter ϵ. We use
dimensionality reduction techniques to convert each of these vectors to a

scalar, then use clustering algorithms to find the phase changes in the
resulting time series.

In the following section, we describe our methods in more detail and
apply them to a synthetic dataset from an agent-basedmodel of trophallaxis
in honeybees. In the “Applications to experimental data” section,weuse this
methodology to study trophallaxis in a laboratory experiment. In both
simulated and real data, thesemethods clearly bring out the different phases
in the behavior.Wediscuss somealternative approaches and implications of
our findings in the “Discussion” section. Throughout this document, we use
the term “aggregation” to describe a group of bees in physical space and the
term “clustering” for the action of algorithms that find groups in the
resulting structure.

Spatiotemporal TDA of honeybee aggregations
To demonstrate our method, we apply it to data that we generate using an
agent-basedmodel of trophallaxis that was first described in ref. 2. To avoid
repetition, we provide a concise summary of the simulation; please see ref. 2
for more details. At the start of each run of this model, a number of bee-
agents with zero values of a food-level variable are placed randomly in a 2D
simulation arena, as depicted in Fig. 2a. As the simulation progresses, these
agents perform random walks, remaining scattered around the arena.
Partway through the simulation run, a number of donor bee-agents—with
positive values of the food-level variable—are introduced into the arena. All

Fig. 1 | Trophallaxis in honeybees. In this experi-
ment, a number of fed donor bees are introduced
into a larger group of food-deprived bees, at which
point they begin exchanging food and forming
aggregations. a Shows the situation at the beginning
of the experiment (t = 0), before the introduction of
the donor bees at t = 430 s. b Shows aggregations
that have formed by t = 545, with an inset focusing
on a donor bee (marked with a dot) and two receiver
bees as they exchange food. The scale bar in panel
b, which corresponds to 5 cm, also applies to panel a.

Fig. 2 | Snapshots from an agent-based model of trophallaxis. a At the start of the
simulation (t = 0), a 36 by 36 cell arena with reflective boundary conditions contains
38 food-deprived agents moving via random walk. b Agents at t = 650, after four
donor bee-agents are introduced at t = 400, when aggregations form as the food

carried by those agents is distributed across the group. cAnother snapshot at t = 900.
Agents are colored by their amount of food (zero food is shown in white and
maximal food capacity is shown in red).
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agents continue moving via randomwalks, stopping to exchange food with
one another if they come within a predefined attraction radius (2.5 simu-
lation patches). The length of the food exchange, during which both agents
remain stationary, is proportional to thedifference between their food levels;
at its end, the food levels are equalized between the two.During this process,
aggregations form in the group, as shown in Fig. 2b, c, while the food is
distributed across the agents. For this series of simulations, we end allmodel
runs at t = 900.

Note that the morphology of the group of agents cannot be simply
classified as “aggregated” or “not-aggregated.” The structure in the three
panels of Fig. 2, shows different degrees of aggregation; moreover, any
classification as to the degree of aggregationwill depend onwhatmeasure of
proximity one uses to define membership in an aggregation. Topological
data analysis is an effective way to quantify the multi-scale nature of this
structure in an effective and formal way. As mentioned previously, persis-
tent homology characterizes the shape of a data set by analyzing it at dif-
ferent resolutions. This involves building a filtration from the point cloud: a
series of simplicial complexes that capture its structure for different valuesof
a resolution parameter, ϵ. For this purpose, we use the Vietoris-Rips16

approach, which constructs a complex by creating balls of radius ϵ around
each data point. A set ofm points is connected by anm-simplex if every pair
of points in the set has intersecting ϵ-balls. From each of the resulting series
of simplicial complexes, one then computes the Betti numbers:
β = {β0, β1, β2,…. }, where β0 is the number of connected components, β1 is
the number of two-dimensional loops, β2 is the number of three-
dimensional voids, and so on. Figure 3 shows an example of filtration: a
series of simplicial complexes constructed from the data in Fig. 2b for six
values of ϵ. The effects of thefiltrationparameter are clearly visible across the
panels of the figure: for ϵ = 0, each agent is its own connected component—
i.e., β0 = 38, the number of agents in the simulation at that point in time—
while for ϵ = 15 all agents are connected together in one connected com-
ponent (β0 = 1). In between those values, the component structure reflects
the patterns in the spacing of the bees as the ϵ value grows to span larger and
larger gaps between the individuals, connecting them in the Vietoris-Rips
complex. Values for the other Betti numbers βk can be similarly calculated
for different ϵ values to produce a multi-scale topological signature of the
point cloud.

To carry out these calculations, one must specify the scales for the
construction: specifically, the range ½ϵmin; ϵmax� and spacing Δϵ of the fil-
trationparameter.A commonapproach to choosing the range is to take ϵmin
at the value where each point is its own component and ϵmax such that the
entire set is connected. For the example in Fig. 3, this approach suggests
½ϵmin; ϵmax� ¼ ½0; 15�. In other runs of the model, however, a higher ϵ was
required to connect all the agents into a single component, sowe standardize
by using ϵmax ¼ 20, which was adequate to produce β0ðϵmaxÞ ¼ 1 for all
time points in all model runs. Choosing the spacing, Δϵ, involves balancing
computational complexity, analysis resolution, and the scales in the data.
What one wants is a Δϵ that yields new information at each step: if it is too
small, the filtrationwill containmultiple elements with identical topology; if
it is too large, those elements may skip over ϵ values where important
topological changes occur. To steer between these extremes, we calculate the

average pairwise distances between bees in neighboring cells across every
time point in every model run, obtaining a value of 1.41, and then take a
somewhat smaller value,Δϵ = 1, to be surenot tomiss important topological
changes. This choice yields n = 21 simplicial complexes at each time point.
Since we are interested in aggregations, we focus on the number of
ϵ-connected components, β0, in eachof these complexes. This computation,
which we performwith theGUDHI Python package17,18, requires 62 μsec for
each of the 21 complexes in the filtration (i.e., 0.0013 sec total for each time
point) on an AppleM1 Pro with 10 CPU cores and 16GB ofmainmemory.

From a data-analysis standpoint, the procedure described above
can be viewed as converting a set of points into a n-vector
[β0(ϵ0), β0(ϵ1),…β0(ϵn)] that characterizes the shape of that point
cloud for n different values [ϵ1, ϵ2,…, ϵn] of the resolution parameter.
To detect phase changes in that structure, we need a way to track the
evolution of that shape with time. Various representations have been
proposed for that purpose, including CROCKER plots6, vineyards19,
multiparameter rank functions20, and CROCKER stacks21. In this
paper, we use CROCKER plots, which are two-dimensional repre-
sentations with time on the horizontal axis and information about
scale and structure on the other. The columns of the matrices that are
rendered by these plots are a series of vectors like the ones mentioned
above, each of which records, for a given point in time ti, the value of
β0 for each of n values of ϵ in the filtration:

~bðtiÞ ¼ ½β0ðti; ϵ0Þ; β0ðti; ϵ1Þ; . . . β0ðti; ϵnÞ�T ð1Þ

The plots themselves visualize this information using color-coded contours
on the~b values. Figure 4a shows an example: a CROCKERplot constructed
from the bee positions in one run of the agent-based model. The dark blue
region across the bottom of the image reflects the large number of ϵ-
connected components that exist in the simplicial complex when ϵ is small;
the contour that divides the yellow region from the light green region
identifies the ϵ value at which the complex at the associated time point
includes all of thepoints in the simulation.Theplot reveals a clear shift in the
topology soon after the introduction of the donor bees, where the contours
change drastically around t = 400 s. Lower-valued contours (separating
lighter sections) separate and raise slightly, and higher-valued contours fall
and bunch together more closely. Overall, these changes mean that
reduction from a large number of clusters to a moderate number, say from
42 to around 10, occurs at smaller scales than before. Conversely, reduction
frommoderate numbers of clusters to a single cluster occurs at larger scales
thanbefore. The latter case is consistentwith bees forming small groups that
are spaced throughout the domain.

This shift in the patterns confirms previous results cited in the section
“Introduction” about the ability of CROCKER plots tomake phase changes
inbiological aggregations visually apparent.Ourpresent goal is togobeyond
visual observations and develop formal methods for detecting those phase
changes automatically.We evaluate two different types of algorithms for the
associated calculations:
• A standard change-point detection algorithm: recursive binary

segmentation of the time series, based on a likelihood ratio test.

Fig. 3 | Vietoris-Rips complex. A series of Vietoris-Rips complexes constructed from the positions of the bees in Fig. 2b for six values of the filtration parameter ϵ.
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• Two unsupervised clustering algorithms—k-means and
agglomerative22,23—which are representative of this class of methods.

The basic idea is to apply these algorithms to the columnvectors~bðtÞ in
theCROCKERmatrix. If the vectors before and after the introduction of the
donor bees do indeed capture some distinct morphology, the algorithms
should separate them into two separate regimes, effectively resulting in a
phase change detection. The column vectors require some pre-processing
before these algorithms can be applied, however. Their high dimensionality,
coupled with the comparatively short number of time points in each phase,
can make it difficult to run clustering algorithms, and the change-point
detection algorithm requires a scalar input. To work around this, we apply
dimensionality reduction techniques to the columnvectors and then run the
phase change detection algorithms on the resulting low-dimensional time
series. A simpleway to do this is to take the ℓ2 norms of each~bðtÞ. The results
of this procedure, applied to the CROCKER matrix plotted in Fig. 4a, are
shown in Fig. 4b. There is a clear shift in the normedvalues at the time of the
change in structure of the CROCKER plot after the introduction of the
donor bees.

To isolate this shift, we apply the three different algorithms to this
scalar time series, with the goal of identifying the time tshift at which the
structure changes. In the k-means algorithm, the user must specify how
many clusters (k) to search for. Since we are looking for two distinct phases
in the ~b vectors, we choose k = 2. The algorithm begins by randomly
mapping each vector in the dataset to one of the k clusters, and then
computes the centroids of those clusters. The distance from these centroids
to each vector is computed and the vectors are re-assigned to the clusterwith

the closest centroid. This process is repeated until the algorithm converges:
i.e., when no vectors change cluster membership. Agglomerative clustering
is a bottom-up, hierarchical clusteringmethod: each vector starts as its own
cluster, and then vectors are successively grouped based on some linkage
criterion—e.g.,Ward’smethod24, in which clusters aremerged in a way that
minimizes the overall variancewithin eachcluster. (Note that in this analysis
we are not working with the full~b vectors, but rather with their norms k~bk,
so all of the calculations described above actually involve scalar values, not
multi-element vectors.) We use the R implementation (“changepoint”)
of the recursive binary segmentation/likelihood ratio test algorithm25, the
scikit-learn implementations of both clustering algorithms26, and the
ℓ
2 norm for all distance computations.

For this model run, all three algorithms yield very similar results,
flagging the phase change soon after the introduction of the donor
bees at t = 400: agglomerative at tshift = 427 and both changepoint
and k-means at tshift = 415 (shown superimposed on the norm trace
in Fig. 4b). This similarity persists across different model runs: for 50
repetitions of the numerical experiment, the means of the detected
tshift values of the three algorithms were similar: 422.8, 429.0, and
422.2 for k-means, agglomerative, and changepoint, respectively,
with standard deviations of 12.9, 27.2, and 12.9. These lags are bio-
logically sensible: since it takes some time for the bees in the arena to
first sense the presence of the donors and then cover the distance to
them, there will always be a lag between the introduction of the
donors and the formation of aggregations. Note that it is difficult to
make any assertions about ground truth here—aside from the
obvious point that trophallaxis-induced aggregation should not occur

Fig. 4 | TDA analysis of the agent-basedmodel. aA
CROCKER plot of the positions of the bees in an
agent-based model run. The colors indicate the
number of connected components (β0) in the sim-
plicial complex constructed with the ϵ value on the
y-axis. The black box highlights a vertical slice of the
CROCKER plot,~b ¼ ½β0ðϵiÞ�, at the corresponding
time point. bA time series of the ℓ2 norms of each of
these~b vectors, with superimposed lines for the
results of the change-point detection algorithm,
(dash-dotted blue line, at t = 415), and the two
clustering algorithms: k-means (dotted pink line, at
t = 415) and agglomerative (dashed orange line, at
t = 427). The solid vertical black line at t = 400
indicates when the fed agents are introduced into
the model.

https://doi.org/10.1038/s44260-024-00003-1 Article

npj Complexity |             (2024) 1:3 4



before the introduction of the donor bees—without performing more
detailed modeling of that sense/move process.

Notably, both k-means and agglomerative algorithms yield clusters
that are well delineated in time: that is, nearly all norm values k~bðtÞk that
occur before the phase change tshift are assigned to thefirst cluster andnearly
all k~bðtÞk that occur after tshift are assigned to the second cluster. The deli-
neation isnot perfect; rather, there is generally a short spanof timewhere the
classification of the k~bðtÞk values alternate between the two clusters. To
formalize this, we define an overlap region [tleft, tright], where tleft is the first
data point that is classified as amember of the second cluster, and tright is the
last data point that is classified as a member of the first cluster. As an
example, consider the series of norm values labeled as follows:
0000000000101100010111111111. Here, the boundaries of the overlap
region fall at 0000000000 ∣ 101100010 ∣ 111111111 and its width is nine.
When an overlap occurs, we take the cluster delineation to fall at the first
time step at which no more “mislabeled” vectors occur (i.e., tshift = tright).
Across the different model runs, the maximum width of the overlap region
wasfive time steps, with an average of 1.75. In viewof the fact that time is not
included explicitly in the calculations—recall that only the norm values are
passed as inputs to the clustering algorithms—adelineationof this crisp is an
encouraging result, as it suggests that the topological signature truly captures
the salient features of the structure. In the “Applications to experimental
data” section, we offer another approach that annotates each normed value
with the associated time stamp—i.e., running the clustering algorithms on a
set of vectors ½k~bðtiÞk; ti� rather than the scalars k~bðtiÞk—which proves to be
usefulwhen the data arenot so clean. In the “Discussion” section,we explore
the alternative of principal component analysis for dimensionality
reduction.

Applications to experimental data
Quantifying the morphology of synthetic data is a useful first test, but the
ultimate goal of ourwork is tounderstand trophallaxis in real honeybees. To
that end, we apply ourmethod to data collected via video from a series of six
experiments in a semi-2D arena, shown in Fig. 1a, that measures
36 cm× 36 cm× 2 cm. At the start of each experiment, the arena contains a
group of honeybees that had been deprived of food for 24 h. After recording
their behavior for several minutes, we introduced multiple donor bees that
had retained free access to fooduntil that point.We then continue recording
the groupmotion for about 30min, as the bees interact and exchange food.
Video frames from these experiments are greyscale images of 1400 pixels on
a side at a resolution of 60 pixels per centimeter. These data are recorded at
30 frames per second, a rate that far exceeds the temporal resolution
necessary to completely capture the motion of the bees, so we downsample
to a rate of one frame per second for the following analysis. Since the pixel
size in these images dictates the lower bound on the spatial resolution of the
morphological analysis, as well as the quantization of the range of that
analysis, we use pixels as the fundamental distance unit in the analysis that

follows, rather than mks units or body-length scales of the animals. The
implications of this are discussed further in the “Discussion” section.

Beforewe canuseTDAtoanalyze thesedata,wemustfirst build apoint
cloud from each frame of these videos. Despite recent improvements27,28,
this is difficult because the bees touch and even occlude one another; see
Fig. 5a. This makes it hard for an algorithm to detect the exact positions of
individuals in images like these. One can address this by affixing barcodes to
each bee, as in ref. 29, or by hand-labeling each image, but those approaches
are onerous and expensive, especially when one has 30+min of 30 fps
video. Instead, we use image-segmentation techniques to approximate the
positions of the individual bees. To each image, we first apply a Gaussian
blur filter with a 7 × 7 pixel kernel to reduce background noise30, then
employ local minimum/Otsu thresholding31 to distinguish the darker pixels
(i.e., bees) from the lighter background. Since the resulting images are still
speckled with random false-positive pixels, we use erosion and closure32 to
remove them. This produces an image like the one shown in Fig. 5b, with
pixels corresponding to bees shown in white and background in black. The
next step is toaggregate the contiguouswhitepixels in the image intogroups,
with adjacency defined as a shared edge or a corner.We then determine the
number of bees in each of these groups by dividing its area (in pixels), by the
average area in pixels of a single bee, which we obtain from a separate series
of experiments, conductedwith the identical experimental setup; see Fig. 6a,
b. Finally, we create the point cloud by distributing that number of points
randomly inside the boundaries of the group, as shown in Fig. 5c.

The analysis of these point clouds proceeds as described in the previous
section, beginning with the construction of a series of Vietoris-Rips com-
plexes from the point cloud at each time ti. An ϵ value equal to 700 pixels in
the experimental video frames—i.e., ≈ 12.7 cmor eight bee body lengths—is
adequate to connect all points in the cloud into a single connected com-
ponent, so we use ½ϵmin; ϵmax� ¼ ½1; 700� with Δϵ = 1, all in the units of
pixels. As in the analysis of the “Spatiotemporal TDA of honeybee aggre-
gations” section, the number of connected componentsβ0 for eachof these ϵ
values become the elements of the column vector for that time point in the
CROCKERmatrix. An example CROCKER plot for the first 900 s of one of
the experimental trials is shown in Fig. 7a. As before, this plot gives clear
visual evidence of the phase change in the structure that follows the intro-
duction of the donor bees.

To identify this shift using our methodology, we begin, as before, by
reducing each column vector~bðtÞ of the CROCKERmatrix down to a scalar
value using the ℓ

2 norm, then apply the changepoint, k-means, and
agglomerative methods to the resulting k~bðtÞk time series. Since the goal,
again, is to identify a single phase change, we set the algorithms up to search
for one change-point or two clusters. The change-point algorithm flagged
tshift = 475 in this experiment: i.e., 45 s after the introduction of the donor
bees at t = 430. The two clustering algorithms did not produce clean results,
however. Unlike in the simulation experiments, they did not find clearly
delineated clusters. Rather, the overlap region, where successive points are

Fig. 5 | Building a point cloud of bee positions. aVideo frame with an inset showing detailed structure. b Segmented image containing all pixels occupied by bees. c Point
cloud. The scale bar in panel a, which corresponds to 5cm, also applies to panel b, c.
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classified in different phases, spanned more than 90% of the data set: an
average width of 845.0 and 830.2 s, respectively, for k-means and agglom-
erative clustering.

The inability of these algorithms to clearly distinguish the morpholo-
gical phases in these data—which are quite visible to the eye, both in the
videos and in the CROCKER plots—is not surprising, as those plots are far

noisier than the ones constructed from the simulation data. In the real
world, we often find stray bees (sometimes dead bees) who do not partici-
pate in the clustering. As a result, the contrast between the clustering and
non-clustering phases in the CROCKER plot is not very drastic, as is clear
from the contours in the two phases. In the simulation data, we do not see
this effect; rather, the bee-agentsmove quickly to form clusters and thus the

Fig. 7 | TDA analysis of the experimental data. aA
CROCKER plot from a laboratory food-exchange
experiment like the one pictured in Fig. 1. Com-
puting each column in this plot requires 0.07 s on a
Mac 1.7 GHz Quad-Core Intel Core i7 and 16 GB of
memory—significantly longer than in Fig. 4 because
of the much larger number of ϵ values in the filtra-
tion. b The corresponding k~bðtiÞk time series, with
superimposed lines for the results of the change-
point detection algorithm (dash-dotted blue line, at
t = 475), and the two clustering algorithms: k-means
(dotted pink line, at t = 465) and agglomerative
(dashed orange line, at t = 447) applied to the time-
annotated normvalues ½k~bðtiÞk; ti�. The solid vertical
black line at t = 430 indicates when the fed bees are
introduced.

Fig. 6 | Body size of the honeybees in the experiments. a Example frame. b Distribution of bee sizes in 100 frames.
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phase change is clear and drastic. To use these clustering algorithms to
identify the phase changes in the face of these difficulties, we have to employ
a different strategy. Recall that working only on the norms effectively dis-
cards the temporal information about each of the values passed to the
clustering algorithms. (This is not at issue for the R changepoint algo-
rithm, which treats its input as a time series.) To regain the fact that the data
is a time series, we can annotate eachnormvaluewith the time step towhich
it corresponds, yielding tuples of the form ½k~bðtiÞk; ti� where ti is the time
stamp and k~bðtiÞk is the ℓ2 norm of the vector of β0 values of the associated
filtration. This greatly improves the results, reducing themeanwidths of the
overlap region to 1.667 and 12.167 for k-means and agglomerative clus-
tering, respectively. As shown in Fig. 7b, the agglomerative algorithm,
working with the time-augmented data, flagged the phase change 17-time
steps after the introduction of the donor bees at t = 430 (i.e., tshift = 447)
while the k-means algorithm signaled that change at t = 465.

An analysis of the tshift results across multiple trials is somewhat more
complicated here than in the model runs of “Spatiotemporal TDA of
honeybee aggregations” section because the introduction time of the donor
bees is different for each laboratory experiment. To account for this varia-
tion, we calculate the number of time steps tlag between the introduction of
the donor bees (tdonor) and the change detected by the clustering algorithms
(tshift) for each experiment and then compute the summary statistics on
tlag = tshift− tdonor. Across six runs of the experiment, the means and stan-
dard deviations of tlag were [58.33, 115.0] and [87.2, 72.0], respectively, for
the k-means and agglomerative clustering algorithms. A primary cause of
the large standard deviation in both cases was a single experimental trial
(C0133) in which the bees formed a short-lived aggregation before the
introduction of the donor bees. The implications of this are discussed at
more length in the “Discussion” section. Across all six experimental runs,
the mean and standard deviation of the tlag values produced by the change-
point detection algorithm were 71.3 and 15.5. Across all three algorithms
and all six experiments, the tlag values were later for the experimental
data than themodel runs, suggesting that thedelaybetween the introduction
of the donor bees and the formation of aggregations is longer in the
experiment than in the simulation. We discuss possible reasons for these
observations in the following section.

Discussion
In both simulated and laboratory data, the rich morphological signature
produced by persistent homology analysis provided leverage to change-
point detection and clustering algorithms for identifying phase changes in
the behavior of honeybee aggregations. Bees are a significant application of

this TDA-based approach, given the vital role that aggregations play in their
biology and behavior. The temporal evolution of the topological signature,
as captured in CROCKER matrices, is potentially relevant to the study of
other aggregation-related behaviors in bees, including social-network ana-
lysis in the context of disease33, waggle dance communication34,35, and the
aggregation around the queen through chemical communication11. The
utility of this methodology encompasses other social insects, such as ants
and their trophallaxis behavior36.Given its generality, the applicability of our
TDA-based methodology extends beyond biological aggregations: it could
be used to identify phase changes in any other dynamically evolving
point cloud.

The results of all combinations of the different algorithms and
dimensionality reduction techniques described in the previous sections are
depicted graphically in Fig. 8. Please see Supplementary Table 1 for the tlag
values for the individual experiments.Acomparisonof the leftmost twobars
and the next two bars (corresponding to the clustering methods with and
without time, respectively) brings out the previously noted inability of the
two clustering algorithms to identify the phase change in the absence of any
information about time. This is not surprising because of the noise in the
data, whichmakes the change in the contours of the CROCKER plot far less
abrupt. Explicitly re-introducing time as part of the input to these algo-
rithms made a clear difference in the results. Notably, all of these experi-
mental tlag values are larger than in the simulations. That is, the bees
appeared to form aggregationsmuchmore quickly in themodel than in the
laboratory: 22.8 ± 12.9, 29.0 ± 27.2, and 22.2 ± 12.9 for k-means, agglom-
erative, and changepoint, respectively—compared to 58.3 ± 87.2,
115.0 ± 72.0, and 71.3 ± 15.5 for the experimental data (augmented with
time, in the case of the two clustering algorithms). There are two likely
reasons for this. First, the model time scales are not identical to those of the
experiments.A calculationof the average speed in the two settings suggests a
factor of five difference in those time scales, with the model being faster—
which is consistent with the lower tlag values. Second, the model rules are
only an approximation of what the bees really do. Importantly, those rules
do not include scenting behaviors, which bees use to communicate infor-
mation about, for example, the presence of food. This, too, could affect the
time scales of the aggregation behavior.

It is perhaps surprising that reducing the dimension of the multi-scale
topological signature down to a scalar time series using amethod like anorm
—which distills each n-element CROCKER vector down into a single
number—leaves enough information for algorithms to detect the phase
change, but others have observed similar effects37. There are other dimen-
sionality reduction techniques, of course: notably principal component

Fig. 8 | Survey of results of all phase change detection approaches. The values of
means (black dots) and standard deviations (black whiskers) for tlag, aremeasured in
seconds after the introduction of the donor bees, across all six experimental data sets.

Note that the changepoint algorithm inherently considers the input as a time
series, whereas the clustering algorithms do not.
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analysis or PCA. To explore this alternative, we repeated the clustering
analysis by projecting each~bðtiÞ onto the first principal component of the
overall CROCKER matrix in Fig. 7a, annotated with the associated time
stamp: i.e., using the k-means and agglomerative algorithms to seek two
clusters in a series of two-vectors of the form ½c~bðtiÞ; ti�, where c~bðtiÞ is the
projection of~bðtiÞ onto the first principal component of the entire matrix.
The results, respectively, were tlag = 56.2 ± 89.5 and tlag = 44.7 ± 140.0. In
both cases, the standard deviation was skewed by the experimental trial
mentioned above (C0133) in which the bees formed a small, short-lived
cluster before the introduction of the donor bees; the agglomerative casewas
additionally skewed by an early tshift detection in a second data set (C0128),
where a similar but smaller and shorter-lived aggregation formed before
tdonor. Repeating the analysis on the c~bðtiÞ values with the changepoint
method, we obtained tlag = 10.5 ± 120.1 across the six experimental trials.
Here, too, the C0133 data set was the source of the large σ. A lateral com-
parison of the norm- and PCA-based results across all three algorithms and
all six experiments suggests that the formerproduces earliermean tlag values,
but with much larger variability across experiments. (In the C0133 trial, for
instance,changepointflagged a negative tlag whenworkingwith thefirst
principal component and a positive one when given the norm trace.) From
both practical and theoretical standpoints, we prefer the norm-based
method because it is both simpler and also more temporally precise.
Comparing our PCA- vs. norm-based results using the simulated data
further supports this conclusion; see Supplementary Table 2 for a descrip-
tion of these results. The principal components computed by PCA incor-
porate information from the entire CROCKER matrix—explaining the
variance of the~bðtÞ vectors for every time point in the experiment—whereas
k~bðtiÞk is specific to a given time point.

Assessing these results, again, ismadedifficult by the fact thatwedonot
have ground truth for the phase change. Trophallaxis-induced aggregations
should certainly not form before the introduction of the donor bees, but
aggregations can form for other reasons in groups of bees: because of gen-
eralized attractionbetween individuals, chemical information exchange38, or
even just spatial inhomogeneities that emerge naturally during random
walks39. Close examination of the experimental videos shows small, tran-
sient aggregations forming and dispersing before tdonor in all six trials. In the
two that caused the different algorithms to flag a negative tlag (C0133 and, to
a lesser extent, C0128) these aggregations were simply somewhat larger and
longer-lived. The aggregations that formed after the introduction of the
donor bees were far larger and longer-lived, as is clear from the contours in
theCROCKERplots and themeans inFig. 8. Inotherwords, theTDA-based
techniques effectively bring out both the large-scale phase changes and some
of the nuances of the behavior.

To study the salience of the different elements of the topological sig-
nature for the purposes of clustering the data into these distinct behavioral
phases, we use a Chi-square statistical test. To each data point, we assign the
label produced by the two clustering algorithms. Then we treat the full~b
vector for each time step as a feature vector and determine which of its
elements—i.e., the β0 values for individual ϵ values—is the most highly
correlated with those labels. This calculation allows us to reverse-engineer
the “most influential” values of the ϵ parameter for each trial. Across all six
experiments, the mean of these values was 117.3 ± 27.9 pixels (1.3 ± 0.3 in
units of bee body lengths). While it would be inappropriate to impute
physical meaning to this result (e.g., mechanisms of honeybee behavior), it
does provide a major potential advantage, since it means that one need not
build the full filtrations, but rather just a few in that range.

A related matter here is the notion of approximating bees as points.
Since this approach effectively neglects their actual spatial extent, it intro-
duces a systematic downward bias in the number of ϵ-connected compo-
nents for a given ϵ value, since the bee perimeters, which are what really
define whether the animals are close, will generally be closer than their
centers. A proper study of the effects of this would be a real challenge,
requiring the development of novel computer-vision methods (to extract
the actual perimeters) and novel TDA techniques that move beyond the
fundamental assumption of point-cloud data, perhaps using oriented

ellipsoids to define connectivity. However, the results in the previous
paragraph—that the “most influential” ϵ value is larger than the length of a
bee—suggest that approximating bees as points is not a major issue in our
approach.

The analysis scales in the construction of the topological signature are
an interestingmatter here. Fundamentally, TDA is not about the points, but
rather about the spaces between them. In experimental data, the natural
metric for those spaces—and thus the appropriate unit for the TDA cal-
culations—is dictated by the measurement apparatus: in our laboratory
experiments, the pixel resolution of the video camera. Thesemay, of course,
differ in other experimental setups, but there are some standard procedures
for setting up the filtration that make this kind of analysis systematic. As
mentioned in the “Spatiotemporal TDA of honeybee aggregations” section,
it is common to set the lower bound ϵmin of the range of the scale parameter
so that every point is a single component (though obviously not below the
resolution of the data). Resolution limits can, of course, create spurious
topological effects: if the pixels recorded by the camera are 5mm on a side,
for instance, two points that are separated by 1mm will be treated as
touching even though they are not. (This is not a shortcoming of TDA, of
course, but rather a general issue with data resolution.) The value of ϵmax is
also generally dictated by the data. Since increasing ϵ beyond the value that
connects all of the points into a single ϵ-connected component will not add
to the information in the topological signature, it makes sense to take ϵmax
such that the entire set is connected, as we do in both our real and synthetic
data sets. Between those limits, the number of steps in the filtration dictates
the resolution of the topological signature: i.e., how precisely one knows
what ϵ value connects the points into a particular number of ϵ-connected
components. Since the computational cost of TDA rises with the number of
complexes in the filtration, this choice can involve balancing a tradeoff
between computational complexity and analysis resolution. This cost is
modest in our data sets, which contain tens of points, so we choose the
smallest spacing Δϵ of the filtration parameter that is available in the
experimental data: one pixel, which is roughly 1/55th of the average body
lengthof the bees in these images.Different data sets,withdifferentnumbers
of points and/or different spatial resolutions, may require different choices
for Δϵ and for ½ϵmin; ϵmax�. While that will rescale the vertical axis of the
associated CROCKER plot, it will not obscure the information that it con-
tains, nor will it affect the performance of our proposed methods.

If foodexchangesplay a role in the formationof aggregations in a group
of honeybees, it is reasonable to explore what happens in longer experi-
ments, when the food has diffused across the group and exchanges are
presumably less frequent. Figure 9a shows a CROCKER plot for such an
experiment, while Fig. 9b shows the associated norms and clustering results.
Interestingly, this experiment reveals an additional change in the mor-
phology towards the end of the experiments—though the three different
algorithms flagged that change at quite different times. (Note that the tlag
locations for thefirst phase change detected by the two clustering algorithms
are different than in Fig. 7b because the data set in this experiment contains
many more CROCKER vectors, which shifts the geometry of the clusters.)
We hypothesize that this third dispersed phase, whose morphology
resembles the first one, occurs when the food is distributed evenly across the
group and trophallaxis events play less of a role in the behavior of the bees,
causing them to gradually break the aggregations and return to a dispersed,
random motion pattern, similar to the first phase. However, additional
experiments are required to confirm these observations and hypotheses.

Lastly, our approach has the potential to bring a deeper understanding
of collective animal behavior cell aggregations, to insect swarms, bird flocks,
and fish schools. Our methodology could be easily extended beyond
aggregations as well: e.g., by constructing CROCKER plots from β1, which
counts the number of holes in a point cloud, we could study milling
behaviors in honeybee swarms and sheep herds. It can also be applied to
higher-dimensional data, such as three-dimensional schools of fish and
flocks of birds. Additionally, there is room for enhancement in the meth-
odology itself, such as refining the computer-vision code used to detect the
positions of the bees, exploring alternative clustering and change-point
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detection algorithms, and incorporating other dimensionality reduction
techniques. Another important potential affordance of this methodology is
model validation via a comparison of topological signatures of simulation
and experiment9.

In this paper, we have proposed a TDA-based method for detecting
phase changes in biological aggregations and demonstrated it on data from
honeybees, first in the context of an agent-basedmodel and then using data
from laboratory experiments. Persistent homology has been used exten-
sively in the past decade for analyzing the structure of many different kinds
of data, ranging from point clouds to images, but identifying phase changes
in point-cloud structure has received less attention. CROCKER plots are an
effective visual representation of how topological signatures change over
time. To leverage that information for the purposes of identifying phase
changes, we compress the information in the CROCKER plot into a scalar
time series. We used two different dimensionality reduction strategies for
this: (i) taking the ℓ2 norm of the CROCKER vectors~bðtÞ at each time point,
and (ii) performing PCA on the whole CROCKER matrix and then pro-
jecting each~bðtÞ onto the first principal component. We tested three algo-
rithms on the resulting data: a traditional change-point detection algorithm
and two standard clustering algorithms.Wedemonstrated these approaches
on simulated and experimental data sets of honeybee movement, with the
goal of detecting the phase change that follows the introduction of donors
into a group of deprived bees, as the individuals exchange food and
aggregations form.

Our approach differs from existing work in detecting phase changes in
evolving point clouds, and the alignment of the results from these
approaches indicates their success. All of the different strategies for phase
change detection and dimensionality reduction produce roughly similar
results, detecting the first phase changewithin 50–100 s from the timewhen
the donor bees are introduced. Bees are bynomeans the only application for
these strategies; ourmethod can be used to track phase changes in any point
cloud, regardless of its provenance, and aid in the understandingof scientific
processes that are involved in the dynamics of those data, as well as in
validating models of those processes. Overall, we hope that this metho-
dology will help advance our understanding of biological aggregations and
their intricate dynamics.

Methods
Methods necessary for the replication of the results are comprehensively
described in the “Spatiotemporal TDA of honeybee aggregations” section
and the “Applications to experimental data” section.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The raw image files for dataset C0128 analyzed during the current study are
available in the GitHub repository, https://github.com/peleg-lab/tda_bees_
datasets. The raw image files for the remaining datasets analyzed during the
current study are available from the corresponding author upon reasonable
request. Sped-up versions of the video files for the six experimental datasets,
and the video and the text files of the trophallaxis simulation run used in the
paper, are available at https://github.com/peleg-lab/tda_bees under the
datastes/ subdirectory.

Code availability
The code for this study is available at https://github.com/peleg-lab/tda_bees.
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