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Cell-type-specific regulatory elements, cataloged through extensive experiments and bioinformatics in large-scale consortiums,
have enabled enrichment analyses of genetic associations that primarily utilize positional information of the regulatory elements.
These analyses have identified cell types and pathways genetically associated with human complex traits. However, our
understanding of detailed allelic effects on these elements’ activities and on-off states remains incomplete, hampering the
interpretation of human genetic study results. This review introduces machine learning methods to learn sequence-dependent
transcriptional regulation mechanisms from DNA sequences for predicting such allelic effects (not associations). We provide a
concise history of machine-learning-based approaches, the requirements, and the key computational processes, focusing on
primers in machine learning. Convolution and self-attention, pivotal in modern deep-learning models, are explained through
geometrical interpretations using dot products. This facilitates understanding of the concept and why these have been used for
machine learning for DNA sequences. These will inspire further research in this genetics and genomics field.
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INTRODUCTION
Large-scale consortiums have identified cell-type-specific regulatory
elements through omics technologies. For example, in 2012, The
Encyclopedia of DNA Elements (ENCODE) phase 2 conducted large-
scale genomic assays for 147 different cell types and reported that
16.4% of the human genome is open chromatin regions (OCRs), and
4.2% of the human genome is likely to be enhancers that modulate
transcription in a cell-type specific manner [1]. Seven years later,
ENCODE phase 3 expanded the resources into >500 cell types and
tissues and reported that 30.5% of the mappable human genome is
open chromatin regions, and in total, 6.9% is candidate cis-
regulatory elements (cCREs) with enhancer-like signatures [2].
Expanding publicly available resources and bioinformatics methods
has contributed to numerous biological findings. In the research
field of genome-wide association study (GWAS), these public
genomic annotations have been widely used for the enrichment
analysis of GWAS-identified variants and SNP heritability for human
complex traits, providing a biological interpretation of their genetic
architecture, such as the involvement of brain cell types in the
genetic architecture of obesity (BMI) [3, 4]. Besides, genetic
associations are highly enriched across various complex traits in
the trait-specific non-coding regulatory regions, especially for active
enhancer regions [3, 5, 6]. These publicly available resources
combined with statistical enrichment analysis methods dissolve
the genetic architecture of complex traits from GWAS results;
however, detailed mechanisms behind genetic associations remain
widely unclear due to our incomplete knowledge about allelic
effects on transcriptional regulation.

To know genetic effects on transcriptional activities, there are
three popular approaches: (i) molecular quantitative trait locus
(QTL) study such as expression QTL (eQTL) [7–10], chromatin
accessibility QTL (caQTL) [11–17], and histone mark QTL [18–20],
(ii) experimental mutagenesis using reporter assay, including
massively promoter reporter assay (MPRA) [21–24], and (iii) in
silico mutagenesis using machine learning models trained on DNA
sequences [25–29]. The concept, benefits, and limitations can be
found in previous reviews such as [30, 31]. In this review, we first
introduce in silico mutagenesis and then focus on providing its
technical background for primers willing to understand transcrip-
tional regulation using machine learning techniques.

Overview of in silico mutagenesis
In silico mutagenesis is an approach to predict mutation effects
from machine learning models trained to predict specific tasks by
nucleic acid sequences (DNA or RNA). Tasks to predict from the
input nucleic acid sequences are, for example, chromatin profiling,
such as chromatin accessible regions and transcription factor (TF)
binding sites [29, 32–34] and expression levels [25–28, 35], splicing
[36], alternative polyadenylation [37], pathogenicity [38], and so on.
The following four-step procedures are generally required for
performing in silico mutagenesis. First, we design a machine
learning model (or architecture) or choose it from the previous
models (examples are shown later). Second, we prepare training,
validation, and testing datasets. The training dataset is used for
determining or updating weights by using pre-defined criteria. The
validation dataset is used for selecting methods, hyperparameter
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tuning, and early stopping of the training procedure to avoid
overfitting. The testing dataset is used to evaluate the final accuracy
of the best model. Regarding input DNA sequences in training,
reference genomes (such as hg19/GRCh37 and hg38/GRCh38) have
been widely used instead of personal genomes. This strategy works
well and is beneficial because whole genotype information for
many omics datasets is often unavailable. Third, we train the
machine learning models on the training dataset monitoring
performance with the validation dataset, and evaluate the final
performance in the testing dataset. The higher performance will
ensure the validity of the following analyses. Fourth, we change the
part of input DNA sequences into alternative alleles and calculate
the changes in predicted values using the pre-trained model in step
3 (in silico mutagenesis). The alternative alleles are arbitrary; we can
predict the mutation effects of alleles that have not been reported
so far (or even do not exist in humans). To verify the performance of
in silico mutagenesis, measuring the accuracy of in silico
mutagenesis by comparing the in silico mutation effects with eQTL
or MPRA results is essential. This evaluation will provide the
threshold for a high-confidence list of mutation effects [27]. In the
following sections, this review focuses on the first step, designing
machine learning for genomics data.

A brief history of machine learning models to predict
regulatory elements from DNA sequences
The conventional machine learning approach uses k-mer, where
we take k-continuous bases (if k= 5, for example, ACGCT) and
count their frequency within input DNA sequences with a pre-
defined length. The k-mer profile can be input features for many
machine learning models. For example, in 2011, the kmer-SVM
method took k= 3–10 within hundreds of DNA sequencing and
used them as input features in support vector machine (SVM)
where the predictability was mainly verified using EP300 binding
sites from mice chromatin immunoprecipitation (ChIP)-seq experi-
ments [39]. In their SVM framework, it was reported that, for input
features, k-mer was better than the position weight matrix
(traditional scoring matrix for TF motif) for known motifs
[39, 40]. In 2014, gapped k-mer SVM (gkm-SVM) trained using
~316 bp input DNA sequences on human ENCODE ChIP-seq
datasets was proposed [34], and in 2015, the high concordance of
in silico mutation effects from gkm-SVM (deltaSVM) with the effect
sizes from DNase I–sensitivity QTL, eQTL, and reporter assays
including MPRA were shown [33].
Around 2015, convolutional neural networks (CNN) for geno-

mics data showed higher predictive accuracy than the gkm-SVM
[29, 32, 41]. For example, DeepSEA (deep learning-based sequence
analyzer), a deep CNN model, predicts the on-off of regulatory
elements within the center 200 bp in a 1 kb DNA sequence [32].
DeepSEA models trained on ENCODE and Roadmap ChIP-seq and
DNase-seq datasets performed better than the gkm-SVM, even if
customized gkm-SVM using the same length of input DNA
sequences (1 kb) was used (Median area under the receiver
operating characteristics curve (AUROC) of DeepSEA in their
evaluation dataset was 0.958 while that of gkm-SVM was 0.896)
[32]. This improvement indicates that the CNN-based approach is
more suitable for incorporating long DNA sequences, enabling it
to demonstrate higher accuracy than the gkm-SVM approach.
After the success of DeepSEA, several CNN-based methods for
predicting cell-type specific regulatory elements were also
proposed. Basset is a CNN model that predicts peak on-off in
the input 1,200 bp DNA sequences (centering on the midpoint of
the peak) by training on DNase-seq peak Browser Extensible Data
(BED) format files for 125 cell types from the ENCODE and 39 cell
types from the Roadmap [29]. The mean AUROC of Basset in their
evaluation dataset was 0.895, while that of gkm-SVM was 0.780
[29]. DeFine (Deep learning based Functional impact of non-
coding variants evaluator) is a CNN model that predicts TF-DNA
binding sites from 300 bp DNA sequences (centering ChIP-seq

peaks) by training on TF ChIP-seq data of K562 and GM12878 cell
lines [41]. DeFine authors reported the performance to classify
regulatory non-coding variants from neutral variants in, for
example, the HGMD (Human Gene Mutation Database) and the
AUROC for Define-combine (combining scores using regression
and classification versions) was 0.847, while that of DeepSEA was
0.822 and that of CADD was 0.727 [41]. From DeepSEA developers,
advanced DeepSEA-derived architectures were proposed, such as
DeepSEA beluga (increasing total window to 2 kb) [25] and deeper
DeepSEA (doubling the number of convolutional layers) [42]. The
improvement of deeper DeepSEA was marginal compared to the
advancement of original DeepSEA over gkm-SVM: the average
AUROC in their evaluation of deeper DeepSEA in this paper’s
evaluation was 0.938, while that of original DeepSEA was 0.933
[42]. It is noted that different prediction tasks and strategies
among those multiple models make it difficult to directly compare
the other machine-learning models.
After 2018, methods to predict cell-type-specific gene expres-

sions have emerged, where CNN is a crucial component for these
approaches. Basenji, proposed by Basset developer, predicts read
counts in every 128 bp bin in the input 131 kb DNA sequences
using end-to-end CNN architecture by training on alignment files
[26]. The mean Pearson correlation coefficient between predic-
tions and measurements was overall 0.85 across 973 FANTOM5
CAGE dataset [26]. ExPecto, presented by DeepSEA developers,
predicts expression levels in the center of the input DNA
sequences with the 40 kb using CNN architecture (deepSEA
beluga) and gradient boosting method [25]. The median Spear-
man correlation coefficient between predictions and measure-
ments was 0.819 across the RNA-seq dataset of 218 tissues and
cell types. Both methods (Basenji and ExPecto) were published in
2018 and were game-changers. Even after these developments,
there have been improvements in the accuracy through many
efforts, such as multi-task learning incorporating non-human
datasets to increase accuracy for humans (Basenji2) [35], proper
usage of long sequence information by partly replacing CNN
architecture of Basenji2 by self-attention architecture (Enformer; a
portmanteau of enhancer and transformer) [28], and predicting
non-coding RNA expressions by improving model architecture of
ExPecto and binary prediction (MENTR; mutation effect prediction
on ncRNA transcription) [27]. Longer input DNA sequences have
been used for predicting cell-type-specific gene expressions than
those for predicting cell-type-specific accessibility and TF bind-
ings. In ExPecto architecture, 40 kb sequences were used, and
more than 40 kb sequences showed negligible performance gain
[25]. On the other hand, MENTR, which specializes in non-coding
RNA prediction, showed quantifiable improvement by using much
longer input DNA sequences (200 kb) to achieve higher accuracy,
especially for predicting enhancer RNA expressions [27]. The
binary classification strategy in MENTR showed high capacity in
predicting enhancer RNA expression levels [27] and, therefore,
might make it easier to incorporate longer sequences’ information
than the regression approach in ExPecto. Although Basenji2
architecture could not effectively use sequence information 20 kb
from the TSS, partly replacing CNN by self-attention in Enformer
increased it to 100 kb away [28]. The requirement of long DNA
sequences for predicting expression levels indicates complex
biology in transcription, such as 3D DNA contacts [28].

CNN architecture and related essential techniques
As discussed, CNN is a fundamental machine-learning technique
to predict cell type-specific regulatory elements and expression
levels from long DNA sequences (>1 kb). CNN has been a
representative method that made breakthroughs in the image
recognition field [43–46]. Supposing the similarity of the data
structure of images and DNA sequences will make it easier to
understand why CNN succeeds in both areas. Images can be
represented by height (H), width (W), and channel (C), where a
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black-white image has one channel (assuming that everything is
white from beginning) and a color image has three channels (red,
green, and blue). In general, CNN learns local information
(neighbor pixels) of the picture in shallow layers [47] and then
can recognize the parts of the image (e.g., ears, nose, etc., for
human face recognition) in deeper layers, resulting in recognizing
whole images from the combination of the parts in much deeper
layers [48]. Similarly, the DNA sequences can be represented by
length (L) and channel (C), where four channels (A, T, C, and G
bases) are used, and local features (conventional motif sequence)
are empirically important for predicting regulatory activities as
motif analyses have done [49]. If integrating such local features
determines the regulatory activities, CNN architecture will provide
better performance for predicting them. Then, applying image
recognition techniques is a reasonable strategy.
Geometric interpretation using the dot product (inner product)

helps us understand why CNN can learn local features. The dot
product is:

a � b ¼
Xn

i¼1

aibi ¼ aj jj jjjbjj cos θ

where a and b are size n vectors, and the angle between the two
vectors is θ. Depending on θ, the dot product returns positive,
zero, or negative values. From a geometric point of view, the dot
product measures the similarity of two vectors: if the dot product
has positive values, the two vectors are pointing in a similar
direction (θ< 90° ); Especially when the two vectors are normal-
ized, the larger the dot product is, the more similar the two

vectors are. Based on this geometric property, we can interpret
the convolution operation as searching a specific pattern (kernel)
in the input data.
Suppose the input data is an image. Convolution operation

calculates the sum of element-wise product between a small
kernel and part of the input image (the same size as the kernel)
over the input image (for a simple explanation, we ignore the bias
parameter in this review), resulting in creating a feature map. This
operation is geometrically equivalent to taking the dot product of
the kernel over the input image to find a similar pattern in the
input image (Fig. 1A). When we use a 3 × 3 kernel with 1 in the
upper left and 0 in others, this kernel can find locations where “1”
exists in the upper left, resulting in drawing a moving object in the
feature map (Fig. 1B). When we use a 3 × 3 kernel with a “C”-like
shape, this kernel can find a “C”-like shape in the input image,
resulting in highlighting such region in the feature map (Fig. 1C).
Similarly, if input data is a DNA sequence, it can be interpreted
that convolution marks where the motif is located in the input
sequence. Although, in these examples, we assume the fixed
weights in the kernels, CNN learns weight parameters in the kernel
via backpropagation. By preparing many types of trainable
kernels, CNN can learn local features to find local objects.
In CNN, many techniques other than convolution operation are

used. For example, max pooling (or average pooling) reduces
verbose features in a small region and relatively increases
windows for subsequent convolution. ReLU (Rectified Linear Unit),
a function to calculate max values between an input value and
zero, makes sparseness and adds non-linearity in the network [50].
Multi-task learning is helpful if we have many types of output

Fig. 1 Conceptual representation of convolution operation. A Toy example of convolution operation using a 7 × 7 input image (original
image) and 3×3 kernel. This image and kernel have two colors: 1 is red, and 0 is white in the input image, and 1 is green and 0 is white in the
kernel. In the feature map, the output value for the location is highlighted in red. In this toy example, the bias parameter is not shown.
B, C There are two examples of convolution using a kernel with one in the upper left and 0 in others (B) and a “C”-like kernel (C)
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values that are not independent [51]. Dropout is beneficial to
avoid overfitting by preventing complex co-adaptations on
training data (conspiracies) [52].

Boosting
Some machine learning models, such as ExPecto and MENTR, use
a two-step algorithm to predict transcription: the 1st step is CNN,
and the 2nd step is a linear model (ExPecto) [25] and tree-based
model (MENTR) [27] using a gradient boosting algorithm (not
deep learning). Boosting is a popular ensemble learning method
combining multiple prediction models. After the proposal of the
boosting algorithm using weak learners in the 1990s [53, 54],
Friedman reported gradient boosting in 1999, which performs
sequential learning based on the gradient of any loss function
[55]. Around 2014, Chen et al. developed and released eXtreme
Gradient Boosting (XGBoost), an optimized and efficient version of
gradient boosting [56]. ExPecto uses a linear model for a weak
learner, and MENTR uses a decision tree [25, 27]. In general,
tabular data-based machine learning for predictions tends
to show better performance by tree-based approaches than

deep learning-based approaches [57]. Researchers willing to
develop new methods should consider better machine learning
approaches based on the data types or compare the performance
among several methods.

Attention
The attention function returns weighted values based on the
embeddings of the input vectors and their distance (i.e.,
similarity) [28]. In particular, a self-attention mechanism, “scaled
dot-product attention,” is a popular attention function that uses
three transformed vectors (keys, queries, and values) from the
input sequence and calculates weighted values from attention
weights from keys and queries (explained later). Transformer
architecture relies entirely on the self-attention mechanism [58]
and has become the gold standard in natural language
processing (NLP). Soon after, Transformer architecture was also
proposed for image recognition as a Vision Transformer [59].
Enformer is a model incorporating the self-attention mechanism
in Basenji2 architecture to predict transcriptional regulation from
DNA sequences, resulting in improved prediction accuracy,

Fig. 2 Conceptual representation of self-attention. A Embedding from original input sequences {x1 … xN} to {h1, …, hN}. This embedding is
trainable and required before the first self-attention procedure. B Preparing queries {q1,…, qN}, keys {k1,…, kN}, and values {v1,…, vN} from the
embedded vectors, where matrixes,Wq,Wk, and Wv, contain trainable parameters, respectively. The aligned two matrixes represent the matrix
multiplication (the same after this). In the second and more self-attention procedures, the output from the previous self-attention procedure
can be used instead of the shown embedded matrix. C Calculating attention weights for query i (qi). The aligned vector (on the left) and
matrix (on the right) indicate the matrix multiplication (the same after this). The dot indicates the dot product. D Calculating the weighted
value vector for the query i from the attention weights and values. E Weighted values for all queries (i= 1, …, N). The square brackets indicate
that the collection of vectors (box) is treated as a matrix
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potentially through increasing long-range interactions in
the input DNA sequences [28]. Although the name of Enformer
looks like Transformer, Enformer architecture still relies on
convolution layers.
The self-attention mechanism depends on dot product

manipulation. As mentioned above, the dot product geometrically
measures the similarity of two vectors. We assume a length N
sequence (e.g., number of words in NLP). Each element can be
represented by an embedded vector with a specific size (C
channels). In Enformer architecture, the length N is 1,536, and the
size C of the embedded vector is also 1,536, obtained after several
convolution operations from length 197 K input DNA sequence
[28]. In self-attention, we consider that there are length N input
vectors {h1, …, hN} (Fig. 2A) and transform them into key, query,
and value vectors by trainable weight matrix with size [C, C],
resulting in N vectors with length C for each item (keys, queries,
and values) (Fig. 2B). Next, we select one query vector i (qi) and
calculate the dot product with keys. The products are length N
vectors representing the similarity between query i and each of
the keys: {k1, …, kN}. After scaling, the products are called
attention weights for query i (αi= {αi,1, …, αi,N}) (Fig. 2C). We can
get weighted value vector i using these attention weights (Fig. 2D).
Finally, for all i (i= 1, …, N), we can get N weighted value vectors
(i.e., N × C matrix) (Fig. 2E). Because the size of the output matrix of
self-attention is the same as that of the original embedded one (H,
aligning {h1, …, hN}), we can do self-attention operations
repeatedly. In the actual calculation, these operations are done
using highly optimized matrix multiplication code and, therefore,
the very first [58]. The trainable parameter is the three types of
weight matrices for transforming into queries, keys, and values
(each size: [C, C]) (Fig. 2B), as well as those for embedding (Fig. 2A).
If we prepare multiple types of weight matrixes, we can aggregate
them using additional trainable weights, called multi-head
attention. Both Transformer and Enformer use eight attention
heads.
As mentioned before, the attention weights can be determined

by the similarity between queries and keys, and therefore, these
weights are not trainable; this is the big difference from other
types of machine learning approaches, including CNN, where such
weights are directly trainable. Thanks to the flexible framework,
self-attention can produce new embedded features depending on
the similarity among input data. In the translation task in NLP, this
characteristic enables one to guess the meaning from the context
[60]. Similarly, Enformer was reported to learn to predict
enhancer-promoter interactions without explicit their positional
information [28].
One limitation of self-attention architecture is that the

computational cost depends on the squared of the input
sequence length, which will hamper the application in machine
learning on DNA sequences because very long DNA sequences are
required, especially for predicting cell-type specific gene expres-
sion levels, as discussed above. In fact, Enformer first shortened
the input sequence from 197 kb to 1536 by many convolution
layers and used self-attention. Overcoming this limitation may
further improve current prediction accuracies.

DISCUSSION
This review briefly introduced the history and advancement of
machine learning approaches to predict transcriptional regulation
by DNA sequences alone. Although the powerfulness and
usefulness of interpreting human genetic studies by in silico
mutagenesis were proposed by several papers [25, 27], recent
studies demonstrated that predicting personal transcriptome
levels from personal DNA sequences is still challenging [61, 62],
indicating more advanced machine learning models, strategy, or
more large datasets will be required.
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