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Abstract
Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal
of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and
mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic
strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs
miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and
phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR
was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of
miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas
virulence by reducing biofilm-formation approximately 45–48%, hemolytic-activity by 59%, pyocyanin-production by 47–49%,
rhamnolipid-activity by approximately 42–47% and protease activity by 36–40%. While, phenothiazine showed lower anti-
virulence activity, it inhibited biofilm (31–35%), pyocyanin (37–39%), protease (32–40%), rhamnolipid (35–40%) and hemolytic
activity (47–56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with
miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than
phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated
with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.

Introduction

Pseudomonas aeruginosa is a Gram-negative pathogen and
one of the major causes of nosocomial infections especially
in immunocompromised patients. P. aeruginosa infections
include bacteremia, dermatitis, urinary tract infections and

respiratory tract infections, particularrlyin cystic fibrosis
patients [1]. The severity of P. aeruginosa infections is
associated with intrinsic and acquired antibiotic resistance,
in addition to its arsenal of virulence factors. P. aeruginosa
virulence factors include the production of toxins, extra-
cellular invasive enzymes, and secondary metabolites such
as pyocyanin and rhamnolipids, as well as resistant biofilm
formation [2].

The production of virulence factors and biofilm formation in
P. aeruginosa are under control of the quorum sensing (QS)
machinery. P. aeruginosa have multiple QS-systems, of which
the most-studied are the LasI/R and RhlI/R QS, which rely on
binding of acyl homoserine lactone auto-inducers (AIs). A third
QS-system employs alkyl quinolone molecules known as
Pseudomonas Quinolone Signal (PQS) as an auto-inducer [3].
These three QS-circuits share overlapping regulators, with the
Las signal commanding the QS-circuit which activates both Rhl
and Pqs [4]. Furthermore, the Las system governs the produc-
tion of the extracellular protease LasB, a zinc metalloprotease
having proteolytic activity against different tissue substrates,
considered a virulence indicator in P. aeruginosa [5].
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Both Rhl and Pqs systems control the production of pyo-
cyanin [4], a blue-green pigment with redox activity that causes
damage to DNA and other host cell components leading to cell
lysis [6]. Pyocyanin production is considered a core hallmark
of Pseudomonas infections [3]. Rhamnolipids are surfactants,
also related to P. aeruginosa lung pathogenesis based on
degradation and disruption of tight junctions of the respiratory
epithelium [6]. The hemolysin enzymes of P. aeruginosa are
responsible for the inflammatory response, damage to the host
cells and the inhibition of neutrophil defences. In addition, P.
aeruginosa releases a wide range of extracellular proteases that
cleave the peptide bonds of host proteins [7].

The World Health Organization (WHO) has designated
P. aeruginosa as a “critical-priority” bacteria for the
development of new therapies. New solutions for P. aeru-
ginosa infections include vaccines, iron chelator, bacter-
iophages, and anti-virulence agents [8, 9]. Anti-virulence
factors can disarm bacterial pathogens without affecting
viability therefore reducing development of bacterial resis-
tance [10]. Furthermore, drug repurposing (finding new
therapeutic uses for approved drugs) has emerged as an
alternative to the synthesis of de novo antibiotics, since the
development of new antibiotics is lengthy and costly [11].
Recently, several U.S. food and drug administration (FDA)-
approved drugs have been investigated by our lab for their
antimicrobial and anti-virulence activities [12–17].

The FDA-approved anti-psychotic drug phenothiazine
and its derivatives (e.g. chlorpromazine) showed anti-
bacterial activity and efflux inhibitory properties against
Gram positive and Gram negative pathogens, including P.
aeruginosa, and hence can be used as antibiotic adjuvants
[18]. In addition, chlorpromazine had a QS-inhibitory
activity in Chromobacterium violaceum and Serratia mar-
cescens reporter strains [19], and the antifungal drug
miconazole has anti-virulence activity by reducing the
expression of virulence genes in P. aeruginosa [20].

In this study, phenothiazine and miconazole were screened
for their anti-virulence potential against P. aeruginosa QS-
regulated virulence factors, which include pyocyanin, hemo-
lysin, rhamnolipids, protease production and biofilm forma-
tion. The approach used both phenotypic and genotypic
techniques, along with in silico and in vivo approaches.

Materials and methods

Determination of the minimum inhibitory
concentrations (MICs) of miconazole and
phenothiazine

The MICs of miconazole and phenothiazine were deter-
mined by the agar dilution method according to clinical
laboratory standard institute (CLSI) guidelines [21].

Different dilutions of miconazole and phenothiazine solu-
tions were prepared and mixed with molten Mueller Hinton
agar (MHA) at 50 °C and poured into Petri dishes. Colonies
from an overnight culture on MHA were transferred into
Mueller Hinton broth (MHB) and incubated at 37 °C for 24 h,
and a bacterial suspension of at 0.5 McFarland standard
( ~ 1 × 108 colony forming unit (CFU) ml−1) was prepared.
The suspension was further diluted 1:10 in sterile distilled
water and 1 μL of this suspension (contained 104 CFU ml−1)
spotted into the surface of MHA plates containing drug
dilutions. Drug-free plates inoculated with bacteria served as
a positive control, and the plates incubated for 16–20 h at
37 °C. The MIC was recorded as the lowest concentration of
the drugs that completely inhibited visible bacterial growth.

The effect of sub-inhibitory concentration of
miconazole and phenothiazine on the viability of P.
aeruginosa

The effect of miconazole and phenothiazine on P. aerugi-
nosa growth and viability was tested [22]. P. aeruginosa
PAO1 was grown in fresh MHB in the presence and
absence of 1/4 and 1/8 MIC of miconazole and phe-
nothiazine. Following incubation at 37 °C overnight, the
optical densities (ODs) of bacterial cultures (treated or
untreated) were measured at as OD at 600 nm (OD600) using
Biotek spectrophotometer (Winooski, VT, USA).

Quantitative assessment of biofilm inhibition by
tested drugs at sub-MIC

The biofilm formation was assessed as described previously
[23], with some modifications. Briefly, bacterial suspensions
were prepared from overnight cultures of PAO1 in tryptone soy
broth (TSB) and adjusted to a turbidity of 0.5 McFarland
standard. Aliquots of 200 μl bacterial suspension were trans-
ferred to the wells of a 96-well microtiter plate in the presence
and absence of tested drugs (miconazole and phenothiazine)
and incubated for 48 h at 37 °C. The broth was then decanted
gently, the plate washed with distilled water, and then left to dry
in air. The biofilm was fixed for 20min with 200 μl of 99%
methanol, then stained for 15min using 200 μl crystal violet
solution (1%). The plate was washed prior to solubilization with
200 μl of 33% glacial acetic acid. Finally, the absorbance of the
solubilized dye was measured (Biotek spectrophotometer) at
570 nm (A570) and used to assess the strength of the biofilm
(drug-treated or untreated). Each treatment was in triplicate

Pyocyanin inhibition assay

Pyocyanin pigment production was assayed according to the
method of Das and Manefield [24]. Briefly, an overnight
culture of PAO1 in Luria-Bertani (LB) broth was prepared
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and diluted to a turbidity of 0.3–0.4 at OD600 and 50 μl of the
diluted suspension was used to inoculate 5 ml of LB broth,
with and without either miconazole or phenothiazine (at 1/4
and 1/8 MIC). The cultures were incubated at 37 °C for 48 h,
the tubes were centrifuged at 10,000 rpm for 10min at 4 °C.
The pyocyanin pigment in the supernatant was quantified by
measuring A691 (Biotek spectrophotometer).

Rhamnolipid inhibition assay

Rhamnolipid production was assessed in the presence and
absence of drugs using the oil spreading method described
previously [25]. Briefly, 20 μL of crude oil was transferred
to the surface of 15 ml distilled water in a Petri dish forming
a thin oily layer on the water surface. Ten μL of the strain
cell-free supernatant, with and without drug (at 1/4 and 1/8
MIC) were added to the center of the oily layer. The dia-
meters of the clear zones that correlate to bio-surfactant
activity of rhamnolipids were measured.

Protease inhibition assay

The proteolytic activity was determined using the skimmed
milk agar assay described previously [26]. Briefly, MHA
plates with 5% skimmed milk were prepared. Overnight cul-
ture of P. aeruginosa prepared in the presence and absence of
the drugs was centrifuged at 4180 × g for15 min, and 100 μl
aliquots of the supernatants were delivered into cups placed in
the skimmed milk agar plates. The clear zone around the cups
was measured after incubation at 37 °C for 24 h.

Hemolysin inhibition assay

The PAO1 strain was cultured in TSB with and without sub-
MIC of the tested drug until they reached the post exponential
phase (OD600 of 2.5; equivalent to 1 × 109 CFU ml−1). The
cultures were centrifuged at 3520 × g at 4 °C. Aliquots of

100 μl of culture supernatant were brought up to 1 ml in
hemolysin buffer solution (0.145mol l−1 NaCl, 0.02 mol l−1

CaCl2) then 25 μl of defibrinated rabbit blood was added and
incubated at 37 °C for 15 min. The hemoglobin-containing
supernatant was obtained by centrifugation at 5500 × g at
room temperature for 1 min and A543 measured. The hemo-
lytic activity of the drug-free supernatant was considered as
100% hemolysis, and the % of hemolysis in the presence of
the drug was calculated compared to that control [27]. All
experiments were performed in triplicate, and the average of
the three independent readings were taken as the result.

Molecular docking

The crystal structures of P. aeruginosa LasR (PDB code:
2UV0/1.80Å) [28], RhlR (PDB code: 8DQ0/ 3.74Å) [29],
PqsR (PDB code: 4JVD/ 2.95Å) [30], and LasB (PDB code:
3DBK/1.40Å) [31] were retrieved from the Protein Data Bank
(https://www.rcsb.org/). The receptor structures were prepared
using the QuickPrep protocol in with Molecular Operating
Environment (MOE 2019.012) with Amber10: EHT forcefield
[32]. Structures of phenothiazine and miconazole were obtained
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
accessed on 22 June 2023) as canonical SMILES. Each drug
structure was prepared through energy minimization using
0.1Kcal/mol/Å² gradient RMS, and protonation at physiologi-
cal pH (7.4). Drugs were docked using Alpha triangle place-
ment with the Amber10: EHT forcefield.

Assessment of virulence gene expression using
quantitative real time-PCR (qRT‑PCR)

The PAO1 strain was grown overnight at 37 °C in LB broth
with and without 1/8 MIC of miconazole and phenothiazine
until the bacteria reached mid log phase (OD600 0.5–0.6). The
culture was centrifuged at 6000 × g for 15min, RNA was
extracted from the pellet using the GeneJET RNA Purification
Kit (Thermo Fisher scientific Inc., Germany) following the
manufacturers’ instructions. Reverse transcription followed by
qRT-PCR of the QS-genes lasI, lasR, rhlR and pqsR followed
the protocol described in the SensiFAST™ SYBR® Hi-ROX
One-Step Kit (Bioline, UK). The qRT-PCR analysis in the
StepOne RT- PCR thermal cycler (Applied Biosystem, USA)
used the primers listed in Table 1 [33]. The housekeeping gene
gyrA served as a reference gene for normalizing gene expres-
sion. The relative gene expression in treated strains was com-
pared to their expression in untreated ones using the 2−ΔΔCT

method [34].

Mice survival assay

The influence of miconazole and phenothiazine on the
pathogenesis of P. aeruginosa was investigated using the

Table 1 Primers used in qRT-PCR

Gene name Primer sequence (5′→ 3′)

lasI (F) CGCACATCTGGGAACTCA

lasI (R) CGGCACGGATCATCATCT

lasR (F) CTGTGGATGCTCAAGGACTAC

lasR (R) AACTGGTCTTGCCGATGG

rhlR (F) GCCAGCGTCTTGTTCGG

rhlR (R) CGGTCTGCCTGAGCCATC

pqsR (F) CTGATCTGCCGGTAATTGG

pqsR (R) ATCGACGAGGAACTGAAGA

gyrA (F) CGAGAAGCTGCTCTCCGAAT

gyrA (R) TCCTCACGGATCACCTCCAT

Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa
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mice survival in vivo model described previously [35].
Ethical standards for the animal study were approved by
Zagazig University Institutional Animal Care and Use
Committee. Briefly, P. aeruginosa PAO1 was grown in LB
overnight with and without 1/8 MIC of miconazole and
phenothiazine. The bacterial suspension was adjusted to a
cell density of about 2.5 ×107 CFU ml−1 in phosphate-
buffered saline (PBS) which was used to inoculate animals.

The experiment included five groups, each consisting of
5 three-weeks-old healthy female albino mice (Mus mus-
culus) with comparable weight. In the test groups, mice
were injected intra-peritoneally with 100 μl of drug-treated
bacteria in sterile PBS, in the third group animals were
injected with 100 μl of untreated bacteria (positive control).
Two negative control groups are included; one injected with
100 μl of sterile PBS (the 4th group) and the other un-
inoculated (the 5th group). All groups were sustained with
normal feeding and aeration at room temperature. Every day
for 3 successive days, the survivors in each group were
recorded.

Statistical analysis

A one-WAY ANOVA test (Graph Pad Prism 5) was used to
determine the significance of the inhibitory activities of
drugs against the various Pseudomonas aeruginosa PAO1
virulence factors. P values < 0.05 were considered statisti-
cally significant. The results for in vivo experiment were
calculated using Log-rank test, Graph Pad Prism 5 and
plotted using the Kaplan-Meier method.

Results

The MIC of miconazole and phenothiazine

Miconazole and phenothiazine inhibited the growth of tes-
ted isolates at 0.15 and 10 mgml−1, respectively. The
inhibitory effect of miconazole and phenothiazine against
virulence factors of PAO1 was tested at a sub-MIC (1/4 and

1/8 MIC), corresponding to approximately 0.038 and
0.019 mg ml−1 for miconazole and 2.5 and 1.25 mg ml−1 for
phenothiazine.

The effect of sub-MIC of miconazole and
phenothiazine on P. aeruginosa growth

To exclude the possibility of sub-MIC miconazole and
phenothiazine growth inhibition on P. aeruginosa, growth
after overnight incubation with/without the drugs was
compared by measuring the OD at 600, showing no sig-
nificant difference between the treated and untreated
PAO1 strain. Thus, these sub-inhibitory drug concentrations
have no adverse effect on P. aeruginosa growth (Fig. 1).

Phenotypic assay of inhibition of P. aeruginosa
virulence factors

Miconazole and phenothiazine exhibited a significant inhi-
bition of biofilm activity. At 1/4 MIC, miconazole inhibited
biofilm formation by 48%, while phenothiazine resulted in
approximately 35% inhibition. At 1/8 MIC, miconazole and
phenothiazine inhibited biofilm formation by 45% and 31%,
respectively (Fig. 2a, Supplementary Fig. 1). Miconazole
and phenothiazine reduced the pyocyanin production in
PAO1 strain by 49% and 39%, respectively at 1/4 MIC, and
48% and 38%, respectively at 1/8 MIC (Fig. 2b).

Miconazole and phenothiazine treated cultures showed a
significant reduction in rhamnolipid activity (Fig. 2c),
reduced by 47.5% for miconazole and 40% for phenothia-
zine at 1/4 MIC, and by 42.5% and 35% at 1/8 MIC,
respectively. Inhibition by miconazole ranged between 40%
and 36% at 1/4 MIC and 1/8 MIC, respectively, whereas
that caused by phenothiazine was 40% at 1/4 MIC and 32%
at 1/8 MIC, as compared to the untreated P. aeruginosa
strain (Fig. 2d).

Miconazole had comparable inhibitory effect at 1/4 and
1/8 MIC, inhibiting hemolysin activity by approximately
59%, whereas phenothiazine decreased hemolysin activity
by 56% and 47.5% at 1/4 and 1/8 MIC, respectively

Fig. 1 Effect of sub- MIC of
tested drugs on P. aeruginosa
growth. a 1/4 MIC
(0.0375 mgml−1 of miconazole
and 2.5 mgml−1 of
phenothiazine) and b 1/8 MIC
(0.0188 mgml−1 of miconazole
and 1.25 mgml−1 of
phenothiazine)
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Fig. 2 Inhibition of PAO1
virulence factors using sub-MIC
of miconazole and
phenothiazine. a Biofilm
formation, b pyocyanin
production, c rhamnolipid
activity, d protease activity,
e hemolytic activity. The
inhibition was assessed at 1/4
MIC (0.0375 mgml−1 of
miconazole and 2.5 mg ml−1 of
phenothiazine) and 1/8 MIC
(0.01875 mg ml−1 of miconazole
and 1.25 mgml−1 of
phenothiazine). The data shown
represent the means ± standard
errors of the mean (SEM). One-
WAY ANOVA test followed by
Dunnett’s Multiple
Comparison Test

Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa



(Fig. 2e). Table 2 shows a comparison of inhibitory effect of
miconazole and phenothiazine on the phenotypic assay of
virulence factors.

In silico analysis of interaction of miconazole/
phenothiazine with P. aeruginosa QS receptors

Molecular docking provided insights into the possible
molecular interactions of phenothiazine and miconazole with
P. aeruginosa QS receptors. P. aeruginosa LasR (PDB code:
2UV0), co-crystalized with the natural auto-inducer 3-oxo-
C12-HSL had a docking energy score of −7.778Kcal/mol.
Miconazole showed a better binding energy score
(−9.069 Kcal mol−1) than the natural auto-inducer, while
phenothiazine had a slightly higher (−6.129 Kcal mol−1)
energy score. For P. aeruginosa RhlR, the natural auto-
inducer N-butyryl-L-homoserine lactone (C4HSL) had com-
parable docking scores with phenothiazine and miconazole
(S=−5.044 and −6.613 Kcal mol−1 respectively), but
miconazole better filled of the hydrophobic active site. Sev-
eral potential arene interactions could have resulted in a
slightly better score for miconazole, however phenothiazine
was able to mimic the auto-inducer in hydrogen bonding with
Trp68 (Fig. 3, Supplementary table 1).

For P. aeruginosa PqsR (PDB code: 4JVD), the co-
crystalized natural ligand 2-nonyl-4-hydroxy-quinoline
(NHQ) had docking energy score of −6.456 Kcal mol−1.
Although, docking scores of both phenothiazine and
miconazole were comparable (−5.410 and −6.485 Kcal
mol−1, respectively), phenothiazine could only fill pocket B
of the active site. Miconazole, on the other hand, could
orient itself in a conformation to fill both pockets A and B,
in close proximity to the key amino acid Leu208 and
forming extra hydrogen bonding with Arg209 pulling the
imidazole ring further away from Tyr258 but still fitting
perfectly in the hydrophobic active site (Fig. 3).

The zinc dependent metallopeptidase LasB (PDB code:
3DBK) with its inhibitor phosphoramidon had a docking
energy score of −12.919 Kcal mol−1, however, neither
phenothiazine or miconazole had any theoretical interaction
with the zinc metal, leading to less favorable enzyme-ligand

interaction with S scores of −4.346 Kcal mol−1 for phe-
nothiazine and −6.017 Kcal mol−1 for miconazole (Fig. 3,
Supplementary table 1).

Miconazole and phenothiazine reduced virulence
gene expression

The influence of miconazole and phenothiazine on the
expression of QS-encoding genes was evaluated by qRT-
PCR. The expression levels of rhlR, lasR, lasI, and pqsR
were reduced after PAO1 treatment with sub-MIC levels of
miconazole (1.8- 2.1-fold reduction) compared to the
untreated PAO1 strain. There was lower reduction (0.2–0.4-
fold reduction) in QS-gene expression in phenothiazine
treated cells (Fig. 4).

Miconazole and phenothiazine reduced the
pathogenesis of P. aeruginosa in vivo

The 5 mice injected with untreated PAO1 started to die after
24 h, and all died by the end of the experiment. All the
animals (100%) in the control groups (injected with saline
or un-injected) remained alive throughout the experiment
period. The groups injected with sub-MIC of phenothiazine-
treated PAO1 showed improvement in survival rates (80%
survival), and complete survival (100%) for the group
injected with miconazole-treated PAO1 (Fig. 5).

Discussion

P. aeruginosa is a well-recognized opportunistic pathogen
involved in nosocomial infections, especially in patients
with a suppressed immune system such as cancer and dia-
betic patients [36]. This pathogen has an extraordinary
capacity to infect different body parts, including invasive
infections, which lead to lengthy hospital stays and high
mortality [37]. Further, P. aeruginosa has developed mul-
tiple drug resistance (MDR) and persister strains, which
strongly limits the treatment options and represent a major
threat worldwide [38, 39]. A recent strategy, used to over-
come bacterial resistance, targets virulence factors instead
of killing the bacteria. The anti-virulence approach places a
lower selective pressure on bacteria, which are then less
likely to induce drug resistant phenotypes [1].

In this study, miconazole and phenothiazine were tested
for their P. aeruginosa ant-virulence potential. Miconazole
at 1/4 and 1/8 MIC did not alter the growth and viability of
Staphylococcus aureus [14], and metformin at sub-MIC has
been used to evaluate the anti-virulence activity in a
PAO1strain, thus avoiding impact on viability and growth
[40]. The MICs of each drug established their sub-lethal
levels (1/4, 1/8 MIC) for anti-virulence studies, showing

Table 2 The percentage inhibition of virulence factors using sub-MIC
of miconazole and phenothiazine

Assessed virulence factors Miconazole Phenothiazine

1/4 MIC 1/8 MIC 1/4 MIC 1/8 MIC

Biofilm 48% 45% 35% 31%

Pyocyanin 49% 48% 39% 38%

Rhamnolipids 47.5% 42.5% 40% 35%

Protease 40% 36% 40% 32%

Hemolysin 59% 59% 56% 47.5%

A. I. Gad et al.



that miconazole was able to inhibit P. aeruginosa growth at
a lower concentration (0.15 mg ml−1) than phenothiazine
(10 mgml−1).

Miconazole increases polymyxin-B antibacterial activity
against P. aeruginosa and other pathogens, reducing
polymyxin-MIC from 4-fold to 100-fold [41]. The anti-
bacterial activity of miconazole is mainly attributed to the
imidazole moiety [42], and in the case of P. aeruginosa the
inhibition of bacterial flavo-haemoglobins which play an

important role in protecting bacterial cells from reactive
oxygen species [43]. According to Nehme and coworkers,
phenothiazine showed antibacterial activity against Gram
negative bacteria, with MIC of more than 1 mg ml−1 against
P. aeruginosa [44]. Phenothiazines are efflux pump inhi-
bitors and their antibacterial activity is attributed to bacterial
DNA-intercalation [19].

In the present study, investigating the anti-virulence
activity showed that miconazole has the greatest inhibitory

Fig. 3 Docking analysis showing
the putative binding modes (2D
and 3D) of natural ligands,
phenothiazine and miconazole into
the QS-receptors. a LasR natural
ligand 3-oxo-C12-HSL had a
binding score of −7.778Kcal/mol,
miconazole −9.069Kcal mol−1,
phenothiazine −6.129Kcal mol−1.
b RhlR natural ligand N-butyryl-L-
homoserine lactone (C4HSL) had
binding score −5.796Kcal mol−1,
phenothiazine and miconazole
showed comparable docking
scores of 5.044 and −6.613Kcal
mol−1, respectively. c PqsR natural
ligand NHQ had a docking score
−6.456Kcal mol−1, while
phenothiazine and miconazole had
scores of−5.410 and−6.485Kcal
mol−1, respectively. d LasB ligand
phosphoramidon had a docking
score of −12.919Kcal mol−1,
with lower scores of −4.346Kcal
mol−1 for phenothiazine and
−6.018Kcal mol−1 for
miconazole. The ligand and active
site amino acids are highlighted in
blue and cyan, respectively, show
strong hydrophobic/ hydrophilic
interactions
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Fig. 4 Down-regulation of P. aeruginosa QS genes. a RhlR, b LasR, c
LasI, d PqsR. RNA was extracted from P. aeruginosa untreated
(control) or treated with sub-MIC of miconazole or phenothiazine, and
used for cDNA synthesis. cDNA was amplified by qRT-PCR and
changes in the expression of each QS gene normalized in relation to Ct
values of the housekeeping gene gyrA. Fold change in gene expression

in miconazole- and phenothiazine-treated P. aeruginosa was calcu-
lated using the 2−ΔΔCT method. The data shown are the mean ± SEM
from three experiments. P < 0.05 was considered significant from the
one-way ANOVA test. The tested drugs significantly decreased the
expression of lasI, lasR, rhlR and pqsR (p < 0.0001)

Fig. 5 Miconazole and Phenothiazine reduced P. aeruginosa patho-
genesis in the mouse infection model. Five groups, composed of 5
mice each, were included in the study: two negative control groups
either uninfected or injected with sterile PBS, a positive control group
was injected with untreated PAO1, and the last 2 groups were injected
with PAO1 treated with sub-MIC concentrations of either miconazole
or phenothiazine. Mice survival was observed for 72 h, and plotted

using the Kaplan–Meier method, and the significance (p < 0.05) cal-
culated using a Log-rank test (GraphPad Prism 8). No deaths were
observed in negative controls, while no survivors were recorded in the
positive control group. Phenothiazine conferred 80% protection, and
miconazole showed 100% protection, as all mice survived until the
end of experiment (Log rank test for trend p= 0.0019). **p < 0.01

A. I. Gad et al.



effect in comparison with phenothiazine against all the
assessed virulence factors as indicated in Table 2. Similarly,
D’Angelo and coworkers show that the antifungal drugs
clotrimazole and miconazole have anti-virulence potential
against P. aeruginosa using an in silico model and qRT-
PCR [20]. However, D’Angelo study also stated that these
drugs did not inhibit PAO1 growth in MHB even at the
highest concentration achievable in solution. Another study
illustrates that miconazole significantly inhibits the viru-
lence of the Gram-positive pathogen S. aureus, including its
biofilm formation (86–90%), hemolysin activity (79.5-
82%) and lipase activity (20–25%) [14]. Similarly, the
antifungal drug micafungin significantly suppresses the
level of QS-controlled virulence factors including pyocya-
nin, rhamnolipid and biofilm formation in a P. aeruginosa
standard strain [45].

On the other hand, phenothiazine had a smaller impact
against P. aeruginosa virulence, but still significant inhi-
bitory activity. With the greatest inhibitory action against
hemolysin (47–56%), and the lowest inhibition against
biofilm formation (31–35%) as indicated in Table 2. Con-
sistent with our results, phenothiazine and other anti-
psychotic drugs (thioridazine and chlorpromazine) inhibit
biofilm formation, elastase, and pigment production of P.
aeruginosa, mediated by QS-dependent gene expression
[19].

QS systems control the production of an array of viru-
lence factors and biofilm formation in diverse bacterial
pathogens, and are thus considered ideal targets for anti-
virulence therapy [46]. We thus investigated the ability of
miconazole and phenothiazine to impair QS-gene expres-
sion using qRT-PCR, with that of lasI, lasR, rhlR and pqsR
genes significantly reduced (1.8–2.1-fold reduction) in the
presence of miconazole but less so for phenothiazine
(0.2–0.4-fold reduction). Similarly, the antifungal drug
clotrimazole reduces the mRNA level of pqs-controlled
genes [20] and the plant-based inhibitors cinnamaldehyde
and salicylic acid significantly downregulate QS-gene
expression in the PAO1 strain [47]. Specifically, cinna-
maldehyde inhibits lasI and lasR levels by 13- and 7-fold,
respectively, and salicylic acid by 3- fold and 2-fold,
respectively [47]. Recently, it was reported that the
analgesic drug naproxen down-regulates the lasI and rhlI
genes expression and attenuates Pseudomonas protease,
hemolysin, pyocyanin, biofilm, and motility [48].

In silico analysis was used to support our hypothesis that
miconazole and phenothiazine interact with QS receptors.
Molecular docking was performed to investigate the type of
interactions between our drugs and QS-proteins and to
calculate the docking scores which approximately indicate
the binding affinity of the drug to receptor protein. A greater
negative score denotes a higher likelihood of a more stable
binding [49]. It is important to mention that absolute result

of molecular docking is not indicative. Only relative bind-
ing and comparison with known ligands using consistent
parameters and calculations provides perception towards the
binding mode of the ligand of interest [50].

Molecular docking with the LasR protein showed that
miconazole had stronger theoretical (−9.069 Kcal mol−1) in
comparison to its natural ligand (−7.778), while phenothia-
zine was weaker −6.129. For LasB, both phenothiazine
(−4.346 Kcal mol−1) and miconazole (−6.018 Kcal mol−1)
had weaker theoretical binding than its natural ligand
(−12.919 Kcal mol−1). For the RhlR receptor, phenothiazine,
miconazole and its natural ligand (C4HSL) had docking
scores of −5.044, −6.613 and −5.796 Kcal mol−1, respec-
tively. Finally, with PqsR, the natural ligand NHQ, micona-
zole and phenothiazine had comparable docking scores of
−6.456, −6.485 and −5.410 Kcal mol−1, respectively. Col-
lectively, the in silico analysis supports the qRT-PCR results
showing that miconazole is a more potent inhibitor of QS-
genes than phenothiazine, with superior activity in LasR
Binding.

D’Angelo and coworkers reported similar molecular
docking results [20], with antifungal drugs clotrimazole and
miconazole able to bind to the PqsR regulator, with putative
binding values of −8.4 and −8.5 Kcal mol−1, respectively,
slightly lower than that of the natural ligand NHQ
(− 7.9 kcal/mol). From the qRT-PCR and molecular
docking results, it is reasonable to propose that miconazole
anti-virulence action is mediated QS-regulator inhibition.
As we mentioned before that Las signal control the QS-
circuit that activates both Rhl and Pqs [4], this mean the
strong binding capacity of miconazole to LasR could con-
tribute to the down-regulation of the other QS-signals.
While phenothiazine had a seemingly lower theoretical
impact on QS-proteins, it may also affect other cellular
targets such as efflux-pumps as previously reported
[51, 52].

To underscore the clinical relevance of the drugs, the
anti-virulence potential of miconazole and phenothiazine
was evaluated in vivo. Mice injected with miconazole-
treated PAO1 showed 100% survival, similar to the
negative control group, while those injected with
phenothiazine-treated PAO1 had 80% survival. Similarly,
the FDA-approved drugs clofoctol and raloxifene pro-
tected Galleria mellonella larvae from P. aeruginosa
strains, attenuating its lethality [20, 53] just as cinna-
maldehyde in combination with gentamicin rescued the
nematode Caenorhabditis elegans from PAO1 infection
and improved its survival rate by 54% [54]. In addition,
the QS-inhibitor drugs erythromycin, azithromycin and
propranolol induced 80–100% survival in mice injected
with Acinetobacter baumannii [16]

Collectively, phenotypic analysis indicated that micona-
zole and phenothiazine have inhibitory activity against P.
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aeruginosa virulence factors, including biofilm formation,
pyocyanin, protease, rhamnolipid and hemolysin produc-
tion, with miconazole having a greater impact. Genotypic
analysis and molecular docking predict miconazole to be a
better inhibitor of QS-receptors than phenothiazine. The
in vivo study demonstrates 100% survival in mice injected
with miconazole-treated P. aeruginosa.

One of the raised concerns about FDA-approved drug
repurposing is the concentrations of these drugs do not
always meet the pharmacological limits for human use. To
compensate this shortage in reaching the therapeutic plasma
level with these drugs, it could be possible to use these drugs
in topical formulations for skin and soft-tissue infections or
as aerosols in respiratory infection. In addition, these drugs
could be used at lower concentration in combination with
antibiotics. Taken together, these data indicate that mico-
nazole is a promising anti-virulence agent with strong clin-
ical potential to treat infections caused by resistant P.
aeruginosa strains in combination with antimicrobial drugs.
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