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Identifying therapeutic targets for cancer
among 2074 circulating proteins and risk of
nine cancers
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James Yarmolinsky11, Richard M. Martin 11,12,13, Joana Borlido 14,
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Circulating proteins can reveal key pathways to cancer and identify ther-
apeutic targets for cancer prevention. We investigate 2,074 circulating pro-
teins and risk of nine common cancers (bladder, breast, endometrium, head
and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using
cis protein Mendelian randomisation and colocalization. We conduct addi-
tional analyses to identify adverse side-effectsof altering risk proteins andmap
cancer risk proteins to drug targets. Here we find 40 proteins associated with
common cancers, such as PLAUR and risk of breast cancer [odds ratio per
standard deviation increment: 2.27, 1.88-2.74], and with high-mortality can-
cers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify
potential adverse effects of protein-altering interventions to reduce cancer
risk, such as hypertension. Additionally, we report 18 proteins associated with
cancer risk that map to existing drugs and 15 that are not currently under
clinical investigation. In sum,we identify protein-cancer links that improve our
understanding of cancer aetiology. We also demonstrate that the wider con-
sequence of any protein-altering intervention on well-being and morbidity is
required to interpret any utility of proteins as potential future targets for
therapeutic prevention.

Proteins govern cellular action in all human biological processes and
are crucial for our defences against both the onset and progression of
cancer. Identifying circulating proteins important to the aetiology of
cancer may improve our understanding of pathways leading to cancer
and highlight potential targets for therapeutic prevention. Circulating
proteins are valuable candidate targets for drug development since

drug-target engagement can be evaluated in the bloodstream during
randomised control trials (RCTs), accelerating target development.
Additionally, identifying circulating cancer risk proteins allows for the
subsequent selection of future RCT participants with risk-inducing
protein concentrations, which may improve RCT effectiveness.
Developing therapeutic prevention strategies, either alone or as a
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complement to existing prevention programs, such as smoking ces-
sation, are urgently neededgiven cancer burden is projected to double
by the year 20401.

Therapeutic prevention is an effective and commonly used strategy
for the primary prevention of some common chronic diseases. Preven-
tion strategies have thus far been most successful for cardiovascular
disease using statins that target the HMG-CoA reductase protein as a
first-line treatment to lower low-density lipoprotein (LDL) cholesterol2,3.
In contrast, efforts to identify targets for the therapeutic prevention of
cancer have been less fruitful, hampered by a more complex aetiology
and difficulty identifying potential targetable aetiological biomarkers4.
Exceptions include therapeutically targeting theoestrogen receptor (ER)
to prevent breast cancer5 andCOX2 to prevent colorectal cancer in high-
risk individuals6. Additional aetiological proteins for specific cancers
have been identified, such as the role of higher levels of insulin-like
growth factor-I in the development of breast7, colorectal8, and
prostate9,10 cancers, and of higher microseminoprotein-beta with lower
prostate cancer risk11. Together these examples highlight the opportu-
nity that may result if aetiological proteins for cancer are identified and
the feasibility of using these to develop therapeutic prevention tools
where high-risk populations are well-defined.

Identifying candidate aetiological biomarkers for cancer risk has
traditionally involved analysing specific hypothesis-drivenmarkers for
single cancer outcomes in pre-diagnostic blood samples and com-
parable controls from large prospective cohorts9,12,13. The advent of
high-throughput platforms that can measure hundreds to thousands
of biomarkers simultaneously using small sample volumes has enabled
hypothesis-free discovery analyses, but costs remain prohibitively
high. An alternative cost-effective approach, that also limits bias by
confounding and reverse causation, is to use robust genetic proxies of
blood biomarkers to evaluate their aetiological relevance along the
lines of Mendelian randomisation (MR)14,15. Using such MR-based
approaches facilitates simultaneously querying thousands of markers
in relation to the risk of multiple cancers using genome-wide

association data, which can identify risk markers and assess their
association with one or multiple cancers. Proteins represent a parti-
cularly appealing application of MR as the blood concentrations of
manyproteins are regulatedbygenetic variants,manyofwhich lie in or
near a protein’s cognate gene (variants known as cis protein quanti-
tative trait loci [cis-pQTL])16. Cis-pQTL likely influence biological pro-
cesses directly, such as by transcription or translation, making them
less prone to common sources of bias in MR studies like horizontal
pleiotropy17. It is also possible to complement cis-pQTL-based MR
analyses with colocalisation analyses to further exclude confounding
by linkage disequilibrium18. Thesemethodologies allow for the in-silico
simultaneous evaluation of the role of thousands of proteins in the
aetiology of common cancers with high specificity.

In the current study, we estimated the associations of 2074 cir-
culating proteins with the risk of nine common cancers using data
from a total of 337,822 cancer cases. We aimed to identify cancer-risk
proteins and assess whether these proteins may cause multiple or
specific cancers.Where possible, wemapped risk proteins to potential
therapeutic interventions and used MR and colocalisation phenome-
wide association analyses (PHEWAS) to describe the promise and
complexities thatmay result from intervening on risk proteins in terms
of potential adverse outcomes.

Results
Protein effects on cancer risk
In total, 4507 of the 4698 cis-pQTL were available for analysis with at
least one cancer site [min: 3308 cis-pQTL for bladder cancer and max:
4303 cis-pQTL for endometrial cancer], which represented 2023 of
2074 proteins with cis-pQTL included in our study [min: 1692 for
bladder cancer and max: 1934 proteins for skin cancer] (Fig. 1., Sup-
plementary data 2). MR and colocalization analyses identified 40
proteins (Supplementary data 3, Fig. 2.) with an association with at
least one cancer site [min: one protein for ovarian cancer, max: 21
proteins for breast cancer]. A further 428 proteins were identified to

FGFR3 and Bladder Cancer
Odds Ratio: 2.54, 95%CI: [1.77−3.66]; PP4: 0.99

PLAUR and Breast Cancer
Odds Ratio: 2.27, 95%CI: [1.88−2.74]; PP4: 1

C4A and Oral Cavity Cancer
Odds Ratio: 0.42, 95%CI: [0.29−0.6]; PP4: 0.99

POGLUT3 and Renal Cancer
Odds Ratio: 0.76, 95%CI: [0.69−0.84]; PP4: 1

MICA/B and Lung Cancer
Odds Ratio: 0.88, 95%CI: [0.85−0.9]; PP4: 0.96

NSF and Ovarian Cancer
Odds Ratio: 2.1, 95%CI: [1.64−2.7]; PP4: 1

CTRB1 and Pancreatic Cancer
Odds Ratio: 0.79, 95%CI: [0.73−0.85]; PP4: 1

ASIP and Malignant Non−melanoma Skin Cancer
Odds Ratio: 1.02, 95%CI: [1.01−1.02]; PP4: 1
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Fig. 1 | Manhattan Plot for the association of genetically predicted protein
concentrations with cancer risk. Association of genetically predicted protein
concentrations with cancer risk estimated using Wald ratios presented as a Man-
hattan plot where position is given by cis-pQTL coordinate with a selection of
cancer risk associations additionally labelled for their association with cancer risk
and colocalization probability (PP4). Top result for each cancer endpoint provided.

All tests are two-sided. Points highlighted as filled-in are those with PP4 > 0.7 with
point size reflecting PP4 magnitude, which can vary between 0 and 1. Risk asso-
ciations with MR p >0.05 were not subject to colocalization analyses. Results
labelled are those passing correction for multiple testing for the number of pro-
teins analysed in this study per-cancer.
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have evidence of colocalization [PP4 > 0.7] and at least a nominally
significant MR association with the risk of cancer [min: 8 proteins for
skin cancer and max: 241 for breast cancer] (Fig. 1, Supplementary
data 2). We observed limited evidence for the association of proteins
with risk for clear cell ovarian cancer, ever smoking lung cancers, HER2
enriched, luminal B, and luminal B-HER2 negative breast cancers.
Additionally, we did not identify any proteins as a risk factor for cancer
frommultiple, independent cis-pQTL inMRanalyses. Results by cancer
site are summarised below. We did not find supportive evidence after
correction for multiple tests for the association of cancer risk with
protein levels for any protein identified in our main risk analyses
(Supplementary data 3).

Hormone-related cancers
Breast. We found 21 proteins associated with breast cancer risk.
Among these proteins, nine (AOC2, SPN1, CD160, RALB, GDI2, CPNE1,
ULK3, CTSF, PLAUR) were colocalised and had at least nominal asso-
ciations withmultiplemolecular subtypes of breast cancer. PLAURwas
observed to have a strong positive association with risk for breast
cancer overall [odds ratio per standarddeviation increment (OR): 2.27,
95%CI: 1.88 to 2.74; PP4: 0.99] and all molecular subtypes except HER2
enriched tumours. A majority of the remaining eight proteins were
associated with molecular subtypes characterised by oestrogen-
receptor (ER) positive tumours, such as AOC2, which was associated
with a higher risk of ER-positive [OR: 2.02, 95% CI: 1.48 to 2.75; PP4:
0.73], luminal A [OR: 2.07, 95% CI: 1.51 to 2.83; PP4: 0.99], and luminal
B-HER2 negative tumours [OR: 2.54, 95% CI: 1.43 to 4.51; PP4: 0.99]. In
contrast, RALB was associated with an increased risk of ER-negative
[OR: 1.40, 95% CI: 1.20 to 1.64; PP4: 0.93] and HER2 enriched tumours
[OR: 1.59, 95%CI: 1.14 to 2.25; PP4: 0.98], aswell as breast cancer overall

[OR: 1.16, 95% CI: 1.09 to 1.23; PP4: 0.70]. GAS1 appeared to have a
relatively specific association with risk of triple negative breast cancer
[OR: 1.88, 95% CI: 1.42 to 2.47; PP4: 0.86] but was also associated with a
lower risk of HER2 enriched breast cancer [OR: 0.46, 95% CI: 0.27 to
0.78; PP4: 0.78]. MST1 [OR: 1.07, 95% CI: 1.04 to 1.09; PP4: 0.94] was
only associated with ER-negative tumours. Four of the 21 proteins
(PDCD6, TLR1, POGLUT3, and LAYN) identified due to their association
with breast cancer were also observed to have colocalised and at least
nominal associations with risk for other cancer sites included in this
study. Among these, two also associated at nominal significance with
ovarian cancer (TLR1 and PDCD6), one also associatedwith lung cancer
(POGLUT3) and one associated with each kidney (POGLUT3), and
bladder cancer (LAYN).Ovary. One protein had an associationwith risk
of ovarian cancer. NSF was associated with multiple ovarian cancer
endpoints, including risk of high-grade serous tumours [OR: 2.26, 95%
CI: 1.68 to 3.03; PP4: 0.99].

Upper gastrointestinal and respiratory cancers
Lung. We found six proteins (PTGR1, C4A, MICA/B, SFTPB, NUCB1,
POGLUT3)with strongevidence for anassociationwith lungcancer risk
of which two, SFTPB and PTGR1, were not observed to associate with
risk of other cancers. SFTPB was associated with lower risk of lung
cancer overall [OR: 0.79, 95% CI: 0.69 to 0.91; PP4: 0.82], but also lung
adenocarcinoma, and lung cancer in never-smokers. In contrast,PTGR1
was associated with a lower risk of ever smoking and with squamous
cell tumours [OR: 0.79, 95% CI: 0.72 to 0.87; PP4: 0.99]. C4A was
inversely associated with both risk of lung cancer overall [OR: 0.68,
95%CI: 0.62 to0.75; PP4: 0.96] andoral cavity cancer [OR: 0.42, 95%CI:
0.29 to0.59; PP4: 0.99].HeadandNeck. C4A,DDX39B, andMICA/B had
associations with risk of head and neck cancers of which one, DDX39B,

Fig. 2 | Forrest plot for the associations of 40 protein and cancer risk and pan-
cancer risk forrest plots for PLAUR and CTRB1. Proteins associated with cancer
risk (A) after correction for multiple testing for the number of proteins analysed in
this study per-cancer. Odds ratio estimates are estimated using Wald ratios scaled
per standard deviation increment in relative circulating protein concentrations.
Confidence intervals (95% CI) are derived using the standard Wald ratio formula
and reflect the precision of the cis-pQTL estimate in cancer GWAS scaled by the

beta for the cis-pQTL association with protein concentrations. Sample sizes for
cancer GWAS can be found in methods. Association of higher PLAUR with cancer
risk (B) coloured by the colocalization probability (PP4), where MR Wald p <0.05.
Association for higher CTRB1 with cancer risk presented to demonstrate pancreas-
specific association (C) with colour scheme as described above. All tests are
two-sided.
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appeared cancer-subtype-specific and was associated with a lower risk
of oropharyngeal cancer [OR: 0.24, 95%CI: 0.13 to 0.43; PP4: 0.94]. We
also identified an inverse association ofMICA/Bwith a lower risk of oral
cavity cancer [OR: 0.79, 95% CI: 0.70 to 0.88; PP4: 0.99] and lung
cancer overall [OR: 0.88, 95% CI: 0.85 to 0.90; PP4: 0.96]. Conversely,
this protein was associated with a modest, nominally significant,
increased risk of endometrial cancer [OR: 1.10, 95% CI: 1.05 to 1.15;
PP4: 0.89].

Urological cancers
Kidney. TNFRSF10B and POGLUT3 associated with kidney cancer and
were also associated with other malignancies. TNFRSF10B was asso-
ciatedwith a lower risk of both kidney cancer [OR: 0.73, 95%CI: 0.64 to
0.83; PP4: 0.99] and non-malignant melanoma. POGLUT3 was asso-
ciatedwith a lower risk of kidney cancer [OR: 0.71, 95%CI: 0.63 to 0.79;
PP4: 0.98] and lung adenocarcinoma [OR: 0.80, 95% CI: 0.73 to 0.89;
PP4: 0.99] but an increased risk of both ER- and triple-negative breast
cancer. Bladder. NUCB1, GSTM4, and FGFR3 had associations with
bladder cancer risk.Oneof these,GSTM4, was associatedwith a cancer-
specific and lower risk [OR: 0.81, 95% CI: 0.74 to 0.89; PP4: 0.99]. Two
others, NUCB1 [OR: 5.65, 95% CI: 2.64 to 12.09; PP4: 0.98] and FGFR3
[OR: 2.54, 95% CI: 1.77 to 3.66; PP4: 0.99] were both associated with a
higher risk of bladder cancer and were observed to have associations
with other cancers, including luminal B breast cancer and lung
adenocarcinoma.

Skin and pancreas cancers
Non-malignant melanoma. Eight proteins (TNFRSF10B, F2, CTSS,
VARS1, ASIP, IRF3, MAPRE1, COMMD7) had an association with risk of
non-malignant melanoma of which four (F2, VARS1, IRF3, and
MAPRE1) were not observed to associate with other cancers in this
study, such as IRF3 [OR: 0.53, 95% CI: 0.41 to 0.70; PP4: 0.87]. Of the
four other proteins, CTSS [OR: 0.87, 95% CI: 0.83 to 0.92; PP4: 0.98]
and COMMD7 [OR: 2.97, 95% CI: 2.53 to 3.49; PP4: 0.99] were also
associated with lung cancer overall [OR: 0.93, 95% CI: 0.89 to 0.98;
PP4: 0.99] and never smoking lung cancer [OR: 2.78, 95% CI: 1.36 to
5.69; PP4: 0.78], respectively. Pancreas. CTRB1 and ABO were asso-
ciated with risk of pancreatic cancer of which one was only asso-
ciated with pancreas cancer and largely only expressed in the
exocrine pancreas, CTRB1 [OR: 0.79, 95% CI: 0.73 to 0.85; PP4: 0.99].
ABO was associated with an increased risk of pancreas [OR: 1.21, 95%
CI: 1.17 to 1.26; PP4: 0.97] and endometrial cancers [OR: 1.05, 95% CI:
1.03 to 1.08; PP4: 0.97] but with a lower risk of lung cancer [OR: 0.98,
95% CI: 0.96 to 0.99; PP4: 0.74].

Thirty-eight of the 40 cancer risk proteins were identified only
using cis-pQTL for proteinsmeasured on the Somalogic platform. Two
proteins (TNFRSF10B and PLAUR) were identified only using cis-pQTL
from GWAS of proteins measured using the Olink platform.

Replication of candidate aetiological proteins for cancer risk
Replication analyses were conducted for associations where an
external cancer GWAS was available. Replication of cis-pQTL MR
associations was observed for 29 of the 68 protein-cancer associa-
tions that we were able to investigate (Supplementary Data Table 3).
For example, primary analyses identified higher GSTM4 was asso-
ciated with a lower risk of bladder cancer [OR: 0.81, 95% CI: 0.74 to
0.89, PP4: 0.99] inmain analyses, which was replicated in a combined
bladder cancer GWAS from UK Biobank and Finngen cohorts [OR:
0.85, 95% CI: 0.77 to 0.93]. Additionally, replication in UKBB and
Finngen was observed for other results, including PLAUR [breast
cancer OR: 1.82, 95% CI: 1.37 to 2.42], POGLUT3 [kidney cancer OR:
0.72, 95% CI: 0.60 to 0.88], and CTRB1 [pancreas cancer OR: 0.83,
95% CI: 0.75 to 0.92]. No replication GWAS were available for oro-
pharyngeal and high-grade ovarian serous cancer, or luminal A or
triple-negative breast cancer.

Protein association with other traits
Colocalization andMRPHEWAS. We identified associations formany
proteins, found to associate with cancer risk, with non-cancer end-
points that may be informative for determining the specificity of their
associations with cancer or the utility of any potential therapeutic
intervention. Notably, however, we did not observe any associations
withother traits for SFTPB, EGFR, andGAS1, whichwere associatedwith
a lower risk of lung adenocarcinoma and a higher risk of breast cancer
overall and triple-negative breast cancer, respectively. All results are
presented in Supplementarydata 4, while two proteins associatedwith
an increased cancer risk are discussed here in greater detail below as
emblematic vignettes for the potential consequences of intervening to
lower a protein to reduce cancer risk (Fig. 3).

Higher FGFR3 was associated with an increased risk of bladder
cancer. However, we observe that lowering FGFR3 may have poten-
tially harmful effects on other common sources ofmorbidity, such as a
higher risk of osteoarthritis of the hip or knee [OR: 1.42, 95% CI: 1.24 to
1.63; PP4: 0.99] and a reduced usual walking pace [Beta: −0.05, 95% CI:
−0.03 to −0.07; PP4:0.96], andhigher circulating oestradiol levels (SD)
[Beta: 0.03, 95% CI: 0.01 to 0.05; PP4: 0.94] and lower circulating
albumin (SD) [Beta: −0.09, 95% CI: −0.06 to −0.14; PP4: 0.98]. None-
theless, lower FGFR3 may also lead to other potentially beneficial
consequences including a higher kidney volume (litres) [Beta: 0.26,
95% CI: 0.14 to 0.38; PP4: 0.96].

Higher PDXK was associated with an increased risk of breast
cancer. However, lowering PDXK was also associated with higher sys-
tolic [Beta: 0.72, 95% CI: 0.49 to 0.95; PP4: 0.92] and diastolic blood
pressure (mmHg) [Beta: 0.51, 95% CI: 0.38 to 0.64; PP4: 0.96], a higher
risk of having hypertension [OR: 1.12, 95% CI: 1.07 to 1.15; PP4: 0.90]. It
was also associatedwith higher eosinophil counts (SD) [Beta: 0.05, 95%
CI: 0.03 to 0.08; PP4: 0.98] and diseases of the eye and adnexa [OR:
1.16, 95% CI: 1.08 to 1.23; PP4: 0.79], but a lower risk of reporting hay
fever or allergic rhinitis [OR: 0.85, 95% CI: 0.79 to 0.91; PP4: 0.85].

HyprColoc analyses. Eight proteins (A4GALT, ASIP, CTSF, MARE1,
PDXK, SEM4A, PLAUR, VARS1) were observed to have evidence ofmulti-
trait colocalization between the index protein, intermediate pheno-
types, and the index cancer endpoint (Supplementary data 5), which
may serve to elucidate aetiological pathways to cancer risk. For
example, higher PLAUR, a breast cancer risk protein, had evidence of a
colocalized association with lower monocyte cell count [Beta: −0.52;
PP4: 0.99] and higher granulocyte percentage of myeloid white cells
[Beta: 0.63; PP4: 0.99], and strong evidence for a shared association of
PLAUR and these blood cell traits with risk of breast cancer overall
[PP4: 0.91], triple negative [PP4: 0.89], luminal A [PP4: 0.90], and ER-
negative breast cancer [PP4: 0.89].

Public Databases. Thirty-one of our cancer risk proteins had pLI
scores of <0.1 implying high tolerance for loss of function variation
(Supplementary Data Table 3). Conversely, two proteins, DDX39B and
MAPRE1, appeared highly intolerant of LoF variation and had pLI > 0.9.
Weobservedonly limited evidence for the associationof pLOFvariants
in cognate genes for cancer risk proteins with other traits in the UK
Biobank using Genebass or the AstraZeneca PheWAS Portal, none of
which were cancer endpoints (LAYN, PTGR1, FGFR3, VARS1, PTPN9),
none of which were cancer endpoints. In Genebass, pLOF in LAYN was
associated with lower forced expiratory volume in 1-second (beta:
−2.99−4, p = 1.91−11), while variation in PLAUR was associated with lower
carotid intima-medial thickness (beta: −1.09−1, p = 2.03−6). PTGR1 pLOF
burden was associated with high monocyte percentage (beta: 5.58−3,
p = 1.34−7), PTPN9 pLOF burden was associated with recent changes in
the speed/amount of moving or speaking (OR: 1.02, p = 6.84−15), and
VARS1 with lower mean corpuscular haemoglobin (beta: −1.09−2,
p = 2.41−6). Additionally, rare protein-damaging missense variation in
FGFR3 was the top predictor of osteochondrodysplasia (OR: 61.51,
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7.13−12) from analyses in the UK Biobank reported in the AstraZeneca
PheWAS Portal.

We also identified evidence of Mendelian disorders associated
with genetic alterations to the cognate genes of 17 of the 40 note-
worthy proteins, such as FGFR3 and F2 in OMIM. Among other condi-
tions, such as stroke and pregnancy loss, F2 mutations have been
associatedwith higher circulating prothrombin levels and an increased
risk of venous thrombosis. Mutations in FGFR3 have been associated
with achondroplasia.

Drug target pQTL analyses
Harmonised cis-pQTL were available for up to 473 of the total 488
proteins whose cognate gene was mapped to a known drug target for
at least one cancer outcome. After correction for multiple testing, we
found 18 proteins mapped to drugs that were associated with the risk
of at least one cancer endpoint. These included breast [8 proteins],
lung [3 proteins], head and neck [2 proteins], kidney [2 proteins],
malignant non-melanoma [3 protein], and bladder [1 protein], and
pancreas [1 protein] cancers that were the target of at least one phar-
maceutical intervention (Supplementary data 6). We additionally
identified eight proteins that were the target of a drug under investi-
gation at phase I clinical trials or higher, while eight out of these pro-
teins are currently at the preclinical stage or biological testing, which
may imply their drug-ability is under active evaluation. Fifteen of the
proteins we identify associated with cancer risk, including SFTPB and
GAS1, did not appear to be under active current investigation as a drug
target (Fig. 4.).

Notably, a majority of drugs targeting cancer risk proteins were
typically either small molecular inhibitors (SMIs) or monoclonal anti-
bodies, some of which are used for the treatment of the cancer indi-
cated by the risk association. For example, higher FGFR3 was
associated with an increased risk of bladder cancer. FGFR3 is directly
inhibited by Erdafitinib19, which is a SMI and a treatment of urothelial
cancers. We also identified an association of EGFRwith a higher risk of
breast cancer, which is inhibited by a variety ofmonoclonal antibodies
in the treatment of breast cancer20.

Discussion
Using genetic data from up to 337,822 cancer cases, we have identified
40 proteins with a likely role in the aetiology of at least one type of
cancer. Most proteins thatwe identify associatedwith cancer risk were
replicated using an independent cancer GWAS and had not been
reported on before in this context. Some risk proteins were associated
with a potential causal role in specific molecular subtypes of cancer,
some were risk proteins with specific expression in the relevant organ,
while others associated with the risk of multiple cancers. We also
identified proteins with a potential aetiological role in cancer risk that
also mediate the therapeutic effects of specific drugs that may lead to
possible drug repurposing. Furthermore, we identified proteins that
are associated with cancer but do not appear to be under active
investigation, indicating that they may represent opportunities to
develop new therapeutic treatments of cancer.

Proteins are crucial for themaintenance of cellular structure and
regulation of cell signalling involved in all human biological pro-
cesses. Identifying protein markers of cancer aetiology may inform
our understanding of the pathways to tumorigenesis and serve as a
fruitful tool for discovering biomarkers of cancer risk. As a proof-of-
concept for how genetic methods may identify causal cancer genes
we used this approach to highlight a causal role of EGFR in breast
cancer risk. EGFR is a COSMIC21 consensus gene associated with
breast cancer risk. Among other processes, EGFR has an established
role in cell proliferation, migration and differentiation that facilitates
the uncontrolled division of cancer epithelial cells22, including those
in the mammary glands20. EGFR may therefore serve as a potential
positive control for protein MR as a method to discover oncogenic
pathways.

We also identified a role for proteins with tissue-specific expres-
sion at the site of the cancer indicated in risk analyses. One example is
CTRB1, which is a serine protease digestive enzyme precursor pro-
duced largely by the exocrine pancreas and which was associated with
a lower risk of pancreatic cancer in two independent cancer GWAS.
Along with PRSS2 and SPINK, CTRB1 acts to degrade trypsinogen in the
pancreas. Mutations in CTRB1 have been associated with higher

Fig. 3 | Potential consequences of genetically-predicted protein altering
interventions as explemplified using FGFR3 and PDXK. Potential consequences,
presented as beta coefficients and confidence intervals (95% CI) of a protein-
lowering intervention for two emblematic cancer risk proteins, FGFR3 and PDXK,
that associated with higher risk of bladder and breast cancer, respectively, esti-
mated using Wald ratios for traits where cis-pQTL had a p-value for association
passing correction for multiple testing in main analyses. For reference, the pre-
dicted effect of lowering each protein by 1 SD is present for cancer risk at the top

(italics and bold). Below these estimateswe present the predicted effect of protein-
lowering where colocalization and MR analyses suggest an aetiological link with
other traits. Colocalizationprobability (PP4) is also presented for each trait. All tests
are two-sided. Box colour indicates whether a predicted consequence may be
beneficial (blue), harmful (red) or have uncertain consequence (grey) on health.
Box size is proportionate to absolute beta from MR analyses while box opacity is
proportionate to precision of this MR estimate.
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intrapancreatic trypsin activation, chronic inflammation, and loss of
pancreas function23. Further, CTRB1 expression has been found in the
topmost downregulated genes in matched tumour-normal pancreas
samples24. However, the CTRB1 region on chromosome 16 contains
various complex genomic rearrangements that include a short dele-
tion in CTRB2 associated with pancreas cancer risk25 and a 16.6kb
inversion between CTRB1 and CTRB2, which is associated with chronic
pancreatitis26, a risk factor for pancreatic cancer. While we do not find
an association of CTRB2 with pancreatic cancer risk, we do add to
previous evidence27 that CTRB1 may affect the risk of both type 1 and
type 2 diabetes in PHEWAS analyses, which may be risk factors for
pancreas cancer. Therefore, further analyses are needed to clarify the
role of the CTRB1-CTRB2 locus in pancreatic cancer risk, which could
include pre-clinical assessment of CTRB1 and CTRB2 as potential anti-
tumour agents as was previously conducted for pro-enzymes PRSS1
and Chymotrypsinogen A28.

Notably, among cancer-risk proteins we observe a high tolerance
for haploinsufficiency and a general absence of congruent evidence
usingwhole exome analyses of potential loss of function variants in the
UKBiobank for the roleof proteinswe identifywith a riskof cancer.We
suspect this may at least in part be due to study power for whole
exome analyses and challenges in the interpretation of pLI scores in
the context of cancer29. However, it may also suggest these proteins
affect cancer risk via regulation of abundance as compared to the
presence or absence of functional gene copies. Moreover, this finding
may imply protein-truncating alterations to these proteins’ cognate
genes are unlikely to lead to severe disease in early life, which may
affect their relevance in therapeutic prevention.

Proteins are essential targets for drug development30. However,
not all proteins identified as risk factors for cancer are suitable ther-
apeutic targets. Biochemical factors that contribute to a protein’s
druggability include protein-class (membrane-bound19,31, or soluble
and secreted ligands32, for example), current understanding of its
pathophysiology and molecular function, its cellular location, and the
presenceofdrug binding sites. Epidemiological factors that contribute
to a protein’s utility as a therapeutic target include the magnitude and
specificity of its association with cancer risk, the expected incidence,
morbidity and mortality of the cancer of interest, and our current
ability to robustly identify an at-risk population to receive a proposed
therapeutic intervention. We present three vignettes to illustrate both
the potential and the complexities when investigating proteins for
cancer prevention.

FGFR3 and bladder cancer
We found an increase in FGFR3 associated with a more than two-
fold increased risk of bladder cancer in two independent cancerGWAS.
FGFR3 is an established oncogene with a well-described role in pro-
liferative signalling and evasion of cell death22. Further, FGFR3 is the
target of an approved tyrosine kinase inhibitor used to treat urothelial
cancer, erdafitinib33, which has modest reported toxicity34. Whereas
these data may suggest FGFR3 as a potential target for therapeutic
prevention, further complementary analyses suggested lower FGFR3
may increase the risk of osteoarthritis, a common source of morbidity
among older populations, and rare variant studies show that damaged
FGFR3 increases the risk of bone disorders. Considering bladder can-
cer is not among the most common cancers and has a relatively good
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Fig. 4 | Stacked bar plot that depicts identified proteins associatedwith cancer
by their current highest level of therapeutic investigation, which additionally
has colours that stratified results by cancer site. Figure displays a stacked bar
chart, coloured by cancer endpoint for protein in question, mapping of cancer-risk

proteins to currently available information on clinical/pharmaceutical investiga-
tions. These include cancer-risk proteins that are the target of a currently launched
drug, under investigation at Phase I or II, under preclinical or biological testing, and
those not known to be under current investigation.

Article https://doi.org/10.1038/s41467-024-46834-3

Nature Communications |         (2024) 15:3621 6



prognosis, itmay therefore not be justified to target FGFR3 specifically
to prevent bladder cancer. This example highlights the importance of
considering a broad spectrum of potential health outcomes when
developing therapeutic prevention strategies for specific cancer sites
to identify potential unintentional but harmful secondary effects.

SFTPB and lung cancer
We found that higher SFTPB was associated with a lower risk of lung
adenocarcinoma. SFTPB is produced specifically by alveolar type II
cells35 and is essential for healthy lung function36,37. Previous studies
identified downregulation of SFTPB in mice to be associated with
accelerated tumour growth and rate of epithelial-mesenchymal
transition38, and higher SFTPB expression in tumour samples is asso-
ciated with better survival among lung cancer patients37. Notably, we
did not find evidence of non-lung cancer associations for SFTPB,
though an association with chronic obstructive pulmonary disease has
previously been reported39. Lung cancer is a highly incident cancer and
the leading cause of cancer death globally. Multiple tools for the
identification and referral of individuals at high risk of lung cancer for
screening programmes are in current use with additional biomarker-
based risk models under development, such as within the INTEGRAL
programme40. Lung cancer may therefore present an appealing target
for therapeutic prevention as high-risk individuals who may benefit
from such interventions are readily identifiable if a suitable agonist for
SFTPB can be identified.

GAS1 and triple-negative breast cancer
GAS1, which was associated with an increased risk of triple negative
breast cancer (TNBC), is an essential co-receptor of hedgehog (Hh)
signalling and specifically expressed at high levels in healthy
fibroblasts41,42. Notably, we did not observe evidence that GAS1 had a
similar effect on the risk of other molecular subtypes of breast cancer
or on non-cancer phenotypes, which may imply GAS1 has a specific
effect to increase TNBC risk. GAS1 has a critical role, via a structural
interaction, in the delivery of sonic hedgehog to its downstream
receptor, PTCH143. Furthermore, Hh-activated TNBC mouse models
indicated a specific ligand-dependent paracrine role for the Hh path-
way acting via cancer-associated fibroblasts (CAF) to maintain
chemotherapy-resistant breast cancer stem cell phenotypes. An inde-
pendent study also identified a paracrine Hh pathway signature was
associated with a higher risk of metastasis and breast cancer-specific
death in triple-negative disease44. TNBC is an aggressive molecular
subtype of breast cancer characterised by resistance to many estab-
lished treatments45. Therefore, compared to currently available drugs
that target the SMO gene in any cell type, GAS1 antagonism could
provide a therapeutic approach for CAF-specificHhpathway inhibition
in chemoresistant TNBC46.

Our study has limitations that should be acknowledged. Firstly,
our studywas not comprehensive in evaluating the entire proteome as
we are limited to proteins that have beenmeasured using blood-based
multiplex affinity platforms. Secondly, where we have cis-pQTL, our
power to discover associationsmay be limited by cancer GWAS sample
size and the heritability of the cancer itself. This may partly explain the
discrepancy in the number of risk proteins identified for different
cancer sites and the ability to replicate protein associations with can-
cer risk. We also note that colocalization can be sensitive to the pre-
sence of complex genetic architecture or loci where multiple causal
signals exists but where only a subset is shared between traits. Simi-
larly, it can be difficult to interpret colocalization between a protein
and cancer risk where a cognate gene sits in a genomic region with
irregular haplotype structure, such as C4A associations with lung
cancer on chromosome six, or when two genes that lie immediately
adjacent to eachother, both share similar associationswith cancer risk,
such as PTPN9 and SNUPN with breast cancer risk in our analyses. We
also note that our replication analyses leveraged data from cancer

GWAS in a Finnish population, and thus, that well-documented chan-
ges in allele frequencies due to founder effects may have hindered
successful replication for some proteins. Finally, we note that our
results are restricted to participants of European ancestry due princi-
pally to the current availability of protein GWAS; while we are aware of
a recent protein GWAS in the ARIC cohort47 in people of African
American descent, we did not have access to large cancer GWAS for
endpoints in this study to utilise these data.

Conversely, our study had several notable strengths. Our wide-
spread integration of colocalization with cis-pQTL MR analyses
demonstrated that upwards of 70% of proteins with a nominally sig-
nificant MR association did not have support for a shared causal locus.
While this is closer to 50% for proteins passing our Bonferroni
threshold, we suggest that these results demonstrate the importance
of presenting colocalization in parallel with any cis-pQTL MR analysis.
The inclusion of multiple cancer endpoints in our study has also
allowed us to identify proteins with both associations across multiple
cancer endpoints and those with cancer-specific associations. Simi-
larly, we conducted analyses and integrated multiple sources of clini-
cally relevant data to better contextualisewhich of the 40 risk proteins
are associated with other non-cancerous traits. Additionally, we map-
ped our results to established drug targets aswell as proteins currently
undergoing investigation as therapeutics. In doing so, we highlight
opportunities for drug repurposing, but note that risk proteins that are
not currently targeted by any drug may serve as appealing targets for
future drug development.

The increasing availability of multi-omic data generated in large
biobanks and cancer consortia presents an unprecedented oppor-
tunity to leverage large-scale genetic data to discover disease path-
ways. We present an expansive assessment of 2074 proteins in
relation to nine common cancer sites, and present multiple proteins
implicated in the aetiology of specific cancer types. We demonstrate
the importance of carrying out complementary analyses to char-
acterise the disease specificity and pleiotropy that is present for
many proteins. We believe these results bring important context
both when understanding aetiological pathways and potential
adverse consequences of any potential protein-altering intervention.
After further experimental and functional follow-up, as well as other
pre-clinical and clinical investigations, some of the forty proteins we
have identified may provide new options for prevention and be part
of the clinical strategies needed to limit the expected increase in
cancer incidence.

Methods
This work used summary genetic association data from previously
published GWAS. All studies contributing data to these analyses had
the relevant institutional reviewboardapproval fromeach country and
all participants provided informed consent.

Overall study design
We sought to identify aetiological proteins for nine common cancers,
including cancer of the headandneck, lung, kidney, pancreas, bladder,
breast, ovary, and endometrium, as well as malignant non-melanoma.
We used MR to evaluate the association of 2074 blood protein con-
centrations with cancer risk based on cis-pQTL single nucleotide
polymorphisms (SNPs). We subsequently performed colocalization
analyses for loci where MR indicated a nominally significant associa-
tion with cancer risk, to assess the presence of confounding by linkage
disequilibrium (LD). Where other independent sources of cancer
GWASwere available, we also performed an external validation of cis-
pQTL associations with cancer risk. We then conducted an MR and
colocalization PHEWAS as well as a review of public databases to
assess whether proteins identified in our analyses as cancer risk
factors were also associated with other important characteristics or
diseases, which may inform potential adverse effects of future
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protein-altering interventions. Finally, we mapped cancer risk pro-
teins to targets for approved drugs and those being evaluated in
ongoing clinical trials.

Protein effects on cancer risk
Collection and quality control for cis-pQTL. We gathered summary
statistics from publicly available protein GWAS’ and extracted all
independent SNPs associated (at least p < 5 × 10−08) with a protein
concentration in blood and lying within 1 megabase of a protein’s
cognate gene (referred to as cis-pQTL), with clumping at r2 < 0.01 and
with a minor allele frequency ≥0.01. We additionally re-processed
previously published protein GWAS on the OpenGWAS platform to
identify additional cis-pQTL significant at p < 5 × 10−05 due to strong a
priori for SNP associationswith protein concentrations at or nearby its
cognate gene (See Supplementary data 1 and Supplementary Meth-
ods). Only cis-pQTL with an F statistic > 10 were taken forward for
analysis. Cancer GWAS summary statistics. Nine cancer outcomes and
their subtypes (where applicable/available) were considered in this
study, including cancer of the bladder, breast, endometrium, head and
neck, lung, ovary, pancreas, kidney, and malignant non-melanoma
(Table 1. and Supplementary Methods). Estimated power calculations
arepresented inTable 1 basedonmedian variance explained in protein
levels by cis-pQTL (1.3%).

MR and colocalization analyses. Cis-pQTL were harmonised with
GWAS summary statistics for each cancer outcome by matching on
rsIDwheredirectly available, andby selecting aproxywherenecessary.
Primary risk estimates were odds ratios, as well as their accompanying
p-values, estimated using per-cis-pQTL Wald Ratios. All MR associa-
tions with pWald < 0.05 were subsequently evaluated for confounding
by LD and the probability of a shared causal locus (PP4) between
protein concentrations and cancer risk using two approaches: con-
ventional colocalization18,48 and conditional iterative colocalization18.
The greatest PP4 from these two colocalizationmethods [PP4max] was
used and we considered PP4max > 0.7 as indicating cis-pQTL MR asso-
ciations were unlikely to have been confounded by LD. Cis-pQTL with
Bonferroni significant associations (i.e., pWald < 0.05/NProteins where
NProteins is the number of unique proteins analysed for a given cancer
outcome) that also had evidence of colocalization (i.e., PP4max > 0.7)
were subjected to further follow-up analyses. Further details in Sup-
plementary Methods.

Replication of candidate aetiological proteins for cancer risk.
Where data were available, we conducted a replication of noteworthy
cis-pQTL MR associations (i.e. PP4max > 0.7 & Bonferroni pWald) using
external cancer GWAS data from either ameta-analysis of FinnGen r949

and the UK Biobank50, or from FinnGen alone depending on the

endpoint (see Supplementary Data Table 3 for case counts and Sup-
plementary Methods).

ReverseMR analyses. We assessed the potential impact of cancer risk
on protein levels for proteins identified in main analyses using the
inverse-varianceweighted andweightedmedian approaches and using
GWAS significant [p < 5 × 10−08] and independent genetic variants
[clumping at r2 < 0.01]. Additionally, we used the Egger intercept to
assess directional pleiotropy and, were it indicated significant pleio-
tropy, we also conductedMR-Egger analyses. Data were harmonised as
described in protein-cancer analyses. We required consistent evidence
fromall risk estimationmethods andBonferroni significancecorrected
for the number of proteins investigated to support the association of
cancer risk with protein levels.

Protein associations with other traits
We conducted additional analyses to provide greater context to the
specificity of an identified cancer risk protein association using PHE-
WAS MR and colocalization analyses as well as consulting several
public databases. We performed these steps to collate information on
potential harmful or additional beneficial consequences of altering
identified protein concentrations in human populations. Firstly, we
assessed the association of each cancer risk protein with all available
traits on the OpenGWAS platform using MR and colocalization meth-
ods as previously described51. We additionally used HyprColoc52 to
assess whether any subset of protein-trait associations we identified
may elucidate a potential causal pathway between the risk of cancer
and the indicated risk protein. Secondly, we conducted a search of
several relevant databases that included information on probability of
loss of function intolerance (pLI), exome-sequencing studies, rare-
variant association studies, and Mendelian genetics not likely to
overlap with OpenGWAS traits. Further details in Supplementary
Methods.

Drug target pQTL analyses
A secondary analysis was conducted restricting MR and colocalization
analyses to cis-pQTL with a cognate gene that is an established phar-
maceutical target for the action of one of 867 existing drugs identified
by reference to a combination of databases (including Drugbank and
ClinicalTrials.gov) and expert curation (see Supplementary Methods).
We defined noteworthy drug target proteins as having pWald < 0.05/
NProteins whereNProteins is the number of unique proteins analysed for a
given cancer outcome that were identified as the cognate gene of a
pharmaceutical target. We additionally queried the Cortellis database
(https://www.cortellis.com/ Clarivate Analytics) to assess the highest
current level of clinical development stage for proteins identified to
associate with cancer risk from main analyses.

Table 1 | Description of cancer risk GWASs including ICD-10 codes, case and control counts, and study reference

Cancer ICD-10 Case/Control ≥80% power to detect:c Ref

Head and necka C02.0–C02.9, C03.0–C03.9, C04.0–C04.9, C05.0–C06.9, C01.9, C02.4,
C09.0–C10.9

6034/6,585 1.55 56

Pancreas C25 7638/7364 1.50 57

Lunga,b C34 41,477/105,297b 1.14 58

Malignant non-melanoma C43 23,694/372,016 1.17 59

Breasta C50 133,384/113,789 1.11 60

Endometrium C54.1 12,906/108,979 1.23 61

Ovarya C56 25,509/40,941 1.22 62

Kidney C64 10,784/20,406 1.33 63

Bladder C67 8988/11,978 1.40 64
aCancer subtypes included and described in Supplementary Methods.
bTotal effective sample size from a meta-analysis between GWAS of family history and GWAS in INTEGRAL-ILCCO.
cEstimate for the expected detectable risk association based on median variance explained (1.3%) in cis-pQTL included in analyses. Calculated using https://cnsgenomics.shinyapps.io/mRnd/.
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Analysis was performed using R version 4.2.1, tidyverse(2.0.0),
ggplot2(3.4.4), TwoSampleMR package (0.5.6), Coloc package (5.2.3),
plink (1.9).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics from Zheng et al.53 can be obtained from Open-
GWAS (https://gwas.mrcieu.ac.uk/), from Folkersen et al.54 at http://
www.scallop-consortium.com, fromFerkingstad et al.55 at https://www.
decode.com/summarydata/, and from Pietzner et al.15 at https://
omicscience.org. We obtained summary genetic association data on
breast cancer risk from the Breast Cancer Association Consortium
(https://bcac.ccge.medschl.cam.ac.uk/), ovarian cancer risk from the
Ovarian Cancer Association Consortium (https://ocac.ccge.medschl.
cam.ac.uk/), and endometrial cancer risk from the Endometrial Cancer
Association Consortium (https://www.ebi.ac.uk/gwas/publications/
30093612#study_panel). Approval was received to use restricted
summary genetic association data from INTEGRAL ILCCO consortia
after submitting a proposal to access this data. Summary genetic
association data from these consortia can be accessed by contacting
INTEGRAL ILCCO (rayjean.hung@lunenfeld.ca) (https://ilcco.iarc.fr).
Approval was also received to use restricted summary genetic asso-
ciation data on pancreatic cancer risk via dbGaP release
phs000206.v5.p3. To enquire about gaining access to summary
genetic association data for renal and head and neck cancer risk,
contact brennanp@iarc.fr. To enquire about gaining access to sum-
mary genetic association data for bladder cancer risk, contact bart.-
kiemeney@radboudumc.nl. Summary statistics for Malignant non-
melanoma were obtained from OpenGWAS (https://gwas.mrcieu.ac.
uk/). Source data are provided with this paper.

Code availability
Code for the data analyses can be found at https://github.com/
karlsmithbyrne/Pan_Cancer_Protein_MR_2024/blob/main/Manuscript_
COde.
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