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Land conversion to agriculture induces
taxonomic homogenization of soil microbial
communities globally

Ziheng Peng 1, Xun Qian2, Yu Liu1, Xiaomeng Li1, Hang Gao1, Yining An1,
Jiejun Qi1, Lan Jiang2, Yiran Zhang2, Shi Chen1, Haibo Pan1, Beibei Chen1,
Chunling Liang1, Marcel G. A. van der Heijden 3,4, Gehong Wei1 &
Shuo Jiao 1

Agriculture contributes to a decline in local species diversity and to above- and
below-ground biotic homogenization. Here, we conduct a continental survey
using 1185 soil samples and compare microbial communities from natural
ecosystems (forest, grassland, and wetland) with converted agricultural land.
We combine our continental survey results with a global meta-analysis of
available sequencing data that cover more than 2400 samples across six
continents. Our combined results demonstrate that land conversion to agri-
cultural land results in taxonomic and functional homogenization of soil
bacteria, mainly driven by the increase in the geographic ranges of taxa in
croplands. We find that 20% of phylotypes are decreased and 23% are
increased by land conversion, with croplands enriched in Chloroflexi, Gem-
matimonadota, Planctomycetota, Myxcoccota and Latescibacterota. Although
there is no significant difference in functional composition between natural
ecosystems and agricultural land, functional genes involved in nitrogen fixa-
tion, phosphorus mineralization and transportation are depleted in cropland.
Our results provide a global insight into the consequences of land-use change
on soil microbial taxonomic and functional diversity.

Due to increasing human activities and agricultural intensification,
an emerging body of research suggests that ecological communities
are undergoing fundamental changes across various spatial
dimensions1. Most studies investigating the consequences of land-
use changes and agricultural expansion on ecological communities
have focused on local species diversity2–4 due to its ease of mea-
surement and monitoring5. Such studies are relevant to highlight
the loss of global biodiversity loss and species extinction6–8. How-
ever, in addition to reducing local species diversity, agricultural
conversion also caused biotic homogenization at larger spatial

scales9–11, posing a significant concern for ecosystem services and
conservation.

Biotic homogenization refers to the increase in taxonomic or
functional similarities among ecological communities distributed
spatially over time12. Biotic homogenization can be quantified by a
decrease in β-diversity, e.g., a decrease in compositional dissimilarity
between sites. Biotic homogenization can occur due to the establish-
ment of exotic species (increasing similarity between communities),
the loss of native species specific for a limited set of locations (redu-
cing similarity) or most likely a combination of both13,14. Indeed, both
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natural pressures and anthropogenic activities, such as climate
change, agricultural expansion, urbanization and habitat homo-
genization, could cause biotic homogenization9,15–19. So far, the impact
of land use and agricultural conversion on biotic homogenization
mainly focused on aboveground habitats18, with limited attention
given to belowground communities. The information about
agriculture-induced biotic homogenization of belowground commu-
nities is essential for regional biodiversity planning and conservation
purposes.

Land-use change and agricultural conversion canalter community
assembly processes, community composition and species diversity
concurrently4,20–22. These changes are underpinned by species extinc-
tion, colonization and uneven shifts in relative abundance among
different geographic regions. Intense agriculture can contribute to soil
compaction, salinization, acidification, metal accumulation, organic
matter loss and nutrient imbalance23. These related environmental
stressors generally induce structural shifts inmicrobial taxonomic and
functional composition24,25, such as the retention of acid-tolerant taxa
and the loss of specific functional traits for pathogen suppression or
crop fitness26,27. Consequently, these shifts create ecological feedbacks
that further influences soil functions critical formaintaining soil health
and agricultural productivity. Despite numerous studies examining the
responses of microbiome composition and function to agricultural
conversion28–31, these observations are predominantly site-specific and
limited to a local scale3, making it challenging to infer whether shifts in
specific microbial taxa are relevant to the diverse range of soils
worldwide32. Currently, we still lack a generalizable and consistent
understanding of how soil microbial taxonomic and functional profiles
respond to agricultural conversion and which microbial lineages and
functions are mostly impacted across a wide range of soil and climate
types. This knowledge gap hinders our comprehensive understanding
of the global decline in biodiversity and associated ecosystem
functions.

In the present study, we address twomajor questions: (1) whether
agricultural effects lead to taxonomic and functional biotic homo-
genization of soil microbiomes at large spatial scales? (2) how land-use
changes alter soil microbial community composition and functions
across a wide range of soil and climate types, and which microbial
lineages and functions most strongly impacted? We combined a con-
tinental soil survey and a global-scale meta-analysis to address these
questions. For the first question, we conducted a continental soil
survey of 1185 samples fromagricultural fields and the adjacent natural
ecosystems (covering forest, grassland, wetland; Fig. 1c) across China
to provide large-scale evidence of agriculture-induced taxonomic and
functional homogenization of soil microbiomes. To gain a global
perspective on agricultural-induced biotic homogenization, and to
complement the continental scale soil survey, we also collected 16S
rRNA amplicon-based sequencing data from soil samples of global
agricultural-natural ecosystem pairs from all available gene banks
(Fig. 1a). We hypothesized that agricultural conversion causes taxo-
nomic and functional homogenization of soil microbiomes. For the
second question, we used the continental survey dataset to explore
general patterns of soil microbiome taxonomic and functional
responses to agricultural conversion across a wide range of soil and
climate types. We also determined how these responses vary among
ecosystem types and different microbial lineages. Our results
demonstrate that land-use change for agricultural purposes reduces
taxonomic diversity in soil bacterial communities.

Results
Agriculture causes biotic homogenization of taxonomic and
functional profiles
Our continental soil survey dataset (Fig. 1c and Supplementary
Tables 1, 2) revealed that β-diversity of both microbial taxonomic and
functional composition (identifiedbyKEGGandCOG)was significantly

lower in cropland than in natural soil (Fig. 1d, h and Supplementary
Figs. 1b, 2) demonstrating that cropland soils are more similar than
paired natural ecosystem soils. For example, the β-diversity of taxo-
nomic composition was significantly lower in cropland than in forest
(F1,91504 = 6.429, slope = 0.0016, p < 0.05), in grassland (F1,75348 = 1532,
slope = 0.0276, p < 0.001), and in wetland (F1,77004 = 6450, slope =
0.0532, p <0.001; Fig. 1d). The β-diversity of functional composition
was significantly lower in cropland than in grassland (F1,88 = 9.021,
slope = 0.0885, p < 0.01), and in wetland (F1,88 = 6.886, slope = 0.0527,
p <0.05; Fig. 1h). When considering β-diversity at the site-level and
keeping the same number of samples across sites, significant lower
value was also detected in croplands compared to forest, grassland
andwetland (Supplementary Fig. 3). The globalmeta-analysis based on
more than 2400 soil samples across six continents (Fig. 1a) further
showed that microbial communities from croplands were significantly
different from forest soils in taxonomic composition (PERMANOVA;
R2 = 0.026, p <0.001), and β-diversity was significantly lower in crop-
lands than forest soils at global scale (wilcoxon test: p < 0.001; Fig. 1b).
These results jointly provide large-scale, e.g., continental and global
scale, evidence for biotic homogenization of soil microbiome under
agricultural conversion.

Moreover, we found that the phylotypes, that are present in both
croplands and natural ecosystems, were found in significantly more
samples of croplands than in natural ecosystems (wilcoxon test:
p <0.001; Supplementary Fig. 4a), indicating an increase in the geo-
graphic ranges of existing taxa in croplands. The phylotypes unique to
natural ecosystems occurred in significantly fewer samples than other
shared phylotypes that present in both croplands and natural eco-
systems (wilcoxon test: p < 0.001; Supplementary Fig. 4b), implying a
possible loss of these habitat-specific taxa after agricultural conver-
sion. Given that microbial composition is critical for maintenance and
resilience of soil functions, e.g., nutrient supply, litter decomposition
and water regulation33,34, agricultural-induced biotic homogenization
could cause ecosystem service degradation and threaten sustainable
management. Thus, even though a few studies have assessed the
impacts of agricultural land-use change on microbial diversity and
composition, biotic homogenization along with the reduction of
regional community heterogeneity at large spatial scales should be
taken into full consideration as a significant consequence of agri-
cultural conversion.

Agricultural effects on specific bacterial phylotypes and
functions
To provide a general insight into agricultural-induced shifts in micro-
bial phylotypes and functions originated from multiple natural eco-
systems, we compared differences in community structure between
cropland and surrounding forests, grasslands, and wetlands, respec-
tively. Microbial communities of cropland soils were significantly dif-
ferent from those of natural forest, grassland and wetland soils in
taxonomic composition (Fig. 1e–g and Supplementary Fig. 5). These
differences were evident at both the phylum, class, order (Supple-
mentary Fig. 5) and phylotypes levels (Fig. 1e–g). Notably, the largest
differences in taxonomic composition were found between croplands
and wetlands (PERMANOVA; R2 = 0.060, p < 0.001), followed by the
comparison of croplands and forests (PERMANOVA; R2 =0.052,
p <0.001), and between croplands and grasslands (PERMANOVA;
R2 = 0.038, p <0.001). Specifically, agricultural impacts significantly
alteredmicrobial composition (PERMANOVA; p < 0.05) in almost all of
the locations, except for 2 of 37 sites in croplands and grasslands
(Supplementary Table 3). On average, agricultural effects significantly
altered the abundance of nearly half of the phylotypes (44% for forests,
41% for grasslands, and 45% for wetlands; Supplementary Fig. 6a, b).
Approximately 20% of the ASVs were lost from natural ecosystems
upon conversion to agriculture, while approximately 23% of the ASVs
increase in abundance. Specifically, the relative abundance of
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Chloroflexi, Gemmatimonadota, Planctomycetota, Myxcoccota and
Latescibacterota increased in croplands compared with all three nat-
ural ecosystems (Fig. 2 and Supplementary Fig. 7), indicating that these
taxa exhibited consistent responses to agricultural conversion across a
broad range of habitat types. In addition, changes in the abundance of
dominant phylotypes were mainly related to soil pH and moisture
between ecosystems (Fig. 2b, c and Supplementary Fig. 7c, f).

Interestingly, the effects of agricultural conversion were much
lowerwhen focusingon the functional composition identifiedbyKEGG
(Fig. 1i–k) and there were no significant differences between agri-
cultural and natural ecosystems. Moreover, the functional composi-
tion identified using COGs exhibited significant but minor differences
between cropland and natural ecosystems (Supplementary Fig. 1c).
Only less than 10% of functional groups identified by KEGG and COGs
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were affected by agricultural conversion (10%, 3% and 8% of KOs, and
5%, 1%, and 15% of COGs when comparing cropland with forest,
grassland andwetland, respectively; Supplementary Fig. 6c-f). In terms
of functional composition, agriculture significantly decreased the
abundance of bacterial taxa specialized in nutrient cycling (for exam-
ple, nitrogen fixation, phototrophy, and aromatic degradation) as
classified by FAPROTAX compared with natural ecosystems (Fig. 2a
and Supplementary Fig. 7a, c)35. Specific functional shifts were also
observed in the metagenomic dataset (Fig. 3 and Supplementary
Fig. 8). In total, three categories showed a consistent change in

direction compared with other three natural ecosystems when
aggregating over level 3 functional categories through COG annota-
tions (Supplementary Fig. 8). The functional categories “translation,
ribosomal structure and biogenesis”, and “cytoskeleton” increased
while “defense mechanisms” diminished in croplands. However, spe-
cific carbon-degrading genes exhibited inconsistent effects upon
agricultural conversion (some genes were enriched or deleted), while
significant differences in the overall carbon metabolism were not
detected under agricultural land-use (Fig. 3a, b). This is most likely due
to the high redundancy of broadly distributed functions, thereby

Fig. 1 | Taxonomicand functionalhomogenizationofmicrobial communities in
response to agricultural impacts at global and continental scale. a Data dis-
tribution of one-to-one correspondence of 2403 sequencing data between crop-
land and natural ecosystems across countries and continents. b Response of
community similarity to agricultural conversion. The each bars represent the
mean ± standard errors (SE). Asterisks indicate significant difference (wilcoxon test,
***p < 0.001). Non-metric multidimensional scaling of Bray–Curtis distances
showing community dissimilarities between cropland and forest. Cropland,
1033 samples; Forest, 1370 samples. cMap showing 44 regions covering croplands
and adjacent natural ecosystems. Typical terrestrial ecosystems, including crop-
lands, forests, grasslands and wetlands. d, h Effect sizes of natural ecosystems
impacts on β-diversity in taxonomic composition (d) and functional composition
annotated with KEGG (h) relative to croplands. The estimated effect sizes are
regression coefficients based on the linear models. Data are presented as mean±

s.e.m. of the estimated effect sizes. Sample size is showed by number of data pairs
for each group. Statistical significance is based on F-test; ***p < 0.001, **p < 0.01,
*p < 0.05. e–g Principal coordinate analyses of Bray–Curtis distances showing
dissimilarities among taxonomic composition between croplands and natural
ecosystems, including forests (e), grasslands (f), and wetlands (g). A total of 303
forest-cropland pairs (e), 275 grassland-cropland pairs (f), and 278 wetland-
cropland pairs (g) were compared. Each point indicates a site, and error bars
around the means represent standard error of samples in given a site. i–k Principal
coordinate analyses of Bray–Curtis distances showing dissimilarities among func-
tional composition annotated with KEGG between croplands and natural ecosys-
tems, including forests (i), grasslands (j), and wetlands (k). A total of 10 forest-
cropland pairs (i), 10 grassland-croplandpairs (j), and 10wetland-croplandpairs (k)
were compared. Communities differed among ecosystem types using PERMA-
NOVA: ***p < 0.001, **p < 0.01, *p < 0.05.
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buffering against taxonomic changes induced by agricultural land-use.
Indeed, broad functions such as respiration, overall carbon catabolism
and anabolismoften seemmore stable to shifts inmicrobial taxonomic
composition than narrowmetabolic functions such as the degradation
of specific substrate36–38.

Agriculture significantly altered a number of functionally impor-
tant for N cycling, P utilization and sulfur metabolism genes. First,
agriculture appeared to increase nitrification and denitrification pro-
cesses, as indicatedby increasednirK,narG,amoB andhaogenes and it
decreased the abundance of nitrogen fixation (nifH) (Fig. 3c), which
could be due to the application of fertilizers and/or the loss of legu-
minous plant taxa found in natural ecosystems39. These results are in
agreement with the increase of N2O production and the decrease of
nitrogen fixation upon land-use change40,41. The abundance of key
genes for organic P mineralization and transportation (for example,
phn and ugp) were decreased in cropland (Fig. 3d). Opposite to this,

dissimilatory sulfate reduction genes (apr and dsr) had higher abun-
dance in croplands than in forests and grasslands but lower than in
wetlands (Fig. 3e).

Mechanisms underlying changed bacterial communities
A set of specific microbial traits associated with microbial dormancy
and dispersal would regulate their ability to survive in land-use
change associated with resource-based and disturbance-based
scenarios42. For example, the abundance of Firmicutes and Actino-
bacteria with spore-forming ability was lower in croplands compared
to three other natural ecosystems (see Fig. 2), which was closely
linked to a decrease in community-aggregated dormancy strategies
(Supplementary Fig. 9). We also observed that resuscitation-
promoting gene was increased in cropland (Supplementary Fig. 9),
which are associated with long-term persistence of viable bacterial
populations43, indicating that the resuscitation after disturbance can
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strates in croplands relative to forests, grasslands and wetlands. b C degradation
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allow for the proliferation of dormant taxa and accelerate increases
in species richness42.

Moreover, homogeneous selection (HoS; selection under homo-
geneous abiotic and biotic conditions in space and time) dominated
microbial community assembly (as calculated using βNTI (β-nearest
taxon index) and Raup–Crick based on Bray–Curtis dissimilarity
(RCbray) analysis) in croplands, with relative importance of 94.6%
(Supplementary Fig. 9). At the same time, agriculture, acting as an
environmental filter, continues to enhance homogeneous selection on
microbial assembly processes (Fig. 4b), as crop management result in
homogeneous abiotic and biotic conditions across space. Our results
suggest that both microbial traits and environmental filtering could
play prominent roles in regulating agricultural-induced microbial
composition shifts.

Biotic interactions and abiotic environmental conditions also
affect microbial composition under land-use change (Fig. 4a). Taxo-
nomic composition showed significant correlations with environ-
mental filtering of soil pH, moisture, and NH4-N content, the
heterogeneity of soil pH andNH4-N content, and soil saprotrophic and
pathogenic fungi. Functional composition was highly correlated with
environmental filtering and heterogeneity of soil pH and NH4-N con-
tent. Todisentangle direct and indirect impacts of land-use change and
environmental drivers on microbial composition, we performed
structural equation modeling (SEM; Supplementary Fig. 11) using the
most important soil and biotic explanatory variables, such as sapro-
trophic and pathogenic fungi, which were not collinear among them.
Fungal saprotrophic and pathogenic composition, which was also
affected by agricultural land-use, were significantly and directly
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correlated with bacterial taxonomic composition (Fig. 4a, d). Soil pH
filtering played the strongest role in shaping taxonomic and functional
composition (Fig. 4a, d). Moreover, the association of fungal and
bacterial communities suggest an important role for biotic interac-
tions in mediating agricultural-induced microbial composition chan-
ges. Although these variables could explain 85% of the variations in
taxonomic composition, only 20% of the variations in functional
composition were explained due to functional redundancy. More in-
depth studies are necessary to determine the main drivers of changes
in microbial functional composition.

Links between bacterial communities and soil functions
Soil enzyme functions involved in carbon, nitrogen, and phos-
phorus cycling differed between cropland and natural ecosystems
(Fig. 4c, d). Interestingly, we did not observe the relationship
between microbial functional composition and soil enzyme
functions. We also found that the association of soil enzyme
functions with microbial composition varied among different
microbial lineages (Fig. 4e). The relative abundance of Bacter-
oidota was positively correlated with soil functions and activities
of four of the five enzymes while the relative abundance of
Gemmatimonadota were positively correlated with β−1,4-glucosi-
dase (BG) and β-D-cellobiosidase (CBH) and negatively correlated
with β−1,4-acetylglucosaminidase (NAG) and alkaline phosphatase
(APP). In all, these results indicate significant linkages between
soil functions and microbial taxonomic composition but not
functional composition.

Discussion
Agricultural land-use change has exerted profound effects on above-
and belowground biodiversity2,44, and the effects are likely to accel-
erate in the coming decades18. While a number of studies showed that
agricultural conversion led to biotic homogenization of aboveground
communities, still very few studies investigated the belowground
consequences. In the present study, we summarized the generalized
effects of land-use conversion on belowground microbial commu-
nities and functions, encompassing multiple ecosystems. Our study
provides large-scale evidence of taxonomic and, to a lesser degree,
functional homogenization of soil microbiomes following agricultural
conversion in terrestrial ecosystems at global and continental scales.
The taxonomic variation across sites (Beta-diversity) was significantly
lower in croplands than in grasslands, wetlands, and forests, pointing
to biotic homogenization in croplands.

Although land-use changes and agricultural conversion have been
proven to be major drivers of biodiversity loss45,46, positive impacts of
agriculture on biodiversity have been observed at regional and local
scales in some studies47–49. One facet of these trends is that although
local or alpha diversity may increase, this is typically at the expense of
beta diversity12. Previous studies have demonstrated that increases in
local land use intensity led to biotic homogenization of microbial,
plant, and animal groups both above- and below-ground4,25. Biotic
homogenization is largely independent of changes in alpha diversity;
land use intensity reduced local alpha-diversity in aboveground
groups, but increased the α-diversity in belowground groups4. Our
study further extends these earlier observations at a continental and
global scale and now provides widespread evidence that agricultural
conversion results in biotic homogenization of the soil microbiome.
Although taxonomic homogenization in cropland versus natural eco-
systemswas stronger andmore significant inmany cases, we observed
very important microbial functional shifts under croplands, including
functional homogenization15,50. This was evident when we calculated
the beta-diversity across sites based on functional gene composition.
Since the functional components of biodiversity are fundamental parts
of ecosystem functions and services51,52, functional homogenization is
the most direct evidence for the potential loss of ecosystem functions

caused by agricultural conversion16,53. Our findings extend taxonomic-
level results inAmazonianForest21 and Europeangrasslands4 that focus
on the impact of agriculturalmanagement onbelowground taxonomic
homogenization in local-scale, to the large-scale functional homo-
genization. Overall, our study provides a comprehensive insight that
agricultural land-use change cause biotic homogenization in taxo-
nomic and functional composition, and suggests halting reclamation
and developing ecological restoration for cropland to conserve
landscape-scale biodiversity and ecosystem service provision53,54.

Biotic homogenization in response to agricultural impacts is a
multifaceted process that involves considering the invasion and
extinction of species, as well as the heterogeneity of landscapes. In
agricultural systems, it is generally believed that the biomes are a
subset of the regional species pool, which is composed of surrounding
natural ecosystems55. This highlights the selective effects of agri-
cultural conversion, which could cause pressure and force on soil
communities from natural ecosystems. For example, the destruction
of soil structure and aggregates, as well as alterations and homo-
genization in soil environmental conditions caused by agricultural
conversion can result in the trait-based filtering out of certain species,
leading to the loss of existing species and the dominance of micro-
organisms that are better adapted to agricultural management.
Moreover, geographic range size is a major determinant of species’
extinction risk, and rare species therefore are vulnerable to land use
change and are at greater risk of extinction25. The establishment of
agricultural systems through intensive management can facilitate the
spread of colonizing species that are abundant and prevalent due to
the characteristics of broad environmental adaptation, while rare or
specialized species may decrease in their abundance and occupancy
over time56,57, which led to a homogenization of community compo-
sition across space. Land-use change is proposed to affect turnover in
community composition via its effect on stress tolerance, resource
acquisition, and dispersal ability. Stronger stress-tolerant, broader
resource-flexibility cosmopolitan species with unlimited dispersal
capacity are more stable to land-use change because of increasing
adaptive potential and/or extensive ability to exploit soil resource
availability58,59. Frequently disturbed soil environments can promote
the gains and proliferation of novel species and the gradual replace-
ment of locally distinct communities by cosmopolitan communities
via altered competitive and coexistence dynamics60, homogenizing
assemblage composition.

On the other hand, the influence of agricultural conversion on
biotic homogenization might be attributed to the reduction in envir-
onmental heterogeneity in monoculture-dominated landscapes61.
Landscape heterogeneity is central to the spatial organization of eco-
logical communities62. Variations in vegetation structural and soil
conditions influence beta diversity and turnover of soil fauna, bacteria,
and fungi. Monoculture-dominated croplands have lower environ-
mental heterogeneity comparedwith vegetation structural complexity
in natural ecosystems, where heterogeneous habitats contribute to
increased beta diversity across spatial scales. Our findings, supported
by the estimation of ecological processes based on βNTI and RCBray

(Fig. 4b and Supplementary Fig. 10), illustrate that the role of homo-
geneous selection was stronger for community assembly in croplands,
suggesting the consequence of agricultural conversion on homo-
geneous abiotic and biotic conditions across space. The impact of
agriculture on biotic homogenization might vary at different scales. In
contrast to our results, a regional survey on the conversion of steppe
to cropland demonstrated that agriculture increased spatial hetero-
geneity of soil functional genes29. The lower functional turnover in
steppe may be attributable to stable and similar soil environments
across the region. Diverse in local but functionally homogeneous
sward in regional natural steppe ecosystem exerts a stabilizing effect
on the soil environment and soil ecosystem processes, reducing the
impact of spatial and temporal variation in climate, soil texture and
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topography29. Differently, agricultural management such as seasonal
planting, crop types, and fallow cycles actually contribute to greater
temporal and spatial variability that selects for greater heterogeneity
across the region. Given the complexity of the soil environment, more
attention needs to be paid to the biotic homogenization caused by
agricultural conversion of the soilmicrobiomeat various spatial scales.

Our results showed that land use change had a greater impact on
taxonomic composition than on functional composition, highlighting
the functional redundancy of soil microbiomes35,63,64. Soil micro-
organisms represent the most biologically and phylogenetically
diverse community on Earth65. Although the taxonomic composition
of soil microbiome varies tremendously across soil, microbial gene
composition or functional capacity remains highly conserved63,66, with
lots of phylogenetically unrelated taxa carrying similar genes and
performing similar functions38. For example, lignin substrate can be
degraded by gram-negative bacteria Comamonadaceae and Caulo-
bacteraceae, and the genus Asticcacaulis and Caulobacter (members of
Caulobacteraceae) could degrade both hemicellulose and cellulose
and all three lignocellulosic polymers, respectively67. Numerous
microorganisms with the ability to participate in carbon degradation
can coexist on the surface of plant residues68. Agricultural conversion,
however, had minimal impact on overall carbon degradation and
fixation, but did reduce nitrogen fixation and phosphorus miner-
alization and transportation potential (Fig. 3), suggesting the func-
tional redundancy for carbon metabolism in soils. The fact that the
potential for nitrogen fixation and phosphorus mineralization is
reduced, indicates that croplands rely less on these processes due to
the breakdown of nutrient cycling plant-microbial symbioses under
agricultural fertilization. Taken together, our results indicated that
agricultural land-use change significantly altered microbial taxonomic
composition while the gene content remains relatively conserved,
especially in relation to carbon metabolism. More realistic functional
gene expression studies the functional divergences, redundancies, and
complementarities in the different land use scenarios, e.g.
metatranscriptomics69 or quantitative stable-isotope probing (qSIP)70,
that correlate with the observed taxonomic shifts after agricultural
conversion, needs to be further revealed in the future.

Changes in soil microbial communities across space are often
strongly correlated with differences in soil abiotic and biotic
conditions47. Similar to previous study71, we observed soil pH is amajor
driver of the diversity and composition of soil bacterial communities
across land-use types. More importantly, we found that fungal com-
munities, particularly pathogens and saprotrophs, were strongly
associated with changes in soil bacterial communities. Interactions
between fungi and bacteria could partly drive the bacterial community
shifts along a steep gradient of fungal community change72,73. For
example, manipulating fungal richness can immediately mediate
assembly processes of bacterial community74. The fungal hyphae
could provide soil bacteria with ecological opportunities in severely
carbon-limited soils by releasing carbonaceous compounds and pro-
viding a colonizable surface for the creationofnewbacterial niches72,73.
In addition to the effect of external conditions (e.g., biotic interactions
and abiotic environmental conditions), our results also emphasize the
important roles of microbial traits in regulating the response of
microbial composition to agricultural conversion. The dormancy
potential strategy changed from sporulation and toxin–antitoxin sys-
tems to resuscitation-promoting factors42. The sporulation trait affects
species composition, with the abundance of phyla Firmicutes and
Actinobacteria with spore-forming ability75 increasing in croplands.
The impact of regional species pools on cropland bacterial diversity is
modulated by sporulation trait55. Many taxa with spore-forming ability
had a higher species pool effect, indicating their survival and compe-
titive advantage under environmental stress, as well as their retention
during land use changes or their greater likelihood of spreading from
natural ecosystems due to their adaptive capabilities.

Our findings provide a valuable insight for predicting ecological
consequences of land-use change and agricultural management. The
links between microbial composition and ecosystem function suggest
that biotic homogenization have previously unrecognized and nega-
tive consequences for agricultural sustainability and service. Although
the functional redundancy with C metabolism of soil microbiomes
supports the stability and resilience of ecosystem functioning in
response to perturbations63, increased agricultural intensification
gives rise to large uncertainty in predicting the loss of ecosystem
function. It is also important to note the ways observations at different
spatial scales can impact the interpretation of broad soil microbiome
responses. Although our study covered a global scale, study sites and
sequencing data were not evenly distributed. Most observations focus
on forest-cropland ecosystem contrasts and are subject to methodo-
logical limitations arising from comparisons of sequencing methods
and sampling schemes. Overall, our study suggests that biotic homo-
genization of the belowground microbiome across large spatial scale
should be taken into account when evaluating the sustainability and
soil health of agricultural management practices.

Methods
Continental survey and sampling
We conducted a continental field survey in croplands and adjacent
natural ecosystems from 44 regions across China (Fig. 1a and Supple-
mentary Table 1). Adjacent natural ecosystems were ~2 km from
croplands and were selected to represent the most common and
relatively undisturbed ecosystems, including forests, grasslands and
wetlands. The distance between cropland and adjacent natural eco-
systems is about 2 km in order tomaintain a consistent climate and soil
type. Among natural ecosystems of the 44 study regions, 30 regions
include forests, grasslands, and wetlands, five regions include forests
and wetlands, four regions include grasslands and wetlands, three
regions include grasslands and wetlands, and two regions only include
forests (Fig. 1c and Supplementary Table 1). The study survey repre-
sents a wide range of climate and soil gradients of climate, soil, and
vegetation types (from tropical to boreal zones). For instance, mean
annualprecipitation andmean annual temperature in these regions are
from 78 to 1775 mm and −2.8 to 24.4 °C, respectively. Soil pH ranged
from 4.63 to 10.18 and soil organic matter ranged from 4.64 to
60.22 g·kg−1 across all of the survey regions, representing broad
environmental conditions.

To reduce variation between regions as much as possible, we
focused on fields planted with maize (Zea mays) to represent agri-
cultural systems sincemaize is widely cultivated throughout China and
the world, with a total production exceeding that of wheat or rice76. In
each region, we collected 4 to 10 plots of each ecosystem type.
Composite surface soil samples (top ~20 cm depth) were collected at
eachplot in July and August 2019, during the crop growing season. Soil
samples at each site pair were collectedwithin one day tominimize the
impact of sampling times. Each plot has a size of 2 × 2 m2 and is the
same across sites and ecosystems.We focusedon surface soils because
(1) topsoil is most affected by land use change; (2) agricultural man-
agement practices also primarily deal with topsoil, such as conven-
tional tillage and crop root growth, which shape the tillage layer. In
brief, soil samples were mixed by taking three soil cores with a 5-cm-
diameter auger for each plot in the surface layer. After sampling, we
thoroughly rinsed the soil auger using clean water. To ensure disin-
fection and sterilization, we then applied a 75% alcohol solution to its
surface. Afterward, we placed the auger bit into a sterile bag for safe-
keeping until the subsequent sampling event. These soil samples were
sieved through a 2.0-mmmesh to remove plant roots, litter, rocks, and
other debris. A total of 1185 soil samples were collected representing
856 paired soils, with 303 forest-cropland pairs, 275 grassland-
cropland pairs, and 278 wetland-cropland pairs obtained (Supple-
mentary Table 2). Each soil sample was divided into two subsamples
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where one set was frozen at −80 °C for DNA extraction and microbial
analysis and the other set was air dried for measurement of soil phy-
sical and chemical properties.

Global-scale meta-analysis
We conducted an extensive literature survey from 2013 to February
2023 using the Web of Science database (https://www.webofscience.
com/). The format of the keywords used for the literature search
includes (bacteri*) AND (land use change OR land cover change OR
land use/cover change OR LULCC OR LUCC OR cropland OR farmland
OR arable). After downloading the literature based on the keywords
above, weobtained a total of 297 publications (Supplementary Fig. 12).
Following the criteria below, we conducted the initial selection of the
studies: (1) studies with a one-to-one correspondence of sequencing
data between agricultural land and natural ecosystems were included;
(2) articles for which sequencing metadata were not available from
public repositories or upon request from individual study authors
were excluded. After the initial selection, 75 studies were left, over
6000 sample sequencing data. In these studies, high-throughput
sequencing of bacterial communities was conducted using Illumina,
Ion S5, and 454 pyrosequencing platforms. Twenty-three primer pairs
were identified from the research metadata, and the most used pri-
mers in the sample were 515F and 907R (18/75), 515F and 806R (13/75),
and 338F and 806R (16/75). After downloading the raw data corre-
sponding to the data availability provided in the articles, the raw
sequences were processed using QIIME 2 and annotated using the
USEARCH tool. A final ASV dataset comprising 3482 samples was
remained for subsequent analysis after excluding low-reads (<10,000
reads) and low-quality samples. We utilized the -fastq_filter command
in the vsearch tool for sequence quality control, with the parameter
-fastq_maxee set to 1. This implies that the maximum expected errors
threshold for low-quality bases in all sequences is set to 1. Only
sequences with an expected error count less than or equal to 1 are
retained, while sequences exceeding this threshold are filtered out. In
addition to sequencing data, we also collected the following para-
meters: ecosystem type, plant type, location (i.e., latitude and long-
itude). Taking into account sample size and coverage, we selected
forest to represent natural ecosystem because forest soils included
more than 1300 samples and covered six continents. Other ecosystems
with only a few sites or low distribution range lacked representation
for large-scale evidence (Supplementary Fig. 13), and were excluded
from further analyses. In total, 2403 samples were included in the
global-scale meta-analysis.

Soil environmental variables
We evaluated soil chemistry and nutrients to gauge changes across
agricultural land-use change and to consider the implications of those
variables on microbial communities. Here, we selected the most
important six soil variables, i.e., soil pH, organic matter (OM), soil
moisture (Mo), available phosphorus (AP), and available nitrogen
(NO3–NandNH4–N). These indicatorswere recognized as themain soil
variables influencing bacterial diversity patterns at global and regional
scales77–79. Soil pH was assessed in a 1:5 suspension (soil to distilled
water) using a pH meter. Organic matter was determined calorime-
trically following oxidation with a combination of potassium dichro-
mate and sulfuric acid. Soil moisture wasmeasured by the gravimetric
method after samples were oven-dried at 100 °C for 24h. NO3-N and
NH4-N concentrations were measured using 1M KCl solution with
Continuous-Flow AutoAnalyzer. Available phosphorus concentrations
were extracted by NaHCO3 and measured by molybdenum blue col-
orimetry. We measured soil physicochemical properties for each plot.
Local soil filtering was calculated as the average of all plots within each
ecosystem for each soil variable and local soil heterogeneity was cal-
culated as the within-ecosystem standard deviation of each soil
variable.

Soil enzyme activities
The activities of soil extracellular enzymes involved in C, N, and P
acquisition were determined using the microplate-scale fluorometric
method80. We used a 200μM solution of substrates labeled with
4-methylumbelliferone or 7-amino-4-methylcoumarin. The C-acquisition
enzymes analyzed included β−1,4-glucosidase (BG), 1,4-β-Dcellobiohy-
drolase (CBH) and β-xylosidase (BX). The N-acquisition enzymes
analyzed were β−1,4-N-acetylglucosaminidase (NAG) and L-leucine ami-
nopeptidase (LAP), while the P-acquisition enzyme analyzed was alkaline
phosphatase (APP). After incubation at 35 °C, plates were centrifuged,
and the supernatant was transferred to black, flat-bottom 96-well plates.
Fluorescence was measured using a microplate reader with 365nm
excitation and 450nm emission filters. Soil enzyme activities were
expressed as nmol g−1 dry soil h−1.

DNA extraction, amplicon sequencing, and data preprocessing
Genomic DNA was extracted from 0.5 g of the soils using the MP Fas-
tDNA spin kit for soil (MPBiomedicals, Solon, OH, USA) according to the
manufacturer’s instructions. The diversity of soil bacteria and fungi was
measured by 16 S rRNA gene and nuclear ribosomal ITS amplicon
sequencing using an Illumina MiSeq PE250 platform. For the bacterial
community, 16 S rRNA genes were amplified using primer set 515 F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 907R (5′-CCGTCAATTCCTTTG
AGTTT-3′), targeting the V4-V5 region of the 16 S rRNA gene. For the
fungal community, the first nuclear ribosomal ITS sequences were
amplified using primers ITS5-1737F (5′-GGAAGTAAAAGTCGTAACAAGG-
3′) and ITS2-2043R (5′-GCTGCGTTCTTCATCGATGC-3′), targeting the
ITS1-5F region. PCR amplificationwas performed in a 50μl volume: 25μl
2x Premix Taq (Takara Biotechnology, Dalian Co. Ltd., China), 1μl each
primer (10μM) and 3μl DNA (20ng/μl) template. The PCR thermal
cycling conditions were performed by thermocycling: 5min at 94 °C for
initialization, followed by 30 cycles of 30 s denaturation at 94 °C, 30 s
annealing at 52 °C, 30 s extension at 72 °C, and 10min final elongation at
72 °C. The length and concentration of the PCR product were detected
by 1% agarose gel electrophoresis. Sequencing libraries were generated
using NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New
England Biolabs, MA, USA) following the manufacturer’s recommenda-
tions and index codes were added. Bioinformatic processing, including
filtering, dereplication, sample inference, chimera identification, and
merging of paired-end reads, was performed using the Divisive Ampli-
con Denoising Algorithm 2 (DADA2) package in R81. In brief, the plot-
QualityProfile command was run to detect the quality of the amplified
sequences. We imposed a minimum length of 100bp to remove any
small fragments at the filtering stage, at which, the error in the maxEE
argument was 2 as this optimized the retention of reads throughout the
pipeline. Error rates were subsequently calculated by the DADA2 algo-
rithm before dereplication and merging of paired end sequences. Chi-
meras were removed using the removeBimeraDenovo command with
method = “consensus”82. Finally, the taxonomical annotation of the
representative sequences of amplicon sequence variants (ASVs) was
performed with a naïve Bayesian classifier using the Silva v. 138 (for
bacteria) and the UNITE v. 7 (for fungi) database83,84. It should be noted
that although the ITS region is by far the best option as a general DNA
(meta) barcoding marker for fungi, there are inherent limitations asso-
ciatedwith the use of a ITS region for enabling in-depth characterization
of fungal communities. We were not concerned with changes at the
fungal species level, so ITS region sequencing should have limited
impact on our results. The sequence number in each sample was rar-
efied to the same depth for the 16 S rRNA gene (15000 reads) or ITS
sequences (21921 reads), leaving a total of 31,402 bacterial ASVs and
77,962 fungal ASVs for further analyses.

Shotgun metagenome sequencing
A subset of 40 samples from 10 regions covering cropland, forest,
grassland and wetland soils were selected for metagenomic
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sequencing to analyze changes in microbial community functional
potential (n = 10 per ecosystem type; Supplementary Fig. 1a). Meta-
genomic libraries for 40 samples were prepared according to the
product instructions of ALFA-SEQ DNA Library Prep Kit (Findrop,
Guangzhou, China) and index code was added. Initial quantification
of the library concentration was performed using Qubit 3.0 fluo-
rometer (Life Technologies, Carlsbad, CA, USA) and the library was
diluted to 1 ng/µL. Agilent 2100 Bioanalyzer System (Agilent Tech-
nologies, CA, USA) was used to detect the integrity of library frag-
ments and the length of insert size. Then, the library was sequenced
on Illumina Novaseq 6000 platform (Illumina, San Diego, CA, USA) to
generate 150 bp paired-end reads at Guangdong Magigene Bio-
technology Co., Ltd. In total, 1.71 × 109 raw reads were sequenced
across all samples, which yielded 512.3 Gbp of total sequence infor-
mation with an average data volume of 12.8 Gbp per sample. Raw
data were quality checked with FastQC (v0.11.9) and processed using
Trimmomatic v.0.39 (leading: 3, trailing: 3, slidingwindow: 4:15,
minlen:36) to trim adapters and discard bases with a quality score <15
and length <36 bp. After that, 12.2 Gbp clean data per sample were
obtained. Clean reads were annotated for functional analysis of the
microbiome using HUMAnN v3.7 (based on DIAMOND (version
2.1.6)85 and Bowtie2 (version 2.5.1)86) with ChocoPhlAn database
(version “mpa_vJan21_CHOCOPhlAnSGB_202103”) and UniRef90
(version “uniref90_201901b”) protein database to quantify relative
abundance of functional genes and metabolic pathways87. The
annotation results were organized according to Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthologues (KOs), Clusters of
Orthologous Group of proteins (COG) functional categories and
MetaCyc functional pathways using “humann3_regroup_table” script.
The abundance of functional gene was expressed as Transcripts per
million.

Estimation of ecological processes
The estimation of ecological processes was performed according to
Stegen et al.88. The aim of framework is to quantitatively estimate the
degree to which spatial turnover in community composition is influ-
enced by selection, drift acting alone, dispersal limitation acting in
concert with drift and homogenizing dispersal. The estimation of
ecological processes followed a two-step procedure. First, we quanti-
fied βNTI (β-nearest taxon index) for all pairwise community com-
parisons. A value of |βNTI| > 2 indicates that observed turnover
between a pair of communities is governed primarily by selection.
A value of |βNTI| < 2 indicates that observed turnover between a pair of
communities is governed by drift, dispersal limitation and homo-
genizing dispersal. βNTI < − 2 indicates significantly less phylogenetic
turnover than expected (i.e., homogeneous selection) while βNTI > 2
indicates significantly more phylogenetic turnover than expected
(i.e., variable selection). Second, we quantified Raup–Crick (RCbray) for
pairwise community comparisons thatwere not governed by selection
(that is, those with |βNTI| < 2). The relative influence of homogenizing
dispersal was quantified as the fraction of pairwise comparisons with
|βNT | < 2 and RCBray < –0.95. Dispersal limitation was quantified as the
fraction of pairwise comparisons with |βNTI| < 2 and RCBray > 0.95. The
fractions of all pairwise comparisons with |βNTI| < 2 and |RCBray| < 0.95
were used to estimate influence of “undominated” assembly, which
mostly consists of weak selection, weak dispersal, diversification, and/
or drift89. βNTI and RCBray could differentiate the relative importance
of five assembly processes to the whole community. The five assembly
processes were assessed for their relative importance in governing
community variations under agricultural land-use change.

Statistical analyses
All statistical analyses were conducted in the statistical platform
R (V4.2.1; http://www.r-project.org/; Supplementary Table 4).

Large-scale microbial homogenization was reflected by a decrease in
community turnover rate (decreased β-diversity in space). To analyse
the response of β-diversity to agricultural conversion, we calculated
taxonomic (16S) and functional (KEGG and COG module level) com-
munity dissimilarity between sites using Bray–Curtis index. We tested
the effects of agricultural impacts on the relative abundance of
microbial taxonomic and functional groups using linear mixed-effects
model (LMM), in which sites were termed as random intercept effects.
Microbial functional groups were predicted by the Functional Anno-
tation of Prokaryotic Taxa (FAPROTAX)35 and PICRUSt290. Analysis of
LMM was conducted in lme4 R packages91. To characterize how
microbial communities differ, Principal coordinate analyses (PCoA)
were conducted on Bray–Curtis index to examine dissimilarities
among taxonomic and functional composition between croplands and
natural ecosystems. PERMANOVA was utilized to test the statistical
significance of dissimilarity among ecosystem types. To link soil
environmental and fungal variables to microbial communities, the
correlations between soil filtering and heterogeneity and fungal
functional groups were tested by Mantel correlations. Fungal phylo-
types were assigned into three functional groups—soil saprotrophs,
litter saprotrophs and plant pathogens using FungalTraits92. To assess
changes in functional genes with agricultural conversion, we calcu-
lated log2-fold changes in croplands relative to natural ecosystems
(forests, grasslands, and wetlands) using DESeq2 with the apeglm
shrinkage algorithm. We also used DESeq2 to identify microbial phy-
lotypes, and functional gene annotation assigned to COG and KEGG
that significantly increased, decreased and unchanged under agri-
cultural impacts relative to natural ecosystems.

To discern the direct and indirect effects of agricultural impacts
on microbial composition and soil functions, a structural equation
model was conducted to assess the causal relationships among agri-
cultural land-use change, soil environmental variables, fungal com-
munities, and microbial composition and soil functions. We first
considered a hypothesized conceptual model (Supplementary Fig. 11)
that included all reasonable pathways. Then, we sequentially elimi-
nated non-significant pathways unless the pathways were biologically
informative or added pathways on the basis of the residual
correlations75. Three metrics were used to quantify the goodness of fit
of SEM models: the χ2 test, the root mean square error of approx-
imation (RMSEA), and the Comparative Fit Index (CFI). Specifically, the
closer to 1 CFI value, closer to 0 RMSEA values, and the higher χ2 and
RMSEA P values, the better model performs.With a goodmodel fit, we
were able to interpret the path coefficients of the model and their
associated P values. A path coefficient is analogous to the partial cor-
relation coefficient, and describes the strength and sign of the rela-
tionship between two variables. Microbial taxonomic composition
(16S) and functional (KEGG) composition were represented by the
principal coordinate analyses 1, the first component of PCoA analysis.
SEMwere conducted using 40 site samples in the “lavaan”package inR
environment93.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data required to reproduce the results are available in the Figshare
Database (https://doi.org/10.6084/m9.figshare.25396525). The raw
sequence data that support the findings of this study are openly
available in the Beijing Institute of Genomics (BIG) Data Center, Chi-
nese Academy of Sciences, under BioProject accession no.
PRJCA020242 (16S amplicon) and PRJCA020245 (Metagenomics) and
are publicly accessible at http://bigd.big.ac.cn/gsa. Source data are
provided with this paper.
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Code availability
All scripts are available on GitHub (https://github.com/Pong2021/
Agricultural-impacts-on-soil-microbiome-function.git) and Zenodo94.
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