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Fine-mapping analysis including over
254,000 East Asian and European
descendants identifies 136 putative
colorectal cancer susceptibility genes

A list of authors and their affiliations appears at the end of the paper

Genome-wide association studies (GWAS) have identified more than 200
common genetic variants independently associated with colorectal cancer
(CRC) risk, but the causal variants and target genes are mostly unknown. We
sought to fine-map all known CRC risk loci using GWAS data from 100,204
cases and 154,587 controls of East Asian and European ancestry. Our stepwise
conditional analyses revealed 238 independent association signals of CRC risk,
each with a set of credible causal variants (CCVs), of which 28 signals had a
single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal
tissue-specific transcriptome and methylome data separately from 1299 and
321 individuals, along with functional genomic investigation, uncovered 136
putative CRC susceptibility genes, including 56 genes not previously reported.
Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 puta-
tive CRC susceptibility genes with distinct expression patterns in specific cell
types. Analyses of whole exome sequencing data provided additional support
for several target genes identified in this study as CRC susceptibility genes.
Enrichment analyses of the 136 genes uncover pathways not previously linked
to CRC risk. Our study substantially expanded association signals for CRC and
provided additional insight into the biological mechanisms underlying CRC
development.

Colorectal cancer (CRC) is one of the most common malignancies
worldwide1. Inherited genetic factors play an important role in the
development of CRC2. Since 2007, genome-wide association studies
(GWAS) have identified over 200 common genetic variants indepen-
dently associated with CRC risk3–7. These GWAS, however, typically
only reported the most significantly associated variant (the lead var-
iant) at each risk locus. Statistical fine-mapping analyses of known risk
loci can identify additional association signals independent of the lead
variant.

Approximately 90% of GWAS-identified risk variants for CRC are
located in noncoding or intergenic regions, and target genes for most

of these risk variants remain unknown. Well-powered fine-mapping
analyses, particularly those using data from multi-ancestry popula-
tions, can facilitate the identification of credible causal variants (CCVs)
in each region. Previous genetic studies have provided strong evidence
that regulatory variants in linkage disequilibrium (LD) with GWAS-
identified risk variants drive the associations of genetic variants with
cancer risk by modulating the expression of susceptibility genes8–11.
Therefore, integrating functional genomic data to interrogate CCVs in
each independent risk-associated signal could help to identify putative
causal variants and target genes for CRC risk. Herein, we conducted
large trans-ancestry fine-mapping analyses of all currently known CRC
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risk regions, using GWAS data from 100,204 CRC cases and 154,587
controls of East Asian and European ancestry, to identify independent
association signals and their target genes for CRC risk.

Results
Identification of independent association signals with CRC risk
We conducted fine-mapping analyses using GWAS summary statistics
from 100,204 CRC cases and 154,587 controls (73% European and 27%
East Asian ancestry) (Fig. 1, Supplementary Data 1). In our recent trans-
ancestry meta-analysis of GWAS, we identified 205 genetic variants
independently associated with CRC risk7. We aggregated regions
flagged by these variants into 143 risk regions, each containing at least
a 1Mb interval centered on the most significant association (Supple-
mentaryData 2). Among them, 40 regions harbor at least two reported
independent risk associations. All risk regions were autosomal, except
the one at Xp22.2. For subsequent analyses, we focused on the 142
regions located on the autosomes.

We used forward stepwise conditional analyses to identify inde-
pendent association signals in each region in each population, con-
ditioning on the most significant association from the trans-ancestral
summary statistics (Supplementary Fig. 1, Methods). We then meta-
analyzed the conditioned data using the fixed-effects inverse variance
weighted model. We considered the threshold of conditional P < 1 ×
10−6 to determine independent significant associations to balance both
Type 1 and 2 errors, as recommended by a previous fine-mapping
study in breast cancer12. At this threshold, we identified 171 indepen-
dent association signals in 122 regions (Fig. 2, Supplementary Data 3).
To identify possible ancestry-specific association signals, we con-
ducted similar analyses using only summary statistics from each

population, conditioning on the ancestry-specific most significant
association. Using the same threshold, we identified 198 and 45 inde-
pendent association signals in European and East Asian descendants,
respectively (Supplementary Data 4 and 5). Of them, 60 signals in
European and 7 in East Asian were not detected in the trans-ancestry
analysis above, suggesting them as potential ancestry-specific risk
signals (Fig. 2).

In total, we identified 238 independent association signals either
from trans-ancestry or ancestry-specific analysis at these 142 regions
(Fig. 2). A total of 94 regions (66.2%) contained only a single associa-
tion signal, while the remaining 48 regions (33.8%) consisted of mul-
tiple independent association signals. Among the 238 independent
association signals, 191 signals had lead variants that were correlated
with previously GWAS-reported risk variants7 (LD r2 > 0.1 in either of
East Asian or European-ancestry population). The remaining 47 inde-
pendent signals (19.7%) have not been previously reported, including
18 from trans-ancestry, 28 from European-specific, and one from East
Asian-specific analyses (Fig. 2, Table 1). Among these 47 signals, 31
demonstrated significant associations with conditional P < 1 × 10−7,
including 28 signals reached genome-wide significance.

Identification of credible causal variants (CCVs) for independent
association signals
To identify CCVs for each independent association signal, we con-
ducted conditional analysis with adjustment of the lead variants for
other signals in the same risk region. We conducted this analysis for
trans-ancestral independent signals separately for each population to
account for differences in the LD structure and then meta-analyzed
conditioned results. Using a similar approach conducted in breast
cancer12, we defined variants as CCVs if they satisfied conditional P
values within two orders of magnitude of the most significant asso-
ciation, conditioning on all other independent association signals. We
identified a total of 5741 CCVs for the 238 signals, with the number of
CCVs per signal ranging from 1 to 249 (median: 11 CCVs per signal)
(Supplementary Data 6). For 28 risk signals, only a single CCV was
identified, suggesting that these CCVs are likely to be the causal var-
iants for these signals (Table 2).

For the 138 independent association signals identified in both
trans-ancestry and European-ancestry specific analyses (Supplemen-
tary Data 7), trans-ancestry analyses identified a smaller-sized set of
CCVs (mean = 23.2, median = 8.5), compared with European-ancestry
specific analysis (mean = 31.08, median = 15) (paired Wilcoxon test,
P = 4.9× 10−7). Interestingly, a singleCCVwas identified for 10 signals in
trans-ancestry analysis, while multiple CCV for them in European-
ancestry specific analysis, highlighting the value of using multi-
ancestry data to reduce the number of CCVs in fine-mapping analy-
sis. For instance, signal 1 in region_42 included 16CCVs in the European
set (lead variant: rs41302867), but only one variant in the trans-
ancestry set (rs9379084). The variant rs9379084 is a predicted-
deleterious missense variant (p.Asp1171Asn) of the RREB1 gene which
plays a regulatory role in Ras/Raf-mediated cell differentiation13, a
pathway well known to be implicated in CRC development.

Identification of target genes for CCVs
Of the 5741 CCVs identified in this study, 3716 (64.7%) are located in
regions with at least one of six genomic features (open chromatin,
transcribed regions of active genes, promoter, enhancer, repressed
gene regulatory elements, and transcription factor (TF) binding sites)
(Supplementary Data 6 and 8). To identify putative target genes of
these CCVs, we used functional genomic data generated in CRC-
related tissues/cells to conduct in-silico analyses with a modified
INQUISIT pipeline12 (Methods, Supplementary Data 9). We identified
72 putative target genes via CCVs located in distal enhancer elements
(Supplementary Data 10), 48 genes via CCVs located in proximal pro-
moter elements (Supplementary Data 11), and 19 genes that could be

Fig. 1 | Schematic diagram of the study design. We conducted fine-mapping
analyses using GWAS summary statistics from 100,204 cases and 154,587 controls.
All 205 genetic variants were aggregated to 143 risk regions containing at least a 1
megabase (Mb) interval centered on the most significant association. This study
focused on 142 risk regions located on the autosomes. In forward stepwise con-
ditional analysis, we included common variants (minor allele frequency (MAF) >
0.01) with associations at P <0.05 in both populations for the trans-ancestry ana-
lysis and with associations at P < 1 × 10−4 in each population for race-specific ana-
lysis. The threshold of conditional P < 1 × 10−6 was used to determine independent
risk-associated signals. For credible causal variants (CCVs) for each independent
signal, we conducted in-silico analyses with functional genomic data generated in
CRC-related tissues/cells and colocalization of expression/methylation quantitative
trait loci (e/mQTL) with GWAS signals to identify putative target genes for CCVs
using the Summary-data-based Mendelian Randomization (SMR) approach.

Article https://doi.org/10.1038/s41467-024-47399-x

Nature Communications |         (2024) 15:3557 2



targeted by CCVs in coding regions (i.e., deleterious missense, stop_-
gained, and start_lost) (Supplementary Data 12). In total, we identified
128genes associatedwithCCVs for 76 independent association signals,
with a range fromone to five putative target genes per signal. Of them,
52 independent association signals contain only a single putative
target gene.

Wealso conducted cis-expressionquantitative trait loci (cis-eQTL)
analyses to identify target genes using four transcriptome datasets
derived from either normal colon tissues or tumor-adjacent normal
colon tissues from 1299 individuals from the Genotype-Tissue
Expression (GTEx) project (n = 368 individuals predominantly of Eur-
opean ancestry), the BarcUVa-Seq project (n = 423 individuals of Eur-
opean ancestry), the Colonomics project (n = 144 individuals of
European ancestry), and the Asia Colorectal Cancer Consortium
(ACCC) (n = 364 individuals of East Asian ancestry) (Methods). At
Bonferroni-corrected P <0.05, we identified 153 genes associated with
the lead variants, including 127 genes in 65 independent association
signals and 30 in 15 signals identified from trans-ancestry and
European-ancestry specific analyses, respectively. We also identified
the PPP1R21 gene in a potential Asian-specific risk signal (lead variant
rs77272589) (Supplementary Data 13). Out of the 153 genes, 37 had
been previously identified by eQTL analysis5,10,11. For independent
association signals identified in European and trans-ancestry analyses,
we further performed cis-methylation quantitative trait loci (cis-
mQTL) analyses using two methylation datasets generated from 321
individuals from the GTEx project (n = 189 individuals predominantly
of European ancestry) and the Colonomics project (n = 132 individuals
of European ancestry). We found that DNA methylation levels at CpG
sites for 84 genes were associated with 71 independent association
signals, including 14 genes identified in previous mQTL analysis11

(Supplementary Data 14).
We next conducted colocalization analyses for identified likely

target genes in significant eQTL/mQTLs above using the Summary-
data-based Mendelian Randomization (SMR) approach (Methods).
Through the integration of eQTL/mQTL results andGWAS associations
signals, we identified 205 genes at Bonferroni-corrected PSMR <0.05
(Supplementary Data 15–19), including 150 genes from the eQTL ana-
lysis and 84 genes from the mQTL analysis. Of these, 45 (21.9%) genes
were also identified as targets of CCVs by in-silico analyses based on
functional genomic data as described above, and 29 genes were
identified in both mQTL and eQTL analyses. That is in line with pre-
vious observations in the overlap fraction between mQTL and eQTL14.
We considered genes with evidence of only mQTL colocalization, as
the enrichment of mQTLs in gene regulatory elements, as well as their
implications in other molecular phenotypes, such as chromatin
accessibility14,15. Notably, of the 55 genes only identified in the mQTL

analysis, seven genes were supported by the above in silico analyses
with functional genomic data, and 22 genes showed association with
CRC risk in previous TWAS and eQTL colocalization analysis7,11,16,17.

In total, we identified 288 putative target genes for 140 indepen-
dent association signals based on functional genomics data and/or
colocalization analysis. For 35 of these signals, multiple target gene
candidates were detected per signal, suggesting that some may be
false positives (Supplementary Data 20). To minimize false positive
findings, we further prioritized target gene candidates by analyzing
associations of genes with CRC risk based on previous transcriptome-
wide association studies (TWAS) and colocalizations between eQTL
and CRCGWAS signals7,11,16,17 (Methods). Finally, we obtained a credible
set of 136 protein-coding genes for 124 independent association sig-
nals. Among them, 56 genes were not previously identified as potential
targets for CRC risk associations, including nine genes in eight pre-
viously unreported association signals in this study (Table 3). The
remaining 80 genes were previously reported as potential CRC sus-
ceptibility genes, and our study provided additional supporting evi-
dence (Table 4)7,11,16,17.

Using scRNA-seq data to evaluate gene expression pattern by
cell types
To investigate potential underlying cell types of putative susceptibility
genes that contribute to CRC development, we analyzed single-cell
RNA-seq (scRNA-seq) datasets from normal colon tissues obtained
from 31 participants included in the Colorectal Molecular Atlas
Project18 (Methods). Of the 136 identified genes, 17 genes exhibited
significantly differential expression in specific cell types compared to
the other cell types at |log2 fold change (FC)| > 1 and a nominalP <0.05
(Supplementary Data 21). Nine of these genes (DIP2B, CIB1, HPGD,
CDKN2B, TMEM258,MYL12A,MYL12B, CDKN1A, and TMBIM1) showed a
distinct expression pattern in specific absorptive cells (ABS) cell,
underscoring the relevance of this cell type underlying CRC
development.

Using whole exome sequencing data to evaluate pathogenic
variants in target genes with CRC risk
We used whole exome sequencing data from 3362 CRC cases and
133,742 controls of European ancestry in the UK Biobank (UKBB) to
evaluate the association of CRC risk with putative candidate genes
identified our study using burden tests by aggregating either loss of
function (pLOF) or pLOF and deleterious missense variants (Dmis)
jointly in each gene (Methods). Of these 136 genes, MLH1 was sig-
nificantly associated with CRC risk with P = 1.35 × 10−7 when consider-
ing only pLOF in tests (at Bonferroni-corrected threshold, 0.05/136
testing). Additional nine genes (TNFSF18, LRP1, SMAD9, PDGFB, CIB1,

Fig. 2 | Independent association signals for colorectal cancer risk. Numbers of
fine-mapping regions and numbers of independent association signals identified
through forward stepwise conditional analyses. The second bar for “Trans-ances-
try”, “European” and “East Asian” also shows the number of regions with 1, 2, or 3+

signals per region. The green color indicates the number of independent associa-
tion signals previously reported or not yet reported. The blue color indicates the
number of independent associaiton signals in each risk region.
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STK39, IGFBP3, FUT2, and FUT3) showed nominal P <0.05 significance
considering only pLoF or combination of pLoF and Dmis, whereas no
significance was detected for the remaining genes.

Biological significance of the target genes for CCVs
We utilized Enrichr19–21 to analyze multiple pathway databases and
identify enriched biological pathways among the 136 credible target
genes (Methods). At a false-discovery rate (FDR) < 0.05, 126 pathways
showed significant enrichment (Supplementary Data 22). Our findings
were in line with our prior study18 and highlighted the enriched sig-
naling pathways such as TGF-β, BMP, Wnt, Hippo, and TNF-α/NF-κB,
which are known to play a crucial role in the development and pro-
gression of colorectal cancer19,20. Of the 56 genes not previously
reported, nine genes (TGIF1, CDKN2B, MYC, BMP7, WNT7B, PRICKLE2,
LGR6, CEBPB, and IRS2) were mapped to these pathways (Table 5).
Additionally, we identified several significant pathways, including
those related to cancer, pluripotency of stem cells,
epithelial–mesenchymal transition, extracellular matrix organization,
adipogenesis, senescence, and autophagy in cancer. Interestingly, we
also identified the glycolysis pathway, which provides energy support
for cancer cells, as a significant pathway not previously reported. Four
previously unreported genes, GOT1, IGFBP3, IRS2, and LCT, were
mapped to glycolysis, supporting their association with CRC risk.

In addition, we performed functional annotation analysis on each
credible target gene and assigned them to previously described cel-
lularprocesses18 (Supplementary Fig. 2). Of the 56genes not previously
reported, 26 were found to be involved in these cellular processes.
Specifically, five genes were related to stemness/differentiation, one
gene was linked to adhesion/migration, and six genes were associated
with proliferation. Interestingly, we also identified an additional cel-
lular process, post-translation modifications (PTMs) of protein, which
included three genes (DACF12, USP12, and SENP8). These findings
suggest potential critical roles of PTMs in the development of CRC.

Discussion
Our study, including approximately 254,000 individuals of East Asian
and European ancestry, represents the largest study conducted to fine-
map CRC risk-associated genomic regions using GWAS data.
We identified 238 independent association signals at conditional
P value < 1 × 10−6, including 47 signals not reported previously. Fur-
thermore, integrating functional genomic data and results from cis-
eQTL/mQTL and colocalization analyses, we identified 136 putative
CRC susceptibility genes, including 56 genes that had not been pre-
viously reported. Notably, these identified genes are significantly
enriched in several major CRC signaling pathways and other cancer-
related pathways. Our findings not only significantly expanded the
number of associated signals forCRC, but alsoprovide substantial data
to advance our understanding of CRC biology.

The integration of comprehensive functional genomic data from
relevant colon tissues and cell lines, as well as genetic associations data,
can facilitate the identification of potential target genes for CRC risk.
Our study significantly extends previous efforts7,11,16,17 by identifying 56
target gene candidates not previously reported forCRC risk, over half of
which (29/56, 51.8%) are involved in the enriched biological pathways.
For instance, eight target genes (TGIF1, CDKN2B, LGR6,MYC, PRICKLE2,
WNT7B, BMP7, and TBX3) identified in this study may regulate normal
intestinal homeostasis as they play roles in signaling pathways (i.e., Wnt
and BMP) and pluripotency of stem cells. LGR6, for instance, is part of a
G-protein-coupled receptor family and marks stem cells in the
epidermis22. It activates a novel β-catenin/TCF7L2/LGR6-positive feed-
back loop in LGR6high cervical cancer stem cells (CSCs) to enhance the
properties of cancer stem cells, including self-renewal, differentiation,
and tumorigenicity23. Silencing of LGR6 resulted in the inhibition of
stemness by repressing Wnt/β-catenin signaling in ovarian cancer24.
TBX3, a transcriptional repressor, regulates stem cell maintenance byTa
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controlling stem cell self-renewal and differentiation, and reduced
expression levels of TBX3 are associated with reduced pluripotency of
stem cells25,26.MYC andWNT7B are implicated in the signaling related to
the self-renewal and differentiation of cancer stem cells27. Here, we
linked MYC and WNT7B with credible causal variants of CRC risk asso-
ciations through functional genomic interaction. Our findings also
indicated the relevance of glycolysis to CRC risk associations, a meta-
bolic pathway critical in early CRC tumorigenesis by supporting the
energetic and biosynthetic demands of CRC cells28,29. It should be noted
that future studies are needed to validate chromatin interactions
between identified CCVs and their target genes in this study by
employing chromatin conformation capture technology such as in situ
Hi-C, Capture Hi-C (CHi-C), and HiChIP.

Additional evidence supports someof the candidate target genes
identified in our study as possible CRC susceptibility genes. In our
differential gene expression analysis among normal colon mucosa,
adenoma, and adenocarcinoma using gene expression data from 135
normal colon mucosas, 218 colon adenomas, and 2760 colon ade-
nocarcinomas, we observed that 26 genes showed significant differ-
ential expression between adenoma and normal colon tissues, while
31 genes showed significant differential expression between carci-
noma and adenoma tissues (adjusted P < 0.05) (Supplementary
Data 20). Interestingly, three stemness/differentiation-related genes,
including LRRC34, CEBPB, and TBX3, showed significant changes in
their expression levels in adenoma compared to normal colon

mucosa. Additionally, 34 (60.7%) of not previously identified genes
have been implicated in cancer-related functions in in vitro or
in vivo functional experimental studies in CRC or other cancer types
(Supplementary Data 20). These results provide further evidence
supporting the potential involvement of these genes in CRC pro-
gression. Despite the above supportive evidence, it remains necessary
to evaluate the functions of identified putative CRC susceptibility
genes through both in vitro and in vivo assays in future investigations.

The trans-ancestry and ancestry-specific fine-mapping analyses
conducted in this study not only enabled the discovery of independent
association signals that are shared across populations of European and
East Asian ancestry, but also revealed ancestry-specific signals. The
larger sample size of the European-ancestry study enabled us to
identify a larger number of independent association signals than the
study conducted on Asians. However, there are some ancestry-specific
signals identified in this study,which ismost likelydue todifferences in
LD structures and allele frequency between these two populations.
Indeed, we observed distinct differences in the allele frequency for
most ancestry-specific signals, as shown in Supplementary
Data 4 and 5. For instance, the lead variant of 24 European ancestry-
specific signals (40%, 24/60) is not detected among EastAsian-ancestry
populations. On the other hand, fine-mapping analyses capitalizing on
ancestry differences in LD structure can substantially reduce the
credible set size compared to European-ancestry specific analysis.
This highlights the value of multi-ancestry fine-mapping over

Table 2 | Independent association signals with a single CCV

Fine-mapping region SNP Chr Position Alleles AF OR (95% CI) P valuea Putative target gene(s)b

European-specific analysis

region_45 rs116000952 6 32541270 T/G 0.843 0.92 (0.89–0.96) 5.74E−06 –

region_45 rs6920820 6 30969938 C/G 0.980 0.84 (0.79–0.90) 6.87E−08 LINC00243

region_61 rs72681666 8 117641754 T/C 0.043 1.09 (1.05–1.13) 1.57E−05 –

region_62 rs77569096 8 128468955 A/G 0.763 0.92 (0.90–0.94) 2.06E−15 –

region_84 rs3217810 12 4388271 T/C 0.127 1.13 (1.11–1.16) 1.96E−26 –

region_108 rs144674978 15 33149751 T/C 0.013 1.34 (1.25–1.43) 1.11E−18 –

region_133 rs149942633 20 48983073 T/C 0.153 1.12 (1.08–1.16) 1.93E−08 –

Trans-ancestry analysis

region_1 rs112191583 1 22554378 T/C 0.974 0.88 (0.83–0.92) 1.19E−07 –

region_24 rs704417 3 64252424 T/C 0.546 1.05 (1.03–1.06) 4.35E−10 –

region_27 rs113569514 3 133748789 T/C 0.763 1.08 (1.07–1.10) 1.92E−21 SLCO2A1

region_29 rs2578155 4 94836291 C/G 0.503 1.04 (1.03–1.06) 1.09E−09 –

region_42 rs9379084 6 7231843 A/G 0.144 0.93 (0.91–0.95) 2.39E−12 RREB1

region_46 rs16878812 6 35569562 A/G 0.892 1.09 (1.07–1.12) 7.62E−15 FKBP5

region_48 rs6933790 6 41672769 T/C 0.788 1.08 (1.06–1.10) 2.66E−20 –

region_61 rs4129064 8 117735666 T/G 0.734 1.06 (1.04–1.07) 1.01E−09 –

region_62 rs6983267 8 128413305 T/G 0.508 0.86 (0.85–0.87) 1.65E−122 MYC

region_72 rs704017 10 80819132 A/G 0.473 0.92 (0.91–0.93) 1.97E−38 –

region_84 rs12818766 12 4376091 A/G 0.215 1.10 (1.08–1.12) 1.81E−29 –

region_89 rs7398375 12 57540848 C/G 0.651 1.07 (1.05–1.09) 3.70E−19 LRP1

region_94 rs11067228 12 115094260 A/G 0.560 0.95 (0.94–0.97) 2.50E−13 –

region_96 rs116964464 13 27543193 T/C 0.035 1.11 (1.07–1.15) 4.83E−09 USP12

region_99 rs7325844 13 73625133 A/G 0.639 1.05 (1.04–1.07) 1.28E−12 –

region_104 rs35107139 14 54419106 A/C 0.550 0.92 (0.91–0.93) 4.22E−36 –

region_105 rs8020436 14 59208437 A/G 0.370 1.06 (1.05–1.08) 1.27E−17 –

region_108 rs17816465 15 33156386 A/G 0.193 1.09 (1.07–1.10) 5.73E−20 –

region_116 rs1078643 17 10707241 A/G 0.765 1.09 (1.07–1.11) 2.31E−27 –

region_132 rs6066825 20 47340117 A/G 0.662 1.08 (1.07–1.10) 2.13E−32 –

region_136 rs1741640 20 60932414 T/C 0.208 0.88 (0.86–0.89) 8.15E−55 LAMA5, CABLES2

Chr and Position GRCh37, Alleles risk allele/Reference allele, AF Allele frequency, OR odds ratio, CI confidence interval. aP value derived from trans-ancestry or European-ancestry meta-analysis
under the fixed-effects inverse variance weighted model; b”-“ – No target genes were prioritized for the variant in this study.
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Table 3 | The 56 CRC susceptibility gene candidates not previously reported

Fine-mapping region Gene Lead variant Distal Proximal Coding Colocalization (eQTL) Colocalization (mQTL)

region_1 CELA3B rs11579545 +

region_1 HSPG2 rs11579545 + + +

region_5 PTGER3 rs2651244 +

region_7 TNFSF18 rs10489274 +

region_9 LGR6 rs12122827 +

region_10 CNTN2 rs12078075 + +

region_12 FMN2 rs2078095 +

region_14 PPP1R21 rs77272589 + +

region_16 LCT rs1446585 +

region_21 GOLGA4 rs1800734 +

region_21 MLH1 rs1800734 + +

region_24 ADAMTS9 rs6445418 +

region_24 PRICKLE2 rs704417 +

region_27 SLCO2A1 rs113569514 +

region_28 LRRC34 rs10936599 +

region_28 ACTRT3 rs10936599 + +

region_28 MYNN rs10936599 + +

region_34 HPGD rs1426947 +

region_42 LY86 rs1294438 +

region_44 OR2I1P rs73402748 +

region_46 SRPK1 rs16878812 +

region_49 RUNX2 rs57939401 +

region_55 IGFBP3 rs80077929 +

region_62 MYC rs4733655, rs6983267 +

region_63 CDKN2B rs7859362 +

region_63 MTAP rs7859362 +

region_68 VAV2 rs7038489 +

region_73 KIF20B rs140356782 +

region_73 PANK1 rs140356782 + +

region_74 GOT1 rs117746067 +

region_75 BORCS7 rs12268849 +

region_75 AS3MT rs12268849 + +

region_79 ANO1 rs10751097 +

region_92 NTN4 rs11108175 +

region_93 CUX2 rs3858704 +

region_94 TBX3 rs7300312, rs11067228 + +

region_96 USP12 rs116964464 +

region_101 IRS2 rs1078563 +

region_101 COL4A2 rs4773184 +

region_107 BCL11B rs80158569 +

region_108 GOLGA8N rs56338436 +

region_110 SENP8 rs8031386 + +

region_111 CIB1 rs12913420 + +

region_111 ZNF774 rs7179095 +

region_119 MYL12A rs1612128 +

region_119 MYL12B rs1612128 +

region_119 TGIF1 rs1612128 +

region_125 B3GNT8 rs1963413 +

region_133 CEBPB rs1971480 +

region_134 RBM38 rs34161672 +

region_134 BMP7 rs6014965 + +

region_138 LSS rs9983528 + +

region_138 PCNT rs9983528 + +

region_138 SPATC1L rs9983528 + +

region_142 WNT7B rs62228060 +

region_142 ATXN10 rs78106213 +

The lead variant for eachgene is presented by independent association signals. Supporting evidence for the likely target gene is presented as follows: “Distal”—the CCV(s) located in distal enhancer
elements of the gene; “Proxmial”—theCCV(s) located inproximal promoter element of thegene; “Coding”—theCCV ispotential loss-of-function variants of thegene; “Colocalization (eQTL)”—target
genes identified from eQTL colocalization analysis; “Colocalization (mQTL)”—target genes identified from mQTL colocalization analysis. “+” indicates the presense of supportive evidence.
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Table 4 | The 80 previously reported CRC susceptibility genes supported in this study

Fine-mapping
region

Gene Lead variant Distal Proximal Coding Colocalization (eQTL) Colocalization (mQTL)

region_1 WNT4 rs6426749 +

region_2 FHL3 rs61776719 + +

region_8 LAMC1 rs8179460 + +

region_9 LMOD1 rs12137232 + +

region_15 ACTR1B rs11692435 + +

region_18 STK39 rs4668039 + + +

region_20 TMBIM1 rs3731861 + + + +

region_23 SFMBT1 rs2001732, rs2581817 + +

region_26 BOC rs73235124 +

region_30 TET2 rs2047409, rs902443 + +

region_31 UGT8 rs3924508 +

region_35 TERT rs2735940 +

region_40 CDX1 rs2302275 +

region_41 ERGIC1 rs472959 +

region_42 RREB1 rs9379084 +

region_43 EDN1 rs2070699 +

region_43 HIVEP1 rs4714081 + +

region_47 CDKN1A rs9470361 +

region_48 TFEB rs6933790 +

region_52 DCBLD1 rs6911915 +

region_53 TCF21 rs151127921 +

region_54 GNA12 rs1182197 + + +

region_55 TBRG4 rs67681615 +

region_55 TNS3 rs6948177 +

region_56 ABHD11 rs7806956 + +

region_57 TRIM4 rs2527927 + +

region_62 POU5F1B rs6983267 +

region_64 DCAF12 rs11557154 +

region_68 BRD3 rs11789898 + +

region_70 BAMBI rs1773860 +

region_71 ASAH2B rs10740013 +

region_72 ZMIZ1 rs704017 +

region_74 ENTPD7 rs35564340 +

region_76 TCF7L2 rs4554812 +

region_78 TMEM258 rs174570 +

region_81 TRPC6 rs2186607 +

region_82 ARHGAP20 rs3087967 +

region_82 FDX1 rs3087967 +

region_83 BCL9L rs497916 +

region_85 PLEKHG6 rs10849434, rs1003563 + + +

region_88 CERS5 rs11169572 +

region_88 ATF1 rs11169572 + +

region_88 DIP2B rs11169572 + +

region_89 LRP1 rs7398375 + + +

region_91 TSPAN8 rs11178634 + +

region_98 SMAD9 rs12427846 + + +

region_99 KLF5 rs1304959, rs78341008 +

region_102 NIN rs1042266 +

region_102 ABHD12B rs1042266 + +

region_102 PYGL rs1042266 + +

region_103 NID2 rs1151580 + +

region_104 BMP4 rs1957628, rs35107139 + +

region_105 DACT1 rs8020436 + +

region_108 GREM1 rs16970016 +
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single-ancestry analysis. Our analysis is limited to two ancestry groups.
Further studies should increase the diversity of genetic data, including
those from other racial groups.

In summary, our large trans-ancestry fine-mapping analysis has
identified large numbers of not previously reported independent asso-
ciation signals for CRC risk and refined the majority of the previously
reported association signals. By leveraging data from two ancestries, we
further defined putative causal variants underlying CRC risk signals. Our
study has also uncovered a credible set of target genes. These findings
offer a significant advancement in our understanding of the genetic and
biological processes underlying CRC and provide a roadmap for further
investigation of variants and genes identified in our study.

Methods
GWAS data and meta-analysis
The GWAS data used in this study comprised 100,204 CRC cases and
154,587 controls (Supplementary Data 1), which were grouped into 31
GWAS analytical units based on the study or genotyping platform as
consistent with the original reports. Of them, 17 datasets were derived
from populations of European descent and 14 were from populations
of Asian descent. These 31 GWAS datasets were meta-analyzed under
the fixed-effects inverse variance weighted model implemented in
METAL30. Further details regarding each analytical unit and meta-
analysis were described in Supplementary Note.

Identifying independent association signals
A total of 205 independent genetic associations havebeen reported for
CRC risk by GWAS7. To define fine-mapping regions for CRC, we

aggregated these risk variants using bedtools. Specifically, we identi-
fied 1 megabase (Mb) intervals centered on the risk variants, and if
therewere regions of overlap, we combined them into a single interval
over 1Mb. In total, we determined 143 fine-mapping regions, including
142 on autosomes and one on chromosomeX (SupplementaryData 2).
Our fine-mapping analysis and downstream analyses focused on the
142 genomic risk regions on autosomes.

To identify distinct association signals within each risk region, we
conducted a forward stepwise conditional analysis for summary statis-
tics from the trans-ancestral meta-analysis, using GCTA-COJO31,32. We
included common variants (MAF >0.01) with associations at P<0.05 in
both populations. To account for differences in the LD structure, we
conducted conditional analysis in each population for each fine-
mapping region, conditioning on the most significant association
from the trans-ancestral summary statistics.We thenmeta-analyzed the
conditioned results using the fixed-effects inverse variance weighted
model withMETAL. To identify potential ancestry-specific independent
signals, we also performed conditional analysis in each population,
conditioning on the ancestry-specific most significant association.
Common variants (MAF >0.01) with association at P< 1 × 10−4 in each
population were included. For LD estimation, we used genotyping data
from 6684 unrelated samples of Asian descent33, and 503 European
samples in the 1000 Genome project as the reference.

Following a previous study conducted for breast cancer12, we
applied the conditional P value < 1 × 10−6 to define the independent
signal. For each region, we first adjusted for the most significant
association and then added any additional variant that remained an
independent signal at the conditional P value < 1 × 10−6 to the

Table 4 (continued) | The 80 previously reported CRC susceptibility genes supported in this study

Fine-mapping
region

Gene Lead variant Distal Proximal Coding Colocalization (eQTL) Colocalization (mQTL)

region_109 SMAD6 rs3809570 + +

region_109 SMAD3 rs56324967 +

region_112 ZFP90 rs9924886 +

region_112 CDH1 rs9924886 + + +

region_115 NXN rs11247566 +

region_117 SOX9 rs112592783 +

region_118 METRNL rs35204860 + +

region_120 SMAD7 rs4939821, rs2337113 + +

region_122 FUT3 rs10409772 + +

region_124 RHPN2 rs28840750 + +

region_126 FUT2 rs12460535 + +

region_127 TRIM28 rs11670192 +

region_127 ZNF584 rs8099852, rs11670192 + +

region_128 BMP2 rs990999 +

region_130 MAP1LC3A rs6059938 +

region_130 MYH7B rs6059938 +

region_131 TOX2 rs6073241 + +

region_132 PREX1 rs6066825 +

region_133 PARD6B rs6091213 +

region_133 PTPN1 rs6091213 +

region_135 GNAS rs8121252 +

region_136 RBBP8NL rs1741640 +

region_137 STMN3 rs6089763 +

region_139 ZNRF3 rs4616575 + +

region_140 PDGFB rs130651 +

region_142 RIBC2 rs6007600 + +

The lead variant for eachgene is presented by independent association signals. Supporting evidence for the likely target gene is presented as follows: “Distal”—the CCV(s) located in distal enhancer
elements of the gene; “Proxmial”—theCCV(s) located inproximal promoter element of thegene; “Coding”—theCCV ispotential loss-of-function variants of thegene; “Colocalization (eQTL)”—target
genes identified from eQTL colocalization analysis; “Colocalization (mQTL)”—target genes identified from mQTL colocalization analysis. “+” indicates the presense of supportive evidence.
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conditional set. We then repeated the conditional analysis until no
more variants met the significance threshold. In regions with multiple
independent signals, we determined the index variant for each signal
through a process of conditional analysis, adjusting for the index
variants of the other signals. This process was repeated until the set of
index variants were stabilized. The variant with the strongest residual
association was defined as the index for the signal.

For independent association signals identified in ancestry-specific
analyses, we compared them with those from trans-ancestry analyses
by assessing correlations between their lead variants within each risk
region. If a signal was consistently found in both ancestry-specific and
trans-ancestry analyses (i.e., the same lead variant or correlated lead
variants with LD r2 > 0.1 in each corresponding population), we con-
sidered it as a sharing signal between Asian and European-ancestry
populations. Otherwise, they were defined as ancestry-specific signals.

Identifying a set of CCVs of each independent signal
To determine the CCVs of each independent signal, we used the
approachdescribed in aprevious study for breast cancer12. Specifically,
variants that have a conditionalP valuewithin twoorders ofmagnitude
of the most significant association, conditioning on all other inde-
pendent association signals, were defined as CCVs.

RNA-seq data analysis
We conducted mRNA sequencing on tumor-adjacent normal colon
tissues obtained from 364 East Asians patients with colorectal cancer
whoparticipated in the ACCC. Furthermore, we includedRNA-seq data
from normal colon tissues from 423 individuals of European ancestry
whoparticipated in the BarcUVa-Seqproject. Included subjects, library
preparation and sequencing of colon tissue samples in the ACCC and
the BarcUVa-Seq project have been presented in Supplementary Note.

The raw RNA-seq data were processed according to the pipeline of
the GTEx Consortium. Sequencing reads were aligned to the reference
genome GRCh37 (RNA-seq data from East Asians) or GRCh38 (RNA-seq
data fromtheBarcUVa-Seqproject)withSTAR (v2.5.4)34. Quality control
of aligned samples was performed using RNA-SeQC (v2.3.5)35. Samples
that met any of the following criteria were removed: (1) <10 million
mapped reads; (2) readmapping rate < 0.2; (3) intergenicmapping rate

>0.4; (4) base mismatch rate >0.01 for read mate 1 or >0.02 for read
mate 2; and (5) rRNA mapping rate >0.3. If the sample had replicated
RNA-seq data, the one with the highest mapped reads was retained.

Gene-level expression quantification was performed using RNA-
SeQC based on the GENCODE release 19 annotation (for RNA-seq data
from East Asians) and the GENCODE release 26 annotation (for RNA-
seq data from the BarcUVa-Seq project)36. The read counts and TPM
values of genes were calculated using aligned reads with the following
criteria: (1) reads were uniquely mapped; (2) aligned reads were
properly paired; (3) the read alignment distance was <6. The genes
with expression thresholds of ≥0.1 TPM in ≥20% of samples and ≥6
reads (unnormalized) in ≥20% of samples were selected. Quantile
normalization of the gene expression was performed. We further
performed rank-based inverse normal transformation for the expres-
sions of genes across samples.

Cis-expression/methylation quantitative loci (cis-eQTL/mQTL)
analysis
To identify target genes, we performed cis-eQTL analysis based on a
linear regression framework10,11. Gene expression data from four
expression datasets comprising a total of 1,299 individuals were
used: 1) GTEx project of transverse colon tissues from 368 individuals
predominantly of European ancestry, 2) Colonomics project of nor-
mal colon tissues or tumor-adjacent normal colon tissues from 144
individuals of European ancestry, 3) BarcUVa-Seq project of normal
colon tissues from 423 individuals of European ancestry, and 4)
ACCC of tumor-adjacent normal colon tissue from 364 CRC patients
of East Asian ancestry. We obtained available cis-eQTL results for
CCVs and their nearby genes (within 1Mb to CCV) from the GTEx
database (version 8) and the Colonomics project. Details for gene
expression data and eQTL analysis in the Colonomics project are
explained elsewhere37. For the analyses using the remaining two
datasets, we conducted a linear regression analysis to assess the
associations between CCV and the normalized expression levels of
nearby genes (within 1Mb to CCV), adjusting for age, gender, and five
top principal components.

We conducted cis-mQTL analysis for CCVs identified in European
and trans-ancestry analyses. To do this, we included methylation data

Table 5 | Significant enrichment in biological pathways

Pathwaysa Genesb

TGF-beta signaling BAMBI, BMP2, BMP4, BMP7, CDH1, CDKN2B, GREM1, MYC, RUNX2, SMAD3, SMAD6, SMAD7, SMAD9, TGIF1

Hippo signaling BMP2, BMP4, BMP7, CDH1, GNAS, MYC, PARD6B, SMAD3, SMAD7, TCF7L2, WNT4, WNT7B

TNF-alpha Signaling via NF-kB TGIF1, BMP2, CDKN1A, EDN1, CEBPB, SMAD3, MYC, IRS2

BMP signaling BMP2, SMAD6, RUNX2, SMAD9, SMAD7

Pluripotency of stem cells POU5F1B, BMP4, SMAD3, MYC, WNT7B, SMAD9, TBX3, WNT4, PDGFB, SMAD6, SMAD7, TCF7L2

Epithelial–mesenchymal transition SMAD3, CDH1, RUNX2, GREM1, COL4A2, LRP1, IGFBP3, LAMC1, NID2, WNT7B, WNT4

Extracellular matrix organization BMP4, BMP2, COL4A2, PDGFB, NTN4, LAMC1, HSPG2, NID2, BMP7, ADAMTS9

Senescence and Autophagy BMP2, CDKN1A, CEBPB, SMAD3, MAP1LC3A, IGFBP3, CDKN2B, MYC, KLF5

DNA damage response TCF7L2, CDKN1A, SMAD3, MYC, WNT7B, WNT4

Cell cycle CDKN1A, CDKN2B, SMAD3, MYC

Focal adhesion COL4A2, PDGFB, LAMC1, MYL12A, MYL12B, VAV2

Adherens junction PTPN1, TCF7L2, SMAD3, CDH1

Glycolysis GOT1, IGFBP3, IRS2, SOX9, PYGL, LCT

Proteoglycans in cancer CDKN1A, MYC, WNT7B, HSPG2, WNT4, VAV2

Androgen Response HPGD, ZMIZ1, STK39, MYL12A

Sphingolipid Metabolism UGT8, CERS5

Other cancer related pathwaysc TCF7L2, CDKN1A, EDN1, CDKN2B, SMAD3, WNT7B, PTGER3, PDGFB, LAMC1, MLH1, BMP4, BMP2, COL4A2, TERT, CDH1, MYC,
GNA12, GNAS, WNT4, ATF1, CEBPB, BCL11B, HPGD, IGFBP3, RUNX2, ZMIZ1, SMAD6, SMAD7, VAV2, TFEB

aGenes from the same or similar pathway item in multiple databases were combined.
bGenes identified in this study for each pathway item are highlighted in bold.
cGenes from all general cancer-related pathways (i.e., pathway in cancer, colorectal cancer) identified in multiple databases were combined.
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obtained from a total of 321 individuals. These datasets consisted of
189 transverse colon tissues predominantly of European ancestry from
GTEx, as well as normal colon tissues or tumor-adjacent normal colon
tissues of 132 individuals of European ancestry from the Colonomics
project. We extracted cis-mQTL results for CCVs and their nearby CpG
sites (within 1Mb to CCV) from the GTEx database (version 8)14. In the
Colonomics project, a linear regression analysis was used to evaluate
the associations between CCV and the normalized methylation levels
of CpG sites (within 1Mb toCCV), with adjustments of age, gender, and
colon sites (right/left). Further details about the cis-mQTL in the
Colonomics project can be found in previous studies37,38.

Meta-analysis of cis-eQTL/mQTL results
We performed a meta-analysis to integrate the summary cis-eQTL/
mQTL results based on beta and p values from different datasets10,11. In
brief, we calculated the z score from function qnorm(p/2)*sign(beta)
and further converted the standard z score derived from
sum(z*sqrt(N))/sqrt(sum(N)) with a normalized weighted sampled
size. Here, beta and p value were derived from eQTL/mQTL results and
N referred to the sample size for each dataset. The meta p value was
derived from the standard z score. For independent signals detected in
both European and Asian populations, the eQTL results from both
populations were combined.

We adjusted the combined p-values of eQTL/mQTL results with
the Bonferroni procedure. The procedure was conducted for index
variants of independent association signals. The Bonferroni-adjusted
P <0.05 was applied to identify potential target genes for each signal.

Colocalization analyses between GWAS association signals and
eQTL/mQTL signals
To identify putative target genes, we employed the SMR method to
conduct a colocalization analysis39. We integrated GWAS summary
statistics of CCVs and their associations with genes from eQTL/mQTL
analysis described above. The results of meta-analyses on cis-eQTLs/
mQTLs were used. Specifically, we have a statistic:

TSMR =b
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xy=Var bxy
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Here, Zzx and Zzy are the Z statistics for the GWAS summary sta-
tistics and the cis-eQTL/mQTL results, respectively. TSMR is the
χ2 statistic, which tests the significance of bxy. The significant coloca-
lized signals were determined based on the threshold of the
Bonferroni-corrected PSMR < 0.05 within each independent signal.

Functional annotation of CCVs
We investigated whether each potential causal variant was mapped to
gene regulatory regions (i.e., promoter or enhancer) (Supplementary
Data 8). We obtained 351 chromatin immunoprecipitation sequencing
(ChIP-seq) peak files for histone modification marks and transcription
factors, and 25 DNase I hypersensitive sites sequencing peak files for
chromatin accessibility, generated innormal colorectal epitheliumand
CRC cell lines from the Cistrome database40,41. Only peaks that met all
six quality controls set recommended by Cistrome were analyzed.
Additionally, we obtained available ChIP-seq data of histone mod-
ification marks from colon tissues, tumor tissues of CRC, and CRC cell
lines from Gene Expression Omnibus (GEO), which included 16 from
GSE13392842, 215 from GSE13688943 and 233 from GSE15661344. To
generate coverage tracks Bigwig (bw) files for ChIP-seq data, we con-
verted them to bedGraph files and then identified peaks with the
subcommand bdgpeakcall from macs245. For each variant, we exam-
ined whether it was mapped to a peak region of histone modification
marks, DNase I hypersensitive, or transcription factors binding sites
using an in-house script.

In silico prediction of regulatory element-to-gene
Since the majority of the CCVs are located outside protein-coding
regions, genes can potentially be regulated by CCVs located in distal
enhancer elements and proximal promoter elements. Hence, we
identified an extensive set of functional genomic data from normal
colon tissues or tumor tissues of colorectal cancer or colorectal cancer
cell lines (Supplementary Data 9). Subsequently, we conducted an in-
silico analysis for each CCV-gene pair.

We used a variety of experimental and computational functional
genomic data to identify target genes of CCVs in regulatory elements.
Specifically, for distal regulatory elements, we utilized chromatin-
chromatin interaction data from experiments or computational predic-
tions. To do this, we downloaded 13 experimental chromatin-chromatin
interaction datasets under accessions GSE13392842 and GSE13662943

from GEO, as well as two promoter capture Hi-C datasets from the
previous study46. We combined this data with ChIP-seq data of the his-
tone modification H3K27ac (an active enhancer mark) to identify
enhancer-promoter loops.We defined these loops as interactions where
one fragment overlapped an H3K27ac peak (enhancer-like) and the
other fragment overlapped the promoter of a gene (the region from
downstream1 kb toupstream100bparound the transcription start site).

In addition to this, we downloaded experimentally confirmed
enhancer-gene pairs from the ENdb database. We also obtained
computational enhancer-promoter interactions from IM-PET47,
FANTOM548,49, EnhancerAtlas50, and super-enhancer51,52. To further
refine our analysis, we included topologically associating domain
(TAD) boundaries in three colorectal cancer cell lines (HT29, LoVo,
and DLD1)46,53. Finally, we examined the overlap between CCVs and
enhancer elements. For proximal promoter elements, we analyzed
CCVs located within gene promoter regions that intersected with
ChIP-seq peaks of H3K4me3 (an activity promoter mark).

To identify potential loss-of-function variants and their corre-
sponding targeted genes, we conducted variant annotation of CCVs
using the Variant Effect Predictor (VEP) tool54. To predict the con-
sequence of missense coding variants, we utilized PolyPhen-2 and
SIFT. Furthermore, to evaluate splicing effects, MaxEntScan was used.

We scored CCV target genes using different criteria (Supple-
mentary Data 9). For the potential target gene of CCV in distal
enhancer elements, the gene was awarded two points or one point if
there was evidence from experimental chromatin-chromatin interac-
tion or computed interaction. The score was unweighted to three if
both experimental and computational interaction were detected for
the gene-CCV pair. If CCV interacted with genomic features (open
chromatin, activity enhancer, and TF binding sites), the corresponding
gene was further unweighted by one point. An additional point was
awarded if there are at least two interactions for the CCV. If the gene
were colorectal cancer or pan-cancer drivers55, they were up-weighted
by an additional point. The score was down-weighted for the gene if
the CCV-gene pair was separated by TAD or a lack of expression in
colon tissues. Distal scores eventually ranged from 0 to 6. For the
potential target gene of CCV in proximal promoter elements, the gene
was awarded one point if CCV overlapped with binding sites of tran-
scription factors. If geneswere colorectal cancer or pan-cancer drivers,
theywereup-weightedwith anadditionalpoint. A lackof its expression
resulted in down-weighting to 10% as target genes. Proximal scores
eventually ranged from0 to 2. Genes predicted to be regulated targets
of codingCCVswere awarded points based on the annotation as either
of missense, nonsense, and predicted splicing alterations. The con-
sequences of missense variants which probably are damaging or
deleterious resulted in the addition of one point to the target gene.
Further points were awarded to such a gene if it was colorectal cancer
or pan-cancer drivers. A lack of expression reduced the score (the
score was down to 10%). Coding scores ranged from 0 to 2. For the set
of confident target genes, we defined such genes if it has a distal score
>4 or a proximal score >1, or a coding score >1.
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Credible set of susceptibility genes
To determine a set of credible genes for CRC susceptibility, we com-
bined information on gene-CRC risk associations through TWAS and
colocalization of eQTL signal with GWAS risk signals for genes that
were present in both our study and previous investigations. We used
three sets of previously identified genes below: (A) 155 effector genes
identified through GWAS, TWAS, TIsWAS, andMWAS7; (B) 136, 26, and
48 genes identified through TWASs7,16,17; (C) 73 genes identified
through colocalization analysis between eQTL and GWAS signals11 or
genes associated with CRC risk at nominal P <0.05 in the previous
TWAS17. We considered the prioritization order as A > B >C for these
three gene sets and focused on protein-coding genes outside theMHC
region. For the independent association signals with multiple target
gene candidates, we kept either genes with higher prioritization or all
genes if there was no evidence from these three gene sets. For the
independent association signals with a single gene, we kept it regard-
less of evidence from the gene sets.

Single-cell RNA-sequencing data analysis
We included single-cell RNA-sequencing datasets from colon tissues of
31 individualswhoparticipated in theColorectalMolecular Atlas Project
(COLON MAP)18. We analyzed gene expression dataset for each indivi-
dual’s cell and combined these datasets into a count matrix. We nor-
malized the number of uniquemolecular identifiers (UMIs) per cell and
converted it to transcripts per 10,000 transcripts (TP10K). Next, we
applied a logarithmic transformation to the normalized values and got
the log2(TP10K+ 1) expression matrix for the downstream analyses.
Further, we determined the 2000most highly variable genes within the
entire dataset and performed a principal component analysis (PCA).
The top 30 and 40 principal components (PCs) were identified. Sub-
sequently, we performed batch correction removal and utilized the top
40 batch-corrected components to construct a k-nearest neighbors
graph of cell profiles with k =9. We visualized the individual single-cell
profiles using the Uniform Manifold Approximation and Projection
(UMAP) and constructed the neighborhood graph using the Leiden
graph-clustering method. Nine cell types were defined, including well-
known major cell types such as absorptive cells (ABS), crypt top colo-
nocytes (CT), enteroendocrine cells (EE), goblet cells (GOB), stem cells
(STM), and others. We identified differentially expressed genes (DEGs)
by comparing each cell type with all other cell types and calculated a
P-value for each gene usingWilcoxon’s rank-sum test. The criteria |log2
fold change (FC)| > 1 and P <0.05 were applied to determine genes with
significantly differential expression between cell types.

Burden test for credible susceptibility genes
We annotated all variants in the UKBB WES 200K cohort with func-
tional annotations from ANNOVAR56 based on the reference gen-
ome GRCh38. We only included rare loss-of-function (LoF) and
deleterious missense (Dmis) variants with MAF<0.01 in our gene-
based test. LoF variants were those predicted as frameshift insertion/
deletion, splice-site alteration, stop gain, and stop loss by ANNOVAR,
and deleterious missense (Dmis) variants were those predicted as
deleterious byMetaSVM57.We considered both LoF sets and damaging
sets (LoF+Dmis) within a gene for testing. For a given set, we collapsed
rare variants within a gene as a single combined ‘mask’ and tested the
association between the ‘mask’ genotype and the CRC phenotype
using logistic regression after adjusting for sex, age, the interaction of
sex and age, and the top four principal components.

Pathway analysis of credible susceptibility genes
To explore the potential biological roles of the identified CRC sus-
ceptibility genes, we analyzed their functional enrichment using the
enrichR19–21 and various pathway databases, including WikiPathway,
KEGG, MSigDB, and Reactome. The biological pathways (adjusted
P <0.05) were considered and presented.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics are available at the GWAS catalog under
accession number GCST90129505. The RNA-seq data and genotype
data of subjects of East Asian ancestry from the ACCC is being
deposited to NCBI database of Genotypes and Phenotypes (dbGaP,
accession number phs002813.v1.p1). All requests to access these data
could also be made by contacting Drs. Wei Zheng (wei.zheng@van-
derbilt.edu) and Xingyi Guo (xingyi.guo@vumc.org). The data from
the Genotype-Tissue Expression (GTEx, version 8) project used in this
study are publicly available at the dbGaP under accession number
phs000424.v8.p2 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v8.p2). The transcriptome and
genotype data as well as the sample covariates from the BarcUVa-Seq
project can be accessed at the dbGaP under accession number
phs003338.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs003338.v1.p1). The access to data from the
Colonomics project could be requested by submission of an inquiry to
Dr. Victor Moreno (v.moreno@iconcologia.net). The CRC-relevant
epigenome and functional genomic data were obtained from the
NCBI’s Gene Expression Omnibus database (GEO) under accession
numbers: GSE133928, GSE136889, and GSE156613. Enhancer-promoter
interaction data were obtained from the ENdb database (https://bio.
liclab.net/ENdb/), 4Dgenome (https://4dgenome.research.chop.edu/),
FANTOM5 (https://fantom.gsc.riken.jp/5/), EnhancerAtlas 2.0 (http://
www.enhanceratlas.org/) and Super-enhancers (https://bio.liclab.net/
sedb/ and https://www.cell.com/fulltext/S0092-8674(13)01227-
0#supplementaryMaterial). Single-cell RNA-sequencing datasets from
colon tissues of 31 individuals were obtained from the Colorectal
Molecular Atlas Project (COLONMAP). Whole exome sequencing data
from 137,104 individuals of European ancestry were obtained from the
UK Biobank (https://www.ukbiobank.ac.uk/).

Code availability
The code used in this study is available at the GitHub repository
https://github.com/zhishanchen/CRC_Finemapping58.
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