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Network-based elucidation of colon cancer
drug resistance mechanisms by
phosphoproteomic time-series analysis

George Rosenberger 1,13, Wenxue Li 2,13, Mikko Turunen1,13, Jing He1,12,13,
Prem S. Subramaniam1, Sergey Pampou1,3, Aaron T. Griffin 1,4,
Charles Karan 1,3, Patrick Kerwin1, Diana Murray1, Barry Honig1,5,6,7,8,
Yansheng Liu 2,9 & Andrea Califano 1,5,6,8,10,11

Aberrant signaling pathway activity is a hallmark of tumorigenesis and pro-
gression, which has guided targeted inhibitor design for over 30 years. Yet,
adaptive resistance mechanisms, induced by rapid, context-specific signaling
network rewiring, continue to challenge therapeutic efficacy. Leveraging
progress in proteomic technologies and network-based methodologies, we
introduce Virtual Enrichment-based Signaling Protein-activity Analysis
(VESPA)—an algorithm designed to elucidatemechanisms of cell response and
adaptation to drug perturbations—and use it to analyze 7-point phosphopro-
teomic time series from colorectal cancer cells treated with clinically-relevant
inhibitors and control media. Interrogating tumor-specific enzyme/substrate
interactions accurately infers kinase and phosphatase activity, based on their
substrate phosphorylation state, effectively accounting for signal crosstalk
and sparse phosphoproteome coverage. The analysis elucidates time-
dependent signaling pathway response to each drug perturbation and, more
importantly, cell adaptive response and rewiring, experimentally confirmedby
CRISPR knock-out assays, suggesting broad applicability to cancer and other
diseases.

Cells receive and propagate exogenous signals via receptor-mediated
signaling cascades, eventually resulting in the coordinated activation
and inactivation of the transcriptional programs necessary to mod-
ulate cell state in response to environmental conditions. In multi-
cellular organisms, for instance, this allows individual cells to

orchestrate the gene regulatory programs necessary to progress
through lineage differentiation trajectories1 or to respond to changes
in nutrient conditions2. Signals originating from the interaction of
secreted (autocrine), microenvironment (paracrine), and distal
(endocrine) ligands, and their cognate receptors, are transmitted via
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complex signal transduction cascades, whose tissue specificity
depends on the availability of individual protein isoforms and on their
ability to form functional complexes3.

Dysregulation of these processes plays a critical role in human
disease, especially in cancer, where signaling pathway mutations
represent a hallmark of tumor initiation and progression4. This is
exemplified by colorectal cancer (CRC), where progression from nor-
mal cells in the intestinal crypt to adenocarcinoma is determined by
progressive accrual of genetic and epigenetic alterations in key sig-
naling pathways, ultimately resulting in transformation5. Critically,
despite similar histological presentation, we and others have shown
that different CRC subtypes exist, due to signaling pathway-mediated
integration of heterogeneous mutational landscapes5, resulting in
aberrant activation/inactivation of small Master Regulator protein
modules6. Yet, the specific signalingmechanisms leading to concerted,
aberrant activity of these regulatory modules and causally responsible
for their time-dependent response and adaptation to drug perturba-
tions are still largely elusive.

While their elucidation may provide more universal insights into
tumor dependencies and response to treatment6, systematic,
proteome-wide elucidation of tissue-specific signaling networks has
trailed the study of gene regulatory interactions. Although seminal
progress has been made in recent years7,8, the reconstruction and
interpretation of signaling networks still represents one of the hall-
mark challenges in systemsbiology,withpotential applications to both
basic and translational research.

Signal transduction is mediated by reversible post-translational
modifications (PTMs), often responsible for a rapid on/off switch in
protein activity or ubiquitin-mediated proteasomal degradation.
Among these, phosphorylation represents the most frequently
studied event, due to its profound impact on protein conformation
and function. In human cells, protein phosphorylation and de-
phosphorylation is mediated by >500 kinases9 and >200
phosphatases10, respectively (KP-enzymes in the following). Although
these enzymes have substrate specificity, determined by low to
medium-affinity peptide-binding domains (PBDs),many substrates can
be processed by multiple, sometimes closely related enzymes, result-
ing in considerable crosstalk. Auto-regulatory feedback loops, sub-
cellular localization mechanisms, and context-specific availability of
the cognate binding partners necessary for formation of active com-
plexes further increase the complexity of these biological processes.

Enzyme-Substrate (ES) interactions have been broadly studied,
including via low-throughput biochemical assays and structure
determination11, as well as by high-throughput methods using array-
based12, affinity purification coupled tomass spectrometry (AP-MS)13,14,
and computational biology approaches15,16. As a result, established
repositories of ES interactions have been assembled, such as
PhosphoSitePlus17 and Pathway Commons18, among others. However,
none of these repositories addresses the context-specific nature of ES
interactions and only comprise a small fraction of the total number of
such molecular interactions. Furthermore, with some relevant
exceptions19–21, ES interactions have typically been studied at steady
state, thus potentially failing to provide critical insight into the time-
dependent signaling processes that underlie cell adaptation to endo-
genous and exogeneous perturbations.

A handful of reverse engineering methods for the mechanism-
based interrogation of signaling pathways have been proposed, such
as pARACNe (phospho-ARACNe)22, KSEA (KinaseSubstrate Enrichment
Analysis)23, INKA (Inference of Kinase Activity)24, or PHONEMeS
(PHOsphorylation NEtworks for Mass Spectrometry)25. However, in
terms of accuracy and sensitivity, they still significantly trail behind
equivalent methods for the dissection of regulatory networks26.

To address these challenges, we here develop VESPA
(Virtual Enrichment-based Signaling Protein-activity Analysis)—a
phosphoproteomic-based machine learning methodology for the

dissection of ES interactions and for measuring signaling protein
activity—and apply it to study post-translational cell adaptation
mechanisms that mediate CRC’s resistance or lack of sensitivity
(i.e., insensitivity) to clinically-relevant targeted drugs. Our pro-
posed methodology presents four distinctive elements, including:
(i) the ability to reconstruct and interrogate disease context-
specific signaling networks de novo, based on phosphoproteomic
profiles, (ii) the ability to measure the activity of signaling
enzymes, including those that are poorly characterized in the
phosphoproteomic profiles, based on the phosphorylation state
of their substrates, (iii) the ability to deconvolute the time-
dependent response of cancer tissues to inhibitors targeting
signaling enzymes, and (iv) the ability to identify potential
mechanisms presiding over drug resistance and cell adaptation.
Systematic benchmarking, based on ES reference databases,
assessing differential KP-enzyme activity of primary drug targets
in cell lines with experimentally validated sensitivity to >200
targeted inhibitors, shows that VESPA substantially outperforms
established approaches. In a proof-of-concept application, we
design a large-scale drug perturbation experiment and use VESPA
to elucidate the molecular mechanisms of CRC adaptation to
drug treatments that mediate resistance or insensitivity in a
highly context-specific fashion. VESPA analysis provides insight
into the ability of CRC cell lines to adapt and “rewire” their sig-
naling networks following drug perturbation. Critically, this
reveals how specific cells may implement similar drug responses
yet over highly different timeframes, while others may present
highly idiosyncratic response mechanisms. Moreover, for drug
resistant cells, this identifies signaling proteins responsible for
the progression from initial drug perturbation to development of
resistance. To assess its predictive nature, we experimentally
validate these predictions using systematic CRISPR/Cas9-medi-
ated knock-out experiments, confirming that VESPA predictions
are indeed enriched in proteins that synergize with drug treat-
ment in resistant cell lines, thus suggesting potential value
towards identification of potential combination therapy
opportunities.

Results
Conceptual workflow
VESPA comprises two steps. First, a dissection step (dVESPA) recon-
structs tumor context-specific Signal Transduction Networks (Sig-
Nets), de novo, from phosphoproteomic and whole-proteome profiles
of large-scale tumor cohorts (Fig. 1a). Such datasets—often comprising
≥ 100 samples, as required by the algorithm—are now broadly avail-
able, having been generated for many cancer subtypes by initiatives
such as CPTAC. VESPA-inferred SigNets recapitulate the tumor
context-specific nature of ES interactions, aswell as their directionality
and statistical confidence.

In a second step (mVESPA), SigNets are used to measure differ-
ential KP-enzyme activity in individual samples, based on the differ-
ential phosphorylation of their substrates (signalon), compared to a
reference sample (Fig. 1b), for instance, to determine differential
activity in drug vs. vehicle control-treated tissue. To infer enzyme
activity, mVESPA leverages a probabilistic framework that integrates
the differential phosphorylation state of its substrates, while
accounting for potential confounding effects by other enzymes with
potentially overlapping substrates (crosstalk). To improve perfor-
mance for serine/threonine kinases (ST-Ks)—especially from low
phosphoproteomic profile coverage—and to improve substrate cov-
erage of tyrosine kinases (TKs), without requiring immunoprecipita-
tion (IP) based enrichment methods, VESPA leverages a two-step
hierarchical approach. An initial set activity profile layer is generated
by KP-enzyme’s substrate phosphostate analysis and is then refined by
an additional network analysis step.
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Despite a superficial similarity of these steps to algorithms
designed for the study of transcriptional networks, suchasARACNe27,28

and VIPER29, there are critical differences that were necessary to
account for theunique structure and sparseness of phosphoproteomic
profiles. These are summarized in the following.

Substrate inference: to extend the ARACNe algorithm27,28 to phos-
phoproteomic data (seeMethods), dVESPA assessesmutual information
via a hybrid partitioning approach (hpMI) which supports use of con-
tinuous peptide intensities from quantitative proteomic workflows30.
This addresses issues associated with missing values due to
censoring31,32, typical of bottom-up phosphoproteomic analyses (Sup-
plementary Fig. 1a, Methods). Furthermore, to support the logic of
three-way signaling interactions, as implemented by kinases and phos-
phatases measurable by standard MS-based phosphoproteomic meth-
ods, dVESPA introduces a signal transduction-specific version of the
Data Processing Inequality (stDPI) (Supplementary Fig. 1b, Methods).

Critically, indirect interactions (e.g., KA→ S, implemented as
KA→KB→ S) are eliminated if both direct interactions (i.e., KA→KB and
KB→ S) are detectable andhavehighermutual information. If this is not
the case, for instance because KB is poorly resolved in the dataset, then
KA→ S will be identified as the “least indirect” interaction between KA

and S. As a result, it is possible that some indirect interactions may be
represented in the SigNet, especially if the phosphostate of the inter-
mediary enzyme (i.e., KB in the above example) is noisy or undefined.

To complement ES interactions inferred de novo, dVESPA can
incorporate context-free knowledge from reference databases—such
as Pathway Commons18, LinkPhinder16, or the Hierarchical Statistical
Mechanistic model (HSM)15. Each inferred interaction is associated
with a p-value and a directionality—as determined by the proteins’
enzymatic function (Methods).

Cross-talk correction: mVESPA includes the pleiotropy
correction29 method, which was designed to address potential issues
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Fig. 1 | Methodological overview. a VESPA assesses the activity of protein kinases
and phosphatases based on the phosphostate of their substrates. As an input,
dVESPA requires a matrix representing the phosphopeptide or phosphosite
abundance of a collection of samples representing different conditions of a specific
cellular context, including missing values (black). The signaling network recon-
struction module (blue box) analyzes this matrix to first identify candidate signal
transduction interactions by assessing the significance of the mutual information
between enzymatic regulator and candidate target phosphopeptides, second,
remove indirect interactions by applying a signal transduction-specific form of the
Data Processing Inequality (stDPI), and third, generate signalons for each KP-
enzyme representing the probability of each interaction with a substrate and the
mode of regulation (kinase activation: red, phosphatase deactivation: blue).
b mVESPA first uses these signalons to assess KP-enzyme activity at the

“phosphostate-level” (green box). The resulting KP-enzyme activity matrix then
becomes the input to an additional protein activity assessment step of dVESPA
(pink box) which uses the (standard, non-signal transduction) Data Processing
Inequality (DPI) to generate more abstract signalons (i.e. representing activation/
deactivation instead of phosphorylation/dephosphorylation), which are then in
turn used by mVESPA for activity-level inference (purple box). Methodological
differences between phosphostate- and activity-level signaling networks. At the
phosphostate-level, ST-Ks (e.g., GSK3A, green) are primarily associated with direct
phosphorylation targets, whereas TKs (e.g., ERBB2, orange) can frequently not be
directly associated with (unenriched) tyrosine-phosphorylated sites. On activity-
level, more abstract “activation/deactivation” events can better associate targets
for both ST-Ks and TKs.
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associated with overlap in the substrates of different enzymes (see
Methods).

Site-specific activity inference: enzyme phosphostate is measured
bymVESPA at both thewhole-protein level—i.e., by integrating the state
of all phosphosites—or at the phosphosite-specific level (Methods). The
latter can help elucidate phosphosite-specific contributions to protein
activity. Indeed, distinct phosphosites may result in different, poten-
tially opposite contributions, ranging from ubiquitylation pathway
activation to mediating critical dimerization or conformational chan-
ges, to sites providing no measurable contribution.

Hierarchical activity and model inference: Unless specifically
enriched for, some substrates may be only sparsely represented,
resulting in low-quality signalon inference. This is especially proble-
matic for phospho-tyrosines. To address this challenge, mVESPA
implements a two-step approach (Fig. 1, Supplementary Fig. 1c-d,
Methods). In a first phosphostate-level analysis (PL-analysis) step, KP-
enzyme activity is assessed from its signalon’s phosphostate. In a
second, activity-level analysis (AL-analysis) step, activity assessment is
refined by using candidate substrates’ activity rather than phosphos-
tate, as assessed in step 1 (Methods). Indeed, sincemany TK substrates
are ST-Ks, their activity may be assessed more accurately than their
phosphostate. PL and AL-analyses are then integrated, using Stouffer’s
method, since substrate activity and phosphostate are assessed from
statistically independent data (Methods).

Signalon optimization: If multiple datasets are used to generate
signalons for a KP-enzyme, mVESPA will only use themost informative
one, as assessed by the statistical significance of the KP-enzyme’s dif-
ferential activity, similar to the metaVIPER algorithm33 (Methods).

Applicability to different dataset types: To be analyzed, phos-
phoproteomic datasetsmust fulfill several criteria: First, aminimumof
100 phosphoproteomic profiles27—ideally including whole protein
measurements—should be generated from the same tissue context.
Sufficient phosphoproteome coverage (> 10,000 phosphosites) and
quantitative consistency (>40%) is also required. These criteria are not
limiting and are fulfilled by most CPTAC or DIA-based datasets. Lower
proteome coverage will increase the number of indirect interactions
and decrease the quality of activity measurements. Lower quantitative
consistency or bias (e.g., labeling, batch effects) may substantially
reduce sensitivity. Consistently, datasets used for mVESPA-based
enzyme activity analysis must be similarly quantitatively consistent
(>40%) and have a substantial overlap (>50%) of measured phospho-
sites with the dataset used for dVESPA signalon inference. These
requirements are also fulfilled by most CPTAC or DIA-based datasets.

Generating a CRC-specific SigNet
Kinase inhibitors targeting a protein’s active site typically modulate
their targets’ activity without affecting their phosphostate. As a result,
drug target identification by proteomic methods is non-trivial. SigNet
availability mitigates this issue by supporting enzyme activity assess-
ment in drug vs. vehicle control-treated cells based on substrate’s
phosphostate. To apply this approach to colorectal cancer (CRC), we
leveraged three proteomic and phosphoproteomic datasets, including
(a) 97 profiles from the Clinical Proteomic Tumor Analysis Consortium
(NCI/NIH) (CPTAC-S04534), (b) refined profiles obtained by normal-
izing the phosphosite abundance of CPTAC-S045 samples by the cor-
responding whole protein abundance (Methods), to help identify
confounded KP→ S relationships, as previously suggested35 (CPTAC-
S045N), and (c) 144 profiles from six CRC cell lines (HCT-15, HT115,
LS1034,MDST8, NCI-H508 and SNU-61) harvested at three-time points
(1 h, 24 h, 96 h) following perturbation with seven clinically relevant
drugs and vehicle control media (U54-NET).

We used dVESPA to dissect independent SigNets from these data-
sets (SupplementalData 1,Methods).Overall, consistentwith thenumber
of KP-enzymes expected to be expressed in any specific cellular context,
signalons comprising 5 or more candidate substrates were reliably

inferred for 51.0% of human KP-enzymes, from at least one of the data-
sets. The first step (PL-analysis) produced a SigNet comprising 163,313
interactions, between 283 kinases, 88 phosphatases, and 7727 substrates.
The second step (AL-analysis) identified 16,309 additional interactions,
between 187 kinases, 37 phosphatases, and 371 substrates. To support
more mechanistic analyses, we also generated a phosphosite-level net-
work, comprising 1649 individual phosphosites. Collapsing phosphosites
in the same peptide-binding domain— frequently correlated in both
phospho-state and functional role—reduced this to the interactions
between 918 non-redundant phosphosites (Methods). Each interaction
was associated with a mode of regulation (i.e., substrate activation or
deactivation by kinases and phosphatases, respectively) and p-value.

As expected, due to lower genetic background variability in
selected cell lines, different MS measurement time per sample, and
different depth of proteomic data acquisition methods (DDA-TMT vs.
DIA-LFQ), CPTAC provided a more comprehensive phosphosite
representation than cell line perturbations, specifically, 31,339 vs.
13,529 phosphosites in CPTAC-S045 and U54-NET, respectively. How-
ever, U54-NET signalons were often selected as more informative
(Methods). Indeed, at the phosphostate-level, 47.2%, 43.4%, and 9.4%
of the optimized signalons were derived from CPTAC-S045, U54-NET,
and CPTAC-S045N dataset, respectively. Dataset specificity was even
more skewed at the activity-level analysis, where U54-NET accounted
for 46.4% of the optimized signalons, with CPTAC-S045 and CPTAC-
S045N accounting for 38.4% and 15.2% of them, respectively.

A key advantage of mVESPA is that, once a SigNet is available, KP-
enzymes’ activity can be measured even if their phosphostate is
undetectable. Indeed, VESPA couldmeasure enzymatic activity for 158
of 371 (42.6%) of all KP-enzymes in the CRC SigNet that lacked phos-
phostate information. Furthermore, multiple dataset integration can
effectively combine DIA’s high throughput with the more compre-
hensive nature of the fractionated CPTAC profiling. Overall, despite
thewell-known sparseness of peptides and phosphopeptides detected
by proteomic assays, mVESPA quantitatively assessed the activity of
371 KP-enzymes—i.e., around half of all known humanKP-enzymes and
around 66.7% of the KP-enzymes estimated to be expressed in CRC
cells (Methods). In contrast, phosphostate information was available
for only 42.7% of expressed KP-enzymes.

Mutual information estimator benchmark
Typical phosphoproteomic profiles comprise between 20% and 80%
missing values, making phosphopeptide-based MI estimation chal-
lenging. To address this issue, we introduce a hybrid-partitioning
mutual information metric (hpMI, see Methods). We benchmarked its
performance using theU54-NET dataset, compared to either removing
proteinswithmissing data (depletedMl; dMI) or imputing values using
random, low intensity noise (imputed MI; iMI). As ground truth, we
used the interactions and priors predicted by the Hierarchical Statis-
tical Mechanical (HSM)15 modelling algorithm, which, albeit more
limited in scope, represent the most faithful statistical mechanics
model of these interactions. All MI scores are expected to recover well
correlated (ρ>0:5) interactions with few missing values (<20%).
However, hpMI was particularly designed to also improve recovery of
weakly correlated interactions (ρ>0:25) with larger proportions of
missing values. To illustrate this improvement in dependency of cor-
relation of interactions and the proportion of missing values, we
computed a score representing the recovery as the count of significant
interactions as judged by the different MI estimators (BH-adjusted
p <0.05 estimated using a bootstrapped null model28, see Methods),
weighted by the corresponding HSM priors. When applied to data
subsets of varying consistency, removing up to 80% of the data in 20%
increments (Methods), the recovery can also be visualized in depen-
dency of the correlation between the data points to illustrate the dif-
ferences between dMI, iMI and hpMI estimators (Fig. 2a). As expected,
for some well-sampled, highly correlated KP→ S pairs, both dMI and
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iMI measured a statistically significant MI, supported by positive
ground truth priors; however, hpMI inferred 102.4% more correct ES
interactions than dMI, and 31.3%more correct ES interactions than iMI
when using sparsely covered interactions (up to 80% missing values),
particularly in case of lower (ρ <0:5) KP→ S correlation (Fig. 2a).

Indirect interaction removal
To eliminate indirect interactions (e.g., KP→KP’→ S) when a more
statistically significant direct interaction (KP→ S) exists, dVESPA uses a
signal transduction-adapted version of the Data Processing Inequality
(stDPI/DPI) originally proposed in27,28 (Supplementary Fig. 1b, Meth-
ods). The DPI states that, in any system where information is not per-
fectly transferred (lossy)—thus including virtually all molecular
networks—direct information transfer (i.e., KP→ S) is always greater
than indirect information transfer (KP→KP’→ S). Application of this
theorem allows effective indirect interaction removal.

To assess whether the stDPI improves indirect interaction
removal, also compared to the original DPI formulation, we first gen-
erated a gold-standard dataset for ST-K proteins using the HSM15

algorithm (Methods). Specifically, ground truth interactions were
selected based on HSM analysis of domains identified as primary
determinants of ST-K → phosphopeptide specificity, including PDZ,
SH3, WH1, and WW domains. As a negative gold standard, we used
HSM predicted TK→ S interactions, based on PTB, PTP and SH2
domains, since the dataset used for this benchmark (U54-NET) is not
enriched for phosphotyrosine peptides and should thus not support
their identification. It should be noted though, that the HSM gold
standard data is not context-specific because its interactions, although
biochemically plausible, might not be implemented in the cellular
context of interest, thus reducing benchmark results. As such, only
relative comparisons are possible.

dVESPA-based generation of a SigNet, using theU54-NET, with the
PL-based methodology but without a prior reference network, was
tested with each of the three DPI options: (a) no DPI, (b) regular DPI,
and (c) stDPI. Inferred interactions were then compared to the gold
standard datasets (Methods). Receiver operating characteristics (ROC)
and precision-recall curves show that stDPI significantly outperforms
the other two options (see Methods), including for stDPI vs. no DPI
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relationship using the CPTAC-S45 dataset. MI was measured and Spearman corre-
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ence between regular Data Processing Inequality (DPI) and its adaptation to signal
transduction networks (stDPI), as well as compared to not using the DPI step at all
(noDPI). cBaseline profiles of six diverse CRCcell lineswere acquired andusedwith
the GDSC reference database to identify sensitive and resistant or insensitive cell
lines for each drug. The most differentially active KP-enzymes, as induced by
treatment with each drug, were then assessed using mVESPA. d The predictive
performance of the analysis results of (c), comparing dVESPA and other reference
networks (Pathway Commons (PC)18, Hijazi et al.20 and Johnson et al.37), was eval-
uated using receiver-operating-characteristics (ROC). For each differential

comparison, ROC metrics were computed, where the sensitivity represents the
mVESPA scores, weighted byGDSCdrug sensitivity, and the selectivity represents a
normalized rank of the top VESPA hits (see Methods). The individual ROC curves
were then averaged. Statistical comparison of the differential comparison AUC
metrics was conducted using an unpaired, right-tailed Wilcox’ tests. VESPA (red),
comprising the mVESPA and dVESPA steps, significantly outperformed mVESPA
when run using non-context-specific SigNets, including Johnson et al.37 (blue),
Hijazi et al.20 (green) and Pathway Commons18 (purple). e Benchmark against
established algorithms and applicability to datasets with N = 1 samples. The KSTAR
benchmark was extended according to the original publication. Algorithm per-
formance on S/TKs or TKs is depicted, computed as the fraction of conditions
(specific cell line perturbed by a specific drug) for which a perturbed kinase was
assessed as differentially active (Phit,), i.e., either ranked in the top 10 most differ-
entially active (translucent bars) or based on statistical significance (FDR <0.05)
(opaque bars). Source data are provided as a Source Data file.
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(p < 2.2e-16) and stDPI vs. DPI (p < 2.2e-16), see Fig. 2b for the specific
receiver operating characteristics (AUROC) and area under the preci-
sion recall curve (AUPRC). For instance, at 25% recall, stDPI achieved
75.7% precision, compared to 65.2% for DPI and 60.3% for no DPI.

Taken together, thesebenchmarks confirmed that hpMI and stDPI
—two distinct phosphoproteomic-specific components of dVESPA—
significantly improve algorithm performance.

mVESPA Benchmarking
To benchmark mVESPA, we extended a strategy previously introduced
to benchmark the INKA (Integrative Inferred Kinase Activity)
algorithm24. The Genomics of Drug Sensitivity in Cancer (GDSC) project
reports on the sensitivity of >1000 human cancer cell lines to hundreds
of drugs and small molecule compounds (i.e., drugs, for simplicity),
including high-affinity kinase inhibitors36. When combined with a cura-
ted list24 of the primary (i.e., high-affinity) targets of each inhibitor, this
resource can be used to effectively assess relative kinase activities, as
originally proposed in24. Specifically—within a specific tumor type and
barring adaptive resistancemechanisms—higher enzyme activity should
correlate, on average, with increased sensitivity to its high-affinity inhi-
bitor(s). Higher correlation, across multiple cell lines, would thus indi-
cate improved activity assessment, allowing comparative analysis of
different protein activity prediction algorithms.

For this benchmark, we predicted the activity of protein kinases
representing high-affinity targets of GDSC-tested inhibitors, by using
dVESPA to analyze the baseline (i.e., unperturbed) phosphoprofiles of
six CRC cell lines, profiled in triplicate (U54-BL), see Methods. To
support the comparative analysis of multiple methods, we modified
the benchmark to use differential rather than absolute protein activity
ranks, see Methods.

As a first step, we assessed performance differences when using
either dVESPA-inferred (i.e., context-specific) signalons or signalons
reported by other sources, including generalized and contextualized
reference databases. Specifically, we either restricted the comparative
analysis to the protein kinases analyzed by all methods (intersection)
or to all protein kinases (full) (Methods). The former is used to assess
prediction accuracy, while the latter determines method-specific net-
work coverage. These analyses show that dVESPA significantly out-
performed the generalized reference databases obtained from
Johnson et al.37, Hijazi et al.20, and Pathway Commons18, for both ST-Ks
and TKs activity inference (intersection: max p < 2e-6, full: max
p <0.005) (Fig. 2d, Supplemental Figs. 2a-3a, Supplemental Data 2-3,
Methods). Furthermore, indirect interactions removal by stDPI/DPI
showed a trend towards higher accuracy (intersection: p <0.156) but
higher network coverage (full: p < 1.9e-6), compared to using a con-
textualized reference network from LinkPhinder (LP)16, and improved
on both counts (intersection: p <0.003, full: p < 4.4e-4) when using
HSM15 as a reference network. For TK enzymes, stDPI/DPI improved
network coverage vs. LP (intersection: p <0.580, full: p < 4.7e-4) but
did not improve either metric compared to HSM (intersection:
p <0.766, full set: p <0.947) (Methods, Supplemental. Figs. 2b-3b,
Supplemental Data 2, 3).

We then benchmarked performance differences associated
with each mVESPA component, including (a) signalon integration
and optimization across multiple dataset (Supplemental Figs. 2c-3c,
Supplemental Data 2, 3), (b) differences between phosphostate-level,
activity-level and integrated analysis (Supplemental Figs. 2d-3d, Sup-
plemental Data 2, 3), and (c) the effects of crosstalk correction (Sup-
plemental Figs. 2e-3e, Supplemental Data 2, 3). Benchmarking only
signalons with U54BL-measured phosphopeptides indicates that
VESPA performs very similar on this subset when assessing all kinases
in comparison to the full dataset, although with lower sensitivity.
Further, it should be noted, that this result could also be confounded
due to the bias of the benchmark towards well studied or experi-
mentally better accessible KP-enzymes.While 83.9%of all comparisons

of the benchmark cover targets with U54BL-measured phosphopep-
tides, the fraction of CRC signalons that cover directly measured K/P-
enzyme phosphopeptides is only 57.4%. Interestingly, when only
considering TKs, inclusion of signalons withoutmeasured K/P-enzyme
phosphoproteins, expectedly increased substantially (Supplemen-
tary Fig. 4).

Taken together, these analyses confirm the value of the individual
improvements in mVESPA as well as their cumulative effect. Indeed,
the latter produced the best overall performance and a statistically
significant improvement over the current state-of-the-art (Fig. 2d).
Basedon these results, for all subsequent studies,weused stDPI for PL-
based and regular DPI for AL-based signalon inference, respectively,
followed by integration using Stouffer’s method (Methods).

Comparison to established algorithms and applicability to
independent samples
To compare VESPA to other algorithms for the dissection of signal
transduction networks—including KSTAR38, KSEA23, PTM-SEA39,
KARP19, and KEA340—we relied on the benchmarking dataset, tools, and
evaluation criteria recently developed for the KSTAR algorithm38. The
specific dataset comprises phosphoproteomic profiles following
genetic or pharmacologic inhibition of 38 serine/threonine and 19
tyrosine kinase in multiple cell lines as derived from 15 individual
studies38. Each algorithm was tested independently on perturbational
profiles. Unfortunately, this dataset severely limits VESPA’s perfor-
mance, for two reasons. First dVESPA signalons, which provide the
greatest contribution to the algorithm’s performance, could not be
used because their generation requires ≥ 100 independent phospho-
proteomic profiles of the investigated biological system27. Second, key
elements of mVESPA’s analytical framework, such as the hierarchical
approach and crosstalk correction, could not be used as they also
require multiple profiles acquired by the same quantitative proteomic
method.

As a result, we could compare existing algorithms only to a highly
restricted version of VESPA that (a) used non-context-specific signa-
lons from PhosphoSitePlus17 (mVESPA/PSP), as also used by KSTAR,
KSEA, and KARP, and Johnson et al.37 (mVESPA/Johnson), (b) could not
leverage the hierarchical PL/AL approach and (c) could not leverage
the cross-talk correction (Methods). As a result, these analyses provide
only a lower limit to VESPA’s performance.

Despite these limitations mVESPA/PSP (Phit = 0.73) and mVESPA/
Johnson (Phit = 0.73) outperformed all other methods (Phit ≤0.49)
(Fig. 2e). As discussed in38, Phit represents the fraction of experimen-
tally inhibited protein kinases identified as differentially active, either
based on rank (top 10 most inactivated kinases) or statistical sig-
nificance (FDR <0.05). When restricting the analysis to the much
smaller set of TKs, mVESPA/PSP’s (Phit = 0.67) outperformed all other
methods (Phit ≤0.62), except KSTAR (Phit = 0.79). mVESPA/Johnson
could not be assessed because the related dataset does not include
TKs. Taken together, these data show that VESPA outperformed all
existing algorithms on the analysis of ST-Ks, which comprise the vast
majority of kinases, and all but KSTAR on the analysis of the much
smaller set of TKs, even though the most critical component (i.e., the
use of a context-specific network produced by dVESPA) could not be
leveraged.

Application of VESPA to the decryptM dataset
A recent study investigated the effects of drugs on PTMs using dose-
and time-resolved proteomics, referred to as “decryptM”21. To
demonstrate VESPA’s applicability to this dataset, we applied the
algorithm to the phosphoproteomic profiles for A431 epidermoid
carcinoma cells (dependent on EGFR expression), perturbed by afati-
nib (targeting EGFR), gefitinib (targeting EGFR), and dasatinib (tar-
geting SRC- and EPH-family proteins) with 10 different drug
concentrations (Supplementary Fig. 5, Methods). Because epidermoid
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carcinoma is not covered by CPTAC, we used a dVESPA-generated
signaling network based on the CPTAC Lung Squamous Cell Carci-
noma (LSCC) Discovery Study41, with the caveat that our networks are
not fully representative of A431 cell lines. We then used the VESPA
approach to infer kinase activities for all covered KP-enzymes and
focused interpretation on the known targets as listed byDrugBank.We
considered a VESPA NES (z-score) of NES < −1.65 (p <0.05) to be the
threshold for significant inhibition.

Our analysis shows significant inhibition of EGFR for both afatinib
and gefitinib treatments with median z-scores of -3.49 (p = 0.0002)
and −2.03 (p =0.02), respectively (Supplementary Fig. 5). ERBB2 was
also significantly inhibited by afatinib, resulting in a median z-score of
−2.24 (p =0.01). Interestingly, only concentrations equal to or higher
than 1 nM induced significant inhibition of the primary targets. For
dasatinib, 11 out of 15 covered DrugBank targets showed negative
activity, with only MAPK14 being significantly inhibited (z-score =
−2.09; p = 0.02). Using orthogonal assays (kinobeads), the original
authors of the decryptM study observed a wider distribution of drug-
target affinities for dasatinib than for afatinib and gefitinib, supporting
the notion that not all known drug targets might be effectively inhib-
ited in all cellular contexts.

Cell Line Selection for CRC Analysis
To study CRC-specific drug mechanism of action and cellular adapta-
tion, we leveraged pharmacologic perturbations of cell lines selected
to represent high-fidelity models of established CRC subtypes. Model
fidelity was based on the overlap of Master Regulator (MR) proteins,
representing critical determinants of transcriptional cell state, in each
model vs. a collection of human tumor samples, using the OncoMatch
algorithm42,43. We use this definition because we have shown that the
mechanism of action of a drug in a tumor is well recapitulated in their
OncoMatch-selected high-fidelity cell lines43,44.

For this purpose, we first focused on eight CRC subtypes, as
recently identified by MR-based stratification of the TCGA CRC
cohort45. We then used the OncoMatch algorithm to identify Cancer
Cell Line Encyclopedia (CCLE)46 cell lines representing high-fidelity
models of each subtype (Methods). When also accounting for other
parameters—e.g., optimal growth in culture and suitability to high-
throughputmicrofluidics—six cell lines were identified, includingHCT-
15, HT115, LS1034, MDST8, NCI-H508 and SNU-61. These represent 5 of
the 8 CRC subtypes, with at least one cell line ranking in the top 5 for
each subtype (Supplementary Fig. 6). As such, three tumor subtypes
lack ideal representation in CCLE and could not be studied.

We then proceeded to assess whether these cell lines were also
matching subtypes identified by phosphoproteomic cluster analysis,
as determined by OncoMatch analysis of their KP-enzyme differential
activity. The latter was assessed by VESPA analysis of 97 clinically
annotated CRC samples in the CPTAC-S045 cohort34. To perform the
analysis, we first generated phosphoproteomic profiles from each
unperturbed cell line, in triplicate, by label-freeDIA. At 1%peptidoform
andprotein FDR, the analysis identified andquantified the stateof9813
phosphosites on 18,012 unique peptide precursors mapping to 3320
proteins (Methods).Wewill refer to this dataset as the “U54-BL”. At the
peptide precursor-level, the dataset/matrix completeness—i.e., the
fraction of runs where peptide precursors were confidently detected
and quantified—ranged from 77.3% to 83.1% per cell line, while the
average completeness over all cell lines and replicates was 54.2%.
CPTAC samples are profiled via a tandem mass tag (TMT)-based
workflow; as such, they present even deeper coverage, with 31,339
phosphosites from6383proteins, and amatrix completenessof 40.2%.
However, due to the data-dependent acquisition (DDA) and TMT-
labelling approaches used for data collection, these profiles present
considerable batch effects. To optimally compare cell lines to tumor
samples, we identified a subset of 8617 shared phosphosites, pre-
senting equivalent completeness (Methods). We then used VESPA to

assess protein activities, as previously described (Fig. 3, Methods). The
analysis yielded an activity matrix comprising 381 common KP-
enzymes for both tumor samples and cell lines (Supplementary
Figs. 7–9, Supplemental Data 4).

Activity-based analysis of the CPTAC dataset, using K-medoids
clustering45, identified threemain clusters (VC1–VC3) (Methods), while
Random Forest-based, recursive feature elimination identified the KP-
enzymes with the greatest independent contribution to subtype clas-
sification (Fig. 3, Supplemental Data 5-6, Methods). KP-enzyme-based
OncoMatch analysis confirmed that most of the selected cell lines
matched one of these three subtypes. Specifically, HCT-15 and
HT115 matched VC1, NCI-H508, LS1034 and SNU-61 matched VC2 and
MDST8 matched VC3. Notably, one replicate of HT115 was assigned to
VC2 instead of VC1.

For completeness, we also assessed whether the six cell lines
could recapitulate four subtypes (CMS1 – CMS4) identified by tran-
scriptomic analysis of the Consensus Molecular Subtype (CMS) data-
set, as reported by the Colorectal Cancer Subtyping Consortium
(CRCSC)47 (Methods). The analysis revealed broad consistency
between CMS and VESPA classification (Fig. 3a, colored, non-white
labels). Specifically, VC1, VC2, and VC3 samples were significantly
enriched in CMS1, CMS2, and CMS4 samples, with CMS3 samples split
between VC1 and VC2, likely as a result of the finer-grain stratification
achieved by transcriptional analysis, which reflects epigenetics differ-
ences that may not affect signal transduction. OncoMatch analysis
identified the NCI-H508 and LS1034 cell lines as high-fidelity models
for CMS2 samples, SNU-61 for CMS3, andMDST8 for CMS4, confirming
that the cell line panel identified by our analysis broadly represents
patient-relevant subtypes (Fig. 3a, b). Note that HCT-15, and HT115
could not be confidently classified into one of the CMS clusters. A
recent study48 produced similar results when matching CRC cell lines
to CMS clusters; while MDST8, NCI-H508, LS1034, and SNU-61 were
well classified, HT115 produced an ambiguous matching, and HCT-15
was not reported, suggesting finer-grain subtype identification byMR-
based analysis.

Gene set enrichment analysis49 (GSEA) using the Reactome
database50 further supported these results, based on several signaling
pathways that were uniquely enriched in the three VESPA clusters
(p < 0.05, Benjamini-Hochberg (BH)-corrected, see Methods) (Fig. 3c,
Supplemental Data 7). For instance, we identified enrichment of
VEGFA-VEGFR2 Pathway in VC3, a hallmark of the CMS4 subtype47,
which was further supported by the activation of RHO GTPases
involved in WAVE complex regulation, a key regulator of actin-remo-
deling, invasiveness and EMT-like processes51 (Fig. 3c). This was reca-
pitulated by the MDST8 cell line in our panel, representing an
established EMT model52.

In summary, except for CMS1, for which no representative cell
lines could be identified, the six cell lines selected for our study
effectively represent the major CRC subtypes inferred by either tran-
scriptional or phosphoproteomic analysis.

Generation of drug perturbation profiles
To assess drug mechanism of action (MoA), CRC cell adaptive
mechanisms leading to drug resistance, and potential treatment-
mediated rewiring of signaling pathways, we performed a longitudinal
drug perturbation assay, supporting quantitative analyses across
drugs, cell lines, and time points (Methods). To achieve a reasonable
experimental complexity, we focused on seven clinically relevant
compounds, based on their ability to target complementary, CRC-
relevant pathways. With the exception of WIKI4 (a TNKS & TNKS2
inhibitor), these represent FDA-approved drugs for the treatment of
CRC and related cancer types, including alpelisib (PIK3CA), imatinib
(ABL1/3 & c-Kit53), linsitinib (IGF1R54), osimertinib (EGFR-T790M), rali-
metinib (p38 MAPK), and trametinib (MEK1 & MEK2). Although some
of these compounds were designed to target genes harboring specific

Article https://doi.org/10.1038/s41467-024-47957-3

Nature Communications |         (2024) 15:3909 7



mutations (e.g., osimertinib55 and alpelisib56), we used a mutation-
agnostic approach to the analysis, since targeted drugs can also inhibit
wild-type proteins56 or have off-target effects on unrelated proteins57.
In the case of alpelisib, the cell line panel represents both mutated
(HCT-15, HT115, NCI-H508) and wild-type (LS1034, MDST8, SNU-61)
PIK3CA genes. Osimertinib is an effective EGFR inhibitor, which, in
contrast to erlotinib, is not affected by EGFR-T790M mutations58. As
such, the presence of T790M mutations was not considered in the
analysis.

Assessing drug MoA requires careful selection of an optimal,
physiologically achievable concentration in vivo, at which the MoA is
manifested with minimal activation of cell stress and death pathways,
as well as off-target effects, representing critical confounding factors.
Consistent with our prior studies59,60, we thus selected the highest
sublethal concentration of each compound, asdefinedby the lowest of
(a) the reported Cmax (maximum tolerated serum concentration
in vivo) and (b) the 48 h IC20 in the most sensitive cell line from our

panel, as experimentally determined by 10-point dose-response curves
(Methods). Concentrations were also capped at ≤ 0.5μM, consistent
with maximum levels achievable in tissues. Imatinib, osimertinib, rali-
metinib, and WIKI4 were thus titrated at 0.5 μM, while alpesilib, linsi-
tinib, and trametinibwere titrated at0.12μM(IC20), 0.14μM(IC20), and
0.036μM (CMax), respectively (Methods).

Differentiating between sensitive and resistant cell lines is also
non-trivial61. For example, as determined by the GDSC reference data,
the frequently applied threshold of IC50 ≤ 1.0μM, would yield a resis-
tant phenotype for 23 of 27 of our cell line/drug combinations (Sup-
plementary Fig. 10a)61. To select a more relative threshold, often used
to assess sensitivity fromGDSCdata, we used z-score thresholds based
on transforming log(IC50) values over all measured datapoints for
specific drugs or cell lines. To identify sensitive and resistant cell line/
drug pairs, we selected those with z-score < −1.0 and z-score > 1.0,
respectively, with combinations between these values labeled as
unknown (Supplementary Fig. 10b). The analysis identified trametinib-
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Fig. 3 | Representation of CRC subtypes by cell linemodels. aUniformManifold
Approximation and Projection (UMAP) embedding of KP-enzyme activity color-
coded according to different classification systems (phosphoproteome-based
VESPA; VC and the CRC Consensus Molecular Signature; CMS). b The most infor-
mative proteins and their VESPA inferred normalized enrichment scores (NES)were
selected for visualization (full datasets: Supplementary Fig. 7–9). CPTAC clinical
profiles and cell lines were grouped according to the Consensus Molecular

Classifier (CMS), VESPA clusters (VC), and microsatellite instability (MSI). Samples
are grouped according to VC. cGene Set Enrichment Analysis (GSEA) using a signal
transduction-specific subset of the Reactome database. Only terms significant in at
least one sample (FGSEA ES-test two-tailed BH-adj. p <0.05) are shown. The colors
representGSEANES and are linked to the legend in b). Sourcedata are providedas a
Source Data file.
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treated MDST8, LS1034, and NCI-H508, and linsitinib-treated LS1034,
NCI-H508, as well as alpelisib-treated HCT-15 cells as sensitive, while
linsitinib-treated SNU-61, HCT-15, and HT115, as well as trametinib-
treated NCI-H508were identified as resistant. Surprisingly, trametinib-
treated NCI-H508 was identified as both sensitive and resistant in dif-
ferent datasets (GDSC1 vs. GDSC2, respectively).

We generated phosphoproteomic profiles by DIA-based pro-
teomics analysis of each cell line, at seven-time points (ranging from
5min to 96 h) following perturbation with each of the seven inhibitors
and vehicle control (DMSO) at the previously selected concentration
(methods). This allowed assessing quantitative effects of KP-enzyme
activity following short (5min, 15min), intermediate (1 h, 6 h), and
long-term (24 h, 48 h, 96 h) treatment. Cumulatively 336 phospho-
proteomic profiles were acquired by label-free DIA, for quantification
and statistical validation at peptidoform-level62 (Methods). We will
refer to this dataset as “U54-DP”. To minimize cross-sample statistical
dependencies that would affect the mutual information estimator in
dVESPA, we generated a reduced “U54-NET” dataset comprising only
samples that were sufficiently separated in time, specifically the sam-
ples collected at 1 h, 24 h, and 96 h, respectively.

In total, 27,813 peptidoformprecursors, 14,376 phosphosites, and
3786 phosphoproteins were identified and quantified at 1% global-
context peptidoform and protein FDR63 (Supplemental Data 8). Across
all perturbations and time points, our workflow achieved high con-
sistency on peptidoform-precursor level, on a cell line by cell line basis
(48.7–55.6%), whereas the global completeness across all 336 runs of
36.6% indicates considerable biological inter-cell-line heterogeneity
and different response to drug perturbations.

After data preprocessing—including normalization and missing
value imputation (Methods)—we used VESPA to assess KP-enzyme
differential activity in each cell line, at each time point, following
treatment with each drug vs. vehicle control, using the integrated
phosphostate (PL) and activity (AL) level analysis. The resulting
matrices (Supplementary Fig. 11 (PL sorted), 12 (PL clustered), 13 (AL
sorted), 14 (AL clustered)) represent the differential activity of 381 KP-
enzymes across 336 sample conditions vs. vehicle control-treated,with
positive and negative NES values indicating either increased or
decreased enzymatic activity (Fig. 4a, Supplemental Data 9–11). As
expected, cell line identity was the dominant factor in the unsu-
pervised cluster analysis, when activity was computed at the
phosphostate-level (PL-analysis) (Supplementary Fig. 12, Supplemental
Data 10). This suggests that drug response is strongly dependent on
the cellular state. However, as expected, when activity was assessed by
activity-level (AL-analysis), unsupervised clustering improved stratifi-
cation based on activation of different signaling pathways (Supple-
mentary Fig. 14 (AL clustered), Supplemental Data 11), as assessed by
Reactome enrichment analysis (Fig. 4b, Supplemental Data 12). This is
consistent with the improvement of mVESPA activity inference when
using the AL-level analysis, as already shown.

As a first-level validation, we assessed whether the primary (i.e.,
high affinity-binding) targets of each drug were differentially active in
drug vs. vehicle control-treated cells. There are multiple caveats,
however. First, the use of the maximum sublethal concentration is
likely to induceonly partial inhibition of the target protein; in addition,
different mechanisms including pump, and feedback loops, may pre-
vent target inhibition in resistant cells. We used VESPA to assess the
time-dependent effect of each drug on its established high-affinity
targets, as reported and specified in DrugBank64 and ProteomicsDB65

(Fig. 5, Methods). For drugs with > 5 primary targets, we selected the
fivewith the highest average inhibition across all cell lines. The analysis
confirmed that even though our experiment was designed for a dif-
ferent purpose, primary targets were inhibited for some drug and cell
line combinations, albeit with highly variable temporal kinetics, ran-
ging from 5min to 96 h before maximum inhibition was achieved,
potentially due to activation of cell adaptative mechanisms.

Further supporting the cell-line-specific effect of each drug, pri-
mary target inhibition across cell lines was highly variable even for the
same drug. For instance, following ralimetinib treatment, activity of its
high-affinity targetMAPK13was inversely correlated to that ofMAPK14
in LS1034, MDST8, and SNU-61 cells yet positively correlated in other
cell lines (Fig. 5). Critically, comparative analysis shows that abundance
of phosphopeptidesmapping to adrug’s primary targetswasoften less
informative than VESPA-measured KP-enzyme activity, often because
sites determining enzyme activation were not directly measured or
their measurement was noisy (Supplementary Fig. 15). In addition,
changes in phosphosite abundance would only be relevant for
enzymes that autophosphorylate.

Equally important, analysis of phosphosite-specific signalons
provided critical clues for the identification of those determining
enzyme activation. Most drugs inhibit enzyme function by binding to
an enzymatically important part of the protein conformation rather
than by modulating the phosphosite state directly; however, for
kinases that auto-phosphorylate, the site determining its active vs.
inactive state (activating site) would also be affected. Indeed, the
analysis revealed that signalons associated with activating sites were
often affected by the targeted inhibitors, while signalons associated
with other sites were not affected (Supplementary Fig. 16, Supple-
mental Data 13). For example, MAP2K2:S222 phosphorylation was
previously identified as an activating site17. Consistent with the litera-
ture, our data shows that trametinib-mediated MAP2K2 inhibition
often resulted in lower S222-specific, time-dependent, VESPA-inferred
activity. In contrast, the time series profile of MAP2K2:S23 was corre-
lated with drug activity only in some cell lines (Supplementary Fig. 16).
Interestingly activity of MAP2K1:S298—a distinct, previously reported
activating site17—was anti-correlated with that of MAP2K2:S222, fol-
lowing trametinib treatment of HCT-15, HT115 and NCI-H508 cells,
suggesting a cell line-specific compensatory mechanism. A similar
pattern could also be observed for the correlation between
MAPK14:Y182 activity and the activity of both MAPK13:S350 and
MAPK13:T265, following ralimetinib treatment of HCT-15, HT115 and
LS1034 cells (Supplementary Fig. 16). Additional established active
sites targeted by specific drugs include EGFR:S991, EGFR:S1071 and
EGFR:Y1092 (osimertinib), MAP2K1:S298 MAP2K2:S222, RIPK3:S227
(linsitinib) and INPPL1:S132 (imatinib)17. Taken together, these data
show that VESPA analysis of data generated by drug perturbation
assays can help elucidate subtype-specific drug MoA and cell adapta-
tion mechanisms.

Context-specific signaling network adaptation and rewiring
A primary goal of our experimental design was to study context-
specific signaling network buffering/rewiring, as induced by drug
treatment, to help elucidate mechanisms of cell adaptation. For this
purpose, we combined VESPA-based inference of KP-enzyme activity
with the DeMAND algorithm59, a previously published methodology
that was highly effective in identifying sub-networks dysregulated by a
drug (Methods).

First, we used DeMAND to assess dysregulation of (a) the activity-
level-based, CRC-specific SigNet—comprising 14,390 high-confidence
interactions between 329 proteins— and (b) 915 high-likelihood
(LR ≥0.5), non-phosphorylation-related interactions between 198 of
the 329 proteins from the STRING database66 (Methods). Indeed, since
phospho-state may affect protein conformation and thus the ability to
form complexes, it is reasonable to expect that integration of addi-
tional non-phosphorylation-related protein-protein interactions
should further improve the analysis67,68. For each of the two network
models, the DeMAND analysis was performed by replacing gene
expression time series (as in the original implementation) with VESPA-
assessed, KP-enzyme activity time series (Methods). Results from the
two analyses were then integrated (Methods, Supplemental
Data 14, 15).
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To assess both global (i.e., most conserved across all cell lines)
and cell-line-specific drug MoA, two analyses were performed: For the
former, weuseddata fromall drug vs. vehicle control-treated cell lines,
across all time points. For the latter, the analysis was performed on a
cell line-by-cell line basis. Theglobal analysis identified62proteins that
were significantly dysregulated by the seven drugs (p < 0.05, BH-cor-
rected), with an average of 12 to 21 proteins per drug (Supplemental
Data 14). Hierarchical clustering of DeMAND-inferred MoA profiles
identified cell lines presenting either congruent or divergent MoA for
the same drug (Fig. 6a). Interestingly, some proteins—including
established colorectal cancer risk factors, such as PRKCZ69, BMP2K70,

and MAPK1471—was highly dysregulated by virtually all drugs, across
most cell lines, suggesting that the signaling logic of the cell plays a
critical role in canalizing the effect of drug targeting distinct pathways.

To assess early vs. late effects of each drug, which may recapitu-
late potential cell adaptive mechanisms, we plotted the VESPA-
assessed activity of the proteins identified as most dysregulated by
DeMAND, at the early (5min, 15min, 1 h) (Fig. 6b) vs. late (24 h, 48 h,
96 h) (Fig. 6c) time points (Methods). As shown, for each drug,
responses clustered into 1 to 3 sub-signatures (with most showing 2)
indicating that drug response is mediated by distinct CRC-specific
signaling networks. For instance, at the early time points, NCI-H508
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and LS1034, both classified as high-fidelity CMS2 models, behaved
similarly following 3 of the 7 treatments (imatinib, linsitinib, and rali-
metinib) but not following the other 4.

As an illustrative example, twomain clusters were identified in the
early time points for osimertinib, including either NCI-H508, HCT-15,
and HT115 (cluster 1) or MDST8, LS1034, and SNU-61 (cluster 2)
(Fig. 6b). To illustrate how network rewiring affects drugMoA, we thus
visualized the propagation of signaling activity dysregulation over
time on the most drug-dysregulated sub-networks of HCT-15 and
HT115, as representative of the two clusters (Fig. 6d). While the activ-
ities of key dysregulated proteins—BUB1, ERBB2, LYN, PRKCZ—are very
similar at the early time points (Fig. 6b), they clearly diverge in HCT-15
and HT115 at the late time points (Fig. 6c). Their time course profiles
show that activity of the primary drug target (EGFR) was not sig-
nificantly affected, likely because it is not highly activated at baseline
(Fig. 6a). However, for HT115, the established off-target65 BTK was

significantly dysregulated, especially based on its interaction with
ERBB2—a lower-affinity target of Osimertinib57—which is inactivated at
the early time points in both cell lines, but re-activated at the 48 h and
96 h time points in HCT-15 cells. Similarly, the mitotic checkpoint
serine/threonine kinase BUB1—which interacts with EGFR, BTK, ERBB2,
LYN, and PTK6—was strongly activated in HCT-15 cells up to 24 h,
suggesting that resistance/survival of this CRC cell line could be
attributed, to some extent, to its increased signaling activity72. Toge-
ther with the late time point activation of LYN and PRKCZ (Fig. 6d),
these represent the main drug response differences between the two
cell lines. Interestingly, LYN is an established mediator of EGFR inhi-
bitor resistance, due to its involvement in EGFR’s nuclear
translocation73. In contrast, PRKCZ is mainly associated with cancer
cell response to nutrient deprivation in intestinal tumorigenesis74,
suggesting that, following osimertinib treatment, HCT-15 cells
undergo metabolic adaptation to induce drug-resistance.
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At the early timepoints, ralimetinib also shows similarMoA across
all cell lines. However, at the later time points, divergent response
ensues in two cell line clusters, includingNCI-H508, HT115, and LS1034
(C1) and SNU-61, HCT-15, and MDST8 (C2). As shown by two repre-
sentative cell lines, HT115 (C1) and SNU-61 (C2), the primary ralimetinib
targets (MAPK13 and MAPK14) show inverse temporal perturbation
profiles, suggesting the emergence of critical cell adaptation
mechanisms in C2 cells (Supplementary Fig. 17). While MAPK14 inhi-
bition in HT115 cells induced consistent inactivation of downstream
MAPK targets at the later time points, MAPK13 inhibition in SNU-61
resulted in either activation or inactivation of downstream targets,
likely due to negative feedback loop.

In summary, DeMAND analysis shows that sub-network dysregu-
lation is subtype-specific and presents distinct temporal patterns, as
also shown by graphical representation (Supplemental Data 16).
Moreover, VESPA-assessed, time-dependent protein activity profiles,
can be effectively used to investigate differential mechanism of action
and cell adaptation mechanisms induced by either pre-existing,

context-specific signaling network wiring or by network rewiring (cell
adaptation) following drug treatment.

Cell adaptation-mediated drug resistance
Drug resistance mechanisms in cancer are among the most critical
issues preventing the long-term efficacy of targeted drugs. While
multiple studies have focused on the discovery of genetic events
associated with drug-resistant clones75, elucidation of dynamic
network-based adaptation without clonal selection is emerging as a
promising avenue to understand andmodulate therapeutic efficacy8,76.

VESPA-based activity analysis of drug perturbation time series can
help investigate the adaptive response of kinases and phosphatases.
We define cell adaptation as the dysregulation of signaling networks
following drug perturbation in resistant vs. sensitive cell lines, as
assessed at late time points (24 h, 48 h, 96 h) vs. vehicle control treated
samples (Methods).

As previously shown, late-time-point effects were dominated by
cell line identity (Fig. 7a, Supplemental Data 17,18). For instance, all
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Fig. 6 | Context-specific nature of signal transduction networks. a Analysis of
VESPA-inferred protein activity by DeMAND identifies KP-enzyme whose interac-
tions with other proteins are most dysregulated across cell lines (CL) and drug
compound perturbations (DC). The heatmap color scale represents the statistical
significance of the DeMAND-assessed dysregulation (-log10(BH-adj. p); one-tailed
empirical p-values computed by DeMAND). Only known drug targets (bold) and
proteinswith significant score (black: BH-adj.p <0.05; one-tailedempiricalp-values
computed by DeMAND) in the cell-line-unspecific DeMAND analysis are visualized.
b Dysregulated proteins described above were selected and grouped according to
drug perturbations. The heatmap depicts VESPA-inferred activities of the aggre-
gatedearly timepoints. cDysregulated proteins described abovewere selectedand

grouped according to drug perturbations. The heatmap depicts VESPA-inferred
activities of the aggregated late time points. d Network dysregulation and drug
mechanism of action (MoA) for the EGFR inhibitor osimertinib. Nodes indicate the
most affected regulators with inner circle colors indicating cell line type and outer
circle color and node size indicating VESPA activity. VESPA activity color legend is
shared with subfigures b and c. Edges identify dysregulated, undirected interac-
tions between KP-enzymes (Methods). Line thickness represents the statistical
significanceof eachdysregulated interaction. Proteins highlighted in green indicate
known primary/secondary targets. Source data are provided as a Source Data file.
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drug treatments in MDST8 and LS1034 (resistant), except for osi-
mertinib and ralimetinib treated LS1034 (sensitive), induced increased
activity of a KP-enzyme cluster—including SRPK277, PTPRE78, RIOK179,
CTDSP180, NEK481, CDC42BPG82, ERBB283, NEK384 and RIPK385—pre-
viously associated with colorectal tumorigenesis and/or drug resis-
tance. As such, association of several of these enzymeswith theMAPK/
ERK or STAT3 signaling pathways, as well as their inhibition by the
EGFR inhibitor osimertinib and p38 MAPK inhibitor ralimetinib in

LS1034 cells, suggests that this protein cluster may be a key mediator
of drug resistance.

A similar, cell line-specific cluster of activated and inactivated
proteins was also observed in HT115 cells, following treatment with all
drugs (resistant), except trametinib and WIKI4 (sensitive), including
CAMKK1, DAPK186,87, MAP2K388, MAPK1488, MYLK, VRK189, ZAP7090,
TP53RK91, PTPN1192, and RPS6KC1. Most of these proteins were pre-
viously associated with resistance mechanisms in colorectal cancer.
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Fig. 7 | Context-specific adaptive stress resistance mechanisms. a Effect of drug
perturbation vs. vehicle control at late time points is shown for each cell line (CL)
and drug compound (DC). The effect is assessed based on the differential VESPA
paired two-tailed t-test t-statistic between drug perturbations at three late-time-
point (24 h, 48h, 96 h) vs. vehicle control (DMSO) treated samples. Only statisti-
cally significant KP-enzymes are shown based on multiple-testing corrected
q <0.05 and avg(t-statistic) > 0, after integrating all p-values across all comparisons

by Stouffer’s method (Methods). b Enrichment of predicted KP-enzymes in pro-
teins validated by CRISPRko assays is shown using receiver operating character-
istics (ROC), area under the curve (AUC), and statistical significance (one-tailed
Mann-Whitney-U test). Results are shown for HCT-15 cells treated with linsitinib (LI;
C2: 4.0μM) and trametinib (TR; C2: 0.7μM) vs. DMSO, as well as NCI-H508 cells
treated with trametinib (TR; C2: 0.01μM) vs. DMSO perturbation. Source data are
provided as a Source Data file.
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Experimental Validation by CRISPR/Cas9-mediated Silencing
Three additional cell lines, HCT-15, NCI-H508, and SNU-61, also
exhibited cell-line-specific responses to drug perturbations, albeit with
less distinctive signatures. To validate the candidate resistance factors
identified by VESPA and to systematically assess whether targeting of
the predicted resistance factors would rescue chemosensitivity in
insensitive cells,weperformedapooledCRISPRknock-out (CRISPRko)
screen assay, targeting all annotated human kinases and phosphatases
expressed in the cell lines used in our assays with four different guides
per target gene (Methods, Supplemental Data 19). To select cell lines
resistant to specific drugs, we used the previously described GDSC-
based approach (Supplementary Fig. 10b, Methods): For linsitinib, we
selected HCT-15 (z-score = 1.12) and SNU-61 (z-score = 1.55). However,
the drug concentration in SNU-61 was too low to allow detecting sta-
tistically significant CRISPRko-mediated sensitization. As a result, data
from this cell line was not included in the analysis. For trametinib, we
selected HCT-15 (z-score = 0.89) and NCI-H508 (z-score = 1.13), even
though the combination of NCI-H508 and trametinib resulted in dis-
crepant sensitive (GDSC2) and resistant (GDSC1) responses within the
two datasets.

To validate the predictions of proteins mediating cell adaptation
and drug resistance, we performed CRISPRko screens in HCT-15 cells
treated with linsitinib for 10 population doublings (C1: 1.0μM, C2:
4.0μM) and trametinib (C1: 0.1 μM,C2: 0.7μM), aswell as in trametinib
treatedNCI-H508 cells (C1: 0.005μM, C2: 0.01μM).DMSOwas used as
vehicle control to assess guide RNA (gRNA) depletion. The initial
(drug/DMSO-free) time point-samples (T0) for these screens were
collected approximately 5–7 days after the sgRNA lentiviral transduc-
tions and puromycin selection. To pick the correct drug concentra-
tions for the pooled CRISPRko screens, we performed a long-term (10
population doublings) growth test for each cell line and their corre-
sponding drug(s) with multiple different drug concentrations (Meth-
ods). For the CRISPRko screens, we picked two drug concentrations
for each cell line, which appeared toonly have a perturbation, but not a
full inhibition effect, analogously to the phosphoproteomic pertur-
bations (Methods). The only exception was the cell line NCI-H508,
where we had to use a lower drug concentration for the long-term
pooled CRISPRko screening, due to drug toxicity manifesting after
96 h time point (last time point of the short-term assay). Differential
sgRNA abundance analysis was performed using DESeq2 (Methods,
Supplemental Data 20). Sequencing quality was excellent, with an
average alignment ratio of 90.98% (Supplementary Fig. 18). Differential
expression analysis of DMSO vs. T0 samples identified known essential
genes for CRC with an area-under-the-curve (AUC) of 0.96 for both
NCI-H508 and HCT-15 (Supplementary Fig. 19, Methods).

For tumor suppressors that can also act as resistance or insensi-
tivity factors, such as DAPK1 or PTPN11, the nature of perturbation or
knock-out will substantially bias their activity and function93. It was
recently suggested that tumor suppressor genes, or genes whose
knock-out imparts a growth advantage on cells, could cause recurrent
drug suppressor hits in drug-gene interaction CRISPRko screens, and
thus a source of a systematic bias and false positives in drug-perturbed
CRISPRko screens93. There is thus a potential discrepancy in the
experimental design of the VESPA predictions and the CRISPRko
experiment, where VESPA predicts KP-enzyme late-timepoint activity
and potential involvement in resistance or insensitivity mechanisms,
whereas the CRISPRko experiment assesses their gene essentiality
starting from timepoint 0 in combination with drug perturbations for
altogether 10 population doublings. For this reason, we excluded
knock-outs of known tumor suppressors94 from the analysis (Supple-
mentary Fig. 20-21, Methods). Other confounding factors, specifically
the involvement of proteins in cell regulatory mechanisms outside of
the scope of their primary KP-enzyme function characterized by
VESPA, could also explain the bias of these comparisons, specifically a
proportion of the false negative predictions. For example, MAP3K7

was found to have both lower VESPA activity and phosphoprotein
abundance, while being an essential gene. This discrepancy could
potentially be explained by the centrality of MAP3K7 as regulator of
cell death, being involved in both NF-κB and in NF-κB-independent
pathways such as oxidative stress and receptor-interacting protein
kinase 1 (RIPK1) kinase activity-dependent pathways95.

To compare candidate resistance factors predicted byVESPAwith
the ground truth from CRISPRko assays, we conducted separate ana-
lyses for each cell line and drug perturbation using receiver operating
characteristics (ROC) (Methods). Gene essentiality (log-fold-change
perturbation vs. control, including negative (i.e., essential) and posi-
tive (i.e., non-essential) values), is expected to be inversely correlated
to VESPA-assessed activity (t-statistic perturbation vs. control; posi-
tive: increased activity, negative: decreased activity).

The analysis strongly supports the relevance of VESPA’s predicted
resistance factors in combinationwith the drugperturbations (Fig. 7b).
ROC was found to be particularly significant for HCT-15 perturbed by
linsitinib and trametinib (AUC =0.81, p = 9e−04; AUC =0.74, p = 7.8e
−3, respectively), yet lower significance for trametinib treated NCI-
H508 cells (AUC=0.67; p =0.0962), potentially caused by the differ-
ences in drug concentrations in the two CRISRP-ko experiments (C1:
0.005μM, C2: 0.01μM) vs. the drug perturbation assays used to gen-
erate the phosphoproteomic profiles (Cmax: 0.036μM). Correlation
analysis further shows that VESPA can identify high numbers of true
positive candidates with only a few false positives (Supplementary
Fig. 21), an essential requirement for diverse applications.

We further used the CRISPRko validation experiments to assess
the VESPA-DeMAND-predicted resistance factors, as well as measured
phosphoprotein abundances. While the VESPA-DeMAND-predicted
resistance factors achieved almost similar performance to the results
obtained only by VESPA (Supplementary Fig. 22,23), we found mea-
sured differential phosphoprotein abundance to not be predictive or
correlate with the CRISPRko validation experiment, supporting the
increased predictive power of VESPA inferred K/P-enzyme activities
over phosphoprotein abundances (Supplementary Fig. 24,25).

In summary, VESPA analysis of phosphoproteomic time-series
following drug treatment was effective in identifying candidate resis-
tance factors that could be exploited in combination therapy
approaches.

Discussion
Most drug targeting kinases or phosphatases fail due to the cell’s
ability to implement an adaptive response that re-wires the underlying
signaling network to buffer the drug effects. Compared to recent
studies on these mechanisms focusing on adaptation to a specific
target96, the aim of this study is to introduce a methodological
approach to study and validate the context-specific wiring and time-
dependent, drug-mediated adaptive re-wiring of signaling networks
across different subtypes of a specific tumor and in response to drugs
targeting multiple targets. While the study is focused on CRC, it is
designed to be fully generalizable to other tumor and non-tumor-
related context, limited only by data availability.

To accomplish these goals, we complemented large-scale, tumor-
specific phosphoproteomic profile repositories generated by CPTAC
with a comprehensive experimental design to generate perturbational
phosphoproteomic profiles from six CRC cell lines representing distinct
tumor subtypes, at seven time points following treatment by seven
targeted drugs and vehicle control. Compared to other recent studies,
e.g. profiling 60 inhibitors against three diverse cell lines20, or inves-
tigating 31 cancer drugs in 13 diverse cell lines at multiple drug con-
centrations and time points21, the focus of our study was to create a
highly focused dataset allowing quantitative elucidation of cell adap-
tive response across multiple CRC subtypes—as recapitulated by
selected cell lines—drugs, and time points. Such a large-scale assay
required a flexible and scalable approach. The recent development of
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new data-independent acquisition (DIA) strategies97,98 and corre-
sponding computational analysis methods62,99,100, provided an oppor-
tunity for the comprehensive and consistent quantification of the
phosphoproteomic profiles, requiring less than 3 weeks of instrument
time, confirming the scalable nature of the proposed methodology.
Although this unfractionated, label-free approach provides sub-
stantially lower coverage compared to fractionated, label-based
CPTAC studies, we reasoned that, for the specific questions addres-
sed in this study, the quantitative consistency of the sample setmay be
more important than the depth of proteome coverage. Further, we
design an algorithm, VESPA, that can leverage signaling networks
inferred from the comprehensive CPTAC datasets to support
improved analysis of focused drug perturbation profiles.

Borrowing from previous approaches23,24,39,67,68,101, VESPA postu-
lates that kinase and phosphatase activity is better measured based on
the phosphostate of their substrates than on their own phosphostate.
However, as discussed, critical changes were necessary to adapt this
framework to analyzing highly sparse and noisy phosphoproteomic
profiles, including a reformulation of the Data Processing Inequality
approach used to remove a majority of indirect signaling interactions.

Compared to established pathway databases, VESPA dramatically
increases the number of KP→ S interactions per signaling protein (e.g.,
going from an average of 70 in Pathway Commons to an average of
500 by dVESPA analysis) and was able to generate signalons appro-
priate for activity measurement for almost twice the number of KPs in
Pathway Commons (i.e., 371 vs. 211). Critically, for several KPs, the
activity could be assessed in phosphosite-specific fashion—thus
improving mechanistic understanding of signaling transduction—and
could be corrected for signaling crosstalk. Cross-talk represents a
critical property of cellular signaling, which canonly be addressedwith
the context-specific, comprehensive signaling networks generated by
VESPA and its analytical framework based on the original VIPER
algorithm29. Finally, the hierarchical approach in VESPA significantly
improved the assessment of tyrosine kinase activity, by addressing the
reduced sensitivity of phosphoproteome profiling methods to tyr-
osine phosphorylation. The use of methods for phosphotyrosine pull-
down may further improve VESPA’s performance.

Overall, extensive benchmarks, including at the level of the indi-
vidual algorithmic improvements, show that even foregoing the use of
dVESPA-inferred signaling networks, VESPA significantly outperforms
previously published methodologies. Such basic implementation,
however, is associated with a lower limit on algorithm performance,
sincewe also show that use of de novo signaling networks dramatically
improves performance.

Although VESPA is applicable to most CPTAC or DIA-based data-
sets, several requirements must be fulfilled to make use of its full
potential: Phosphoproteome coverage (>10,000 phosphosites),
quantitative consistency (>40%) and sufficient sample number for
network reconstruction (>100 independent samples) are typically
required.

Selected cell lines for perturbational profile generation effectively
recapitulate the major CRC subtypes identified by either tran-
scriptomics or phosphoproteomic CRC sample analyses, in TCGA and
CPTAC, respectively (Fig. 3a, b), as well as the subtypes reported by the
Consensus Molecular Classifier (CMS) of the Colorectal Cancer Sub-
typing Consortium (CRCSC). Consistent with this selection, mechan-
isms of adaptive response stratified with cell lines representing the
same or most related subtypes.

Further showcasing the flexibility of the proposed framework, we
leveraged drug perturbation profiles for three different purposes, (1)
determining temporal activity dynamics of established high-affinity
drug targets, (2) assessing context-specific wiring/re-wiring of signal-
ing pathways following drug perturbation, and (3) identifying context-
specific adaptive stress resistance or insensitivity mechanisms. The
temporal activity analyses showed that phosphosites of primary

targets can rarely be measured consistently or fail to show a direct
response. In contrast, VESPA-inferred signaling activity could, in some
cases, even resolve the activity associated with phosphorylation of
individual phosphosites (Supplementary Fig. 16).

DeMAND-based network dysregulation analysis further illustrates
the value of using context-specific signaling networks. Based on VES-
PA’s ability to dissect signaling networks de novo, in context-specific
manner, DeMAND was able to provide a more direct, mechanism-
based assessment of drug-mediated signaling network dysregulation
and thus of adaptive responses mediated by other KP-enzymes com-
pared to the original implementation (Fig. 6d, Supplementary Fig. 17).

Differential analysis of late vs. early time point KP activity effec-
tively identified candidate proteins mediating adaptive response and
drug resistance, thus providing valuable clues for pharmacologic tar-
gets that may rescue drug sensitivity (Fig. 7a). While many of the
proteins identified by the analysis had already been validated as
resistance factors in CRC, CRISPRko assays targeting kinases and
phosphatases confirmed significant enrichment of algorithm predic-
tions in proteins representing causal determinants of drug resistance.
This suggests that VESPA may provide a useful tool to elucidate
mechanisms underlying drug resistance and cell adaptation.

Although our study focuses on the phosphoproteomic profiles,
the signaling activities inferred by VESPA are ideally suited and directly
compatible with upcoming methods for causal integration of multio-
mic profiles, e.g. via TieDIE68 or COSMOS67. In addition, the metho-
dology is fully generalizable and can be used to generate SigNets for
many tumor contexts that have already been characterized by CPTAC
and related studies. VESPA is directly compatible with popular
upstream bottom-up proteomic workflows and can be easily adapted
for various experimental designs. The algorithmic components are
available as platform-independent open-source software under a non-
commercial usage license. We further provide de novo inferred sig-
naling networks and inferred kinase and phosphatase activities for a
variety of published CPTAC datasets (see Data Availability).

Methods
VESPA
Data preprocessing. The primary input to the VESPA algorithm is a set
of quantitative, proteotypic/unique peptide-level phosphoproteomic
profiles from bottom-up mass spectrometry experiments. The data
format is a matrix (hereafter referred to as Proteomic VESPA input
Matrix, PVM), whose columns represent: (a) the “gene_id” (UniProtKB
entry name without species, e.g. “EGFR”), (b) the “protein_id” (Uni-
ProtKB entry identifier, e.g. “P00533”), (c) the “peptide_id” (free text
unique peptide identifier from upstream software), (d) the “site_id”
(unambiguous combination of gene_id, protein_id and phosphosite,
separated by “:”, e.g. “EGFR:P00533:S229”), (e) the “mod-
ified_peptide_sequence” (free text modified peptide sequence from
upstream software), (f) the “peptide_sequence” (free text unmodified
peptide sequence from upstream software), (g) the “phosphosite”
(unambiguous phosphosite identifier, e.g. “S229”), (h) the “run_id”
(free text sample or MS run identifier), and (i) the “peptide_intensity”
(float log2-transformed peptide intensity from upstream software) of
each detected peptide/phosphopeptide. To avoid any ambiguities and
to allow for data transferability, all peptide sequences, phosphosites
and protein names and identifiers are expected to be mapped to
UniProtKB. If a phosphosite is represented by multiple peptide pre-
cursors, the most consistently detected peptide precursor is used. If a
peptide precursor contains multiple phosphorylated sites, redundant
entries for each distinct phosphosite are added. Each dataset (e.g.,
CPTAC sample cohort or study) should be stored in a separate PVM to
ensure that differences in experimental design or batch effects can be
accounted for in downstream steps.

Protein abundance level normalization can be very important for
clinical datasets, such as CPTAC, where some proteins might have
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more variable protein abundance distributions, which could poten-
tially confound corresponding phosphopeptide abundances and thus
lead to wrong associations of co-regulated proteins. VESPA can
incorporate protein abundances at three different stages of the
workflow:

Protein abundance normalization. Of note, as opposed to CPTAC
samples, we did notmeasure baseline peptide abundances suitable for
protein abundance inference for the U54 samples, since this would
have doubled the number of required LC-MS/MS runs. However, by
normalizing each drug-treated sample against the corresponding
vehicle control-treated ones, we expect that this will not significantly
affect results. Further, sincemost signalons comprise of phosphosites
representing dozen to hundreds of independent phosphoproteins, the
analysis is robust against changes in protein abundance of individual
proteins. As such, we recommend using protein abundance-
normalized profiles only if the investigated mechanisms are expec-
ted to be substantially confounded, e.g. the auto-phosphorylation
feedback loops of tyrosine kinases when comparing drug-perturbed to
baseline samples.

Protein abundance as proxy for KP-enzyme signalons. Instead of
using KP-enzyme phosphopeptides as proxy for the enzyme compo-
nent of the signalon, protein abundances can optionally be used for
the inference of signaling networks. This is particularly useful when
variability in gene expression influences the activity of a KP-enzyme,
for which phosphopeptides were not measured, for example, tyrosine
kinases. This mode should thus only be used instead of “protein
abundance normalization” described above, but not together. The file
format is similar to PVM; however, the columns “peptide_id” (free text
unique protein identifier), “site_id” (unambiguous combination of
gene_id, protein_id and ”PA” (protein abundance), separated by “:”, e.g.
“EGFR:P00533:PA”), “modified_peptide_sequence” (free text unique
protein identifier), “peptide_sequence” (free text unique protein
identifier), “phosphosite” (”PA” (protein abundance)), and “pepti-
de_intensity” (float log2-transformed protein intensity from upstream
software) are different.

Signalon optimization. Since protein abundance measurements are
themselves noisy and thus have limited accuracy, the normalization
step may introduce additional bias. Since dVESPA supports the use of
de novo, inferred signalons, both protein-abundance normalized and
unnormalized phosphoproteomic profiles can be included in the net-
work dissection step, thus allowing optimal signalon selection on an
individual KP-enzyme basis.

The “vespa” R-package provides fully automated import func-
tionality for the OpenSWATH102, IonQuant103, MaxQuant104, and the
CPTAC105

file formats. Support for other file formats can be easily
added by supporting their reference implementation. During data
import, peptide sequences are first mapped to a user-provided Uni-
ProtKB/SwissProt FASTA database to ensure consistent mapping of
phosphosites and identifiers. Peptide intensities are (optionally batch-
wise) quantile normalized and centered.

Signaling Network Inference. Bottom-up proteomic experiments
spanningdozen tohundreds of samples are affectedbybothbiological
variability and technical noise. For phosphoproteomic profiles,
accounting for technical noise and artifacts is especially challenging,
because different sample preparation workflows, phosphopeptide
enrichment strategies, labelled or label-free quantification, biochem-
ical peptide fractionation, data acquisition techniques, and signal
processing can all have dramatic effects on critical variables—e.g.,
phosphoproteome coverage, depth, and consistency—resulting in
missing values. As a result, consistent with the assumptions formutual
information estimation, different datasets cannot be combined to

generate an integrated signaling network. Rather eachdatasetmust be
analyzed independently to avoid different biases in different datasets
from introducing massive technical artifacts. Networks are generated
via the Snakemake106 workflow (“vespa.net”) consisting of the “vespa”
and “vespa.db” R-packages and the “vespa.aracne” algorithm. This
includes the following steps:

Data preprocessing. The PVM is first transformed to a peptide-level
quantitative matrix, with missing values designated as NA, and then
rank-transformed, in apeptide-wisemanner,while retaining allmissing
values. To restrict the number of potential interactions between KP-
enzyme and substrate phosphopeptides, several options are available:
(a) a list of KP-enzymes is used to define KP-enzyme and substrate
phosphopeptides, where all combinations between them are allowed,
(b) a list of activating (kinases) and deactivating (phosphatases) KP-
enzymes is used, where kinases require positive correlation with sub-
strates and phosphatases reiquire negative correlation, and c) refer-
ence network, where a list of KP-enzyme/substrate interactions, with
optional priors, is supplied based on the literature or other algorithms.
For options (a) and (b), an additional, optional list of candidate sub-
strates can be supplied if a subset of phosphopeptides should be
ignored by the analysis.

Mutual information estimation by hybrid adaptive partitioning.
Peptides measured by bottom-up proteomics have individual limits of
detection (LOD) and limits of quantification (LOQ), usually resulting in
censored values. Missing values in some samples might thus arise not
due to technical effects (e.g., stochastic data-dependent acquisition or
batch effects) but can contain information about those peptides not
reaching LOD/LOQ abundance levels. To make use of this information
and to estimate mutual information (MI) between two sparse abun-
dance rank vectors representing the phosphopeptide abundance of a
KP-enzyme (KP) and a substraite (S) across multiple samples, a hybrid
adaptive partitioning algorithm was implemented in “vespa.aracne”.
Specifically, the space defined by the two vectors is split into four
quadrants containing: 1. All data points with no missing KP and S
values, 2. data points missing both KP and S values, 3. data points
missing only KP values, and 4. data points missing only S values. For
quadrant 1, MI is estimated by an adaptive partitioning algorithm
(ARACNe-AP)28. For quadrants 2-4, MI is estimated separately without
adaptive partitioning. The MI of all quadrants is then combined and
normalized, providing a more robust metric to assess the relationship
between KP-enzymes and targets.

Selecting a statistical significance threshold for mutual informa-
tion. To estimate a threshold for statistical significance, a null model is
generated by permuting the rank-transformed quantitative peptide
matrix, including missing values. The MI probability density for all
candidate interactions is computed and an MI threshold for a user-
definable family-wise error rate (default: FWER=0.05) is estimated.

Bootstrapped network reconstruction. For each candidate KP-
enzyme/substrate interaction MI is computed by bootstrapping the
Hybrid Adaptive Partitioning estimator over N random samplings
(default:N = 200) of the PVMmatrix and removing interactionswithMI
below the statistical significance threshold at each bootstrap step. To
remove putative indirect interactions, the Data Processing Inequality
(DPI)27 or its signal transduction-specific version (stDPI) canbe applied.

Signal Transduction Data Processing Inequality (stDPI). The mole-
cular mechanisms involved in phosphorylation-based signaling net-
works can be very diverse and involve changes in phosphostate,
binding to activating proteins, allosteric activation, among many oth-
ers. In contrast, standard serine/threonine phosphopeptide enrich-
ment and bottom-up proteomics, as used for example in CPTAC
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studies, can only be used to measure sparse phosphopeptide abun-
dances for some proteins. To account for this limitation, we imple-
mented stDPI, a more biochemically constraint version of DPI.
Specifically, this mode assumes that for kinases, phosphopeptide or
protein abundance must positively correlate with substrate abun-
dance. On the other hand, phosphatase abundance must negatively
correlate with substrate abundance. This permits only two out of four
possible DPI “triangles” to be valid for assessment, including (i) kinase-
kinase-substrate or (iv) phosphatase-kinase-substrate relationships,
but not (ii) phosphatase-phosphatase-substrate or (iii) kinase-phos-
phatase-substrate, as shown in Supplementary Fig. 1b. This is because
(ii) and (iii) would have an opposite effect on the substrate. If we
assume for example that a phosphatase dephosphorylates its sub-
strate (direct), a putative indirect phosphatase-phosphatase-substrate
interactionwould have an inverted effect on the substrate. It should be
noted though that the assumptions of stDPI are tailored to standard
serine/threonine phosphopeptide enriched data,where the phosphate
groups involved in molecular mechanisms are typically not directly
measured, e.g. as is the case for tyrosine kinases and phosphatases. If
tyrosine-enriched phosphopeptide measurements are available, stan-
dard DPI should be used instead, as this will also allow for other
mechanisms, including phosphatase activation by dephosphorylation,
resulting in positive correlation between tyrosine phosphatase and
their substrates.

Consensus network generation. Finally, a consensus network is
generated from the individual bootstrap runs as introduced in
ARACNe-AP. Specifically, the statistical significance of each interaction
is estimated based on a Poisson distribution generated from all boot-
strap runs and only statistically significant interactions are retained
(default: p <0.05, Benjamini-Hochberg-corrected, BH). Two networks
are generated by the analysis, one where individual phosphosite-
phosphosite interactions are considered and the other where the
abundance of all phosphosites in the same protein are combined.

Signalon generation. Based on the final consensus network genera-
tion, the set of substrates (full proteins or individual phosphosites)
regulatedby aKP-enzyme (signalon) is generated for further useby the
mVESPA algorithm, which extends the VIPER algorithm29 to signaling
networks. In this step, peptide identifiers are mapped back to site
identifiers to ensure transferability between different datasets. For
each interaction, a probabilistic weight is computed by normalizing its
estimatedMI by themaximumMI estimated across the entire network.
For each interaction, optional priors from reference networks are
normalized by the maximum prior specific to each KP-enzyme. The
mode of regulation is then determined as described previously29 by
fitting a three-Gaussian mixture model, representing repressed
(Spearman ρ≪0), activated (ρ≫0), and non-monotonically regulated
(ρ ≅ 0) targets. Spearman’s correlation coefficient is computed using
only fully quantitated datapoints. Finally, signalons are trimmed to
include only the top N (default: N = 500) substrates, based on their
probabilistic weight, until the threshold T is reached, optionally
weighted by a reference network’s priors:

T =
XN

1

likelihood
maxðlikelihoodÞ

2

ð1Þ

Only signalons with at least M substrates (default:M = 5) are used
by mVESPA.

Activity-level network reconstruction. So far, phosphostate-level
signalons were generated using stDPI, associating KP-enzyme and
substrate phosphopeptide abundances. mVESPA can then be used to
infer phosphostate-level activity using these signalons. For VESPA’s
hierarchical approach, additional activity-level networks are

reconstructed as described above for phosphostate-level networks,
however now using the phosphostate-level activities inferred in the
previous step as input instead of phosphopeptide abundances. Fur-
ther, instead of stDPI, standard DPI is used to abstract the second
signaling network to a functional instead substrate-based representa-
tion of the system.

KP-enzyme Activity Inference
Phosphostate-level inference. To infer KP-enzyme activity based on
the phosphostate of their substrates (phosphostate-level analysis), we
use signalons generated by phosphostate-specific dVESPA analysis and
either the PVM used for their generation or an independent PVM
comprising aphosphoprofiles froma set of context-related samples, as
the main input to the “viper”29 R-package. Signalons must comprise at
least M substrates (default: M = 5) to be considered for the analysis.
The PVM matrix can be divided into a set of samples for which dif-
ferential KP-enzyme activity must be assessed compared to a second
set of control samples. Alternatively, the entire PVM matrix can be
used as a control, thus assessing differential KP-enzyme activity com-
pared to the centroid of the entire sample set. First, the PVM is
transformed to a quantitative matrix, with missing values imputed as
row-wise minimum with the addition of random values from a white
noise distribution (R-package “jitter”, range set to the difference
between the two lowest values per row) to break ties due to identical
values. The parameters for the “viper” activity inference function can
be tailored for different applications and support the same experi-
mental designs as the original implementation. A bootstrapped null
model can be used, using the “viperSignature” function, to assess dif-
ferential protein activity in each specific sample compared to the
reference dataset (i.e., either a subset of the PVM or the entire PVM).

Activity-level inference. The same analysis as described in the pre-
vious paragraph is performed with the following differences: (a)
activity-level signalons, generated as described in previous sections,
are used and (b) the PVM matrix is replaced by a matrix of phos-
phostate activity levels, as inferred from the first analysis.

Integrated inference. Phosphostate- and activity-level activities, as
assessed by mVESPA, are then integrated using Stouffer’s method.

Crosstalk correction. Signalons for two KP-enzymes may present
substrate overlap, thus resulting in situations where activation of one
enzyme may result in the other enzyme also appearing activated. To
address this challenge, VESPA leverages the pleiotropy correction29

originally introduced in the VIPER algorithm and included in the
“viper” function29: All signalon pairs affected by cross-talk are gener-
ated that fulfill two conditions: Specifically, consider two KP-enzymes,
A and B, whose signalons comprise shared substrates and are sig-
nificantly enriched (p < 0.05) in a phosphopeptide abundance sig-
nature of interest. In that case, the contribution of the shared
substrates to the activity of the KP-enzyme with the lower differential
activity (e.g., B), is assessed by computing:

CDE = log10 pBð Þ � log10 pAð Þ ð2Þ

CDE is penalized by CDECI=NT , where the cross-talk index (CI) is a
constant (default: CI =20) and NT is the number of signalon pairs
where signalon A is one component and vice versa.

Signalon optimization. VESPA signalons are typically generated based
on the analysis of multiple dependent or independent phosphosites,
one more phosphoprofile datasets, and potentially using different
priors from referencedatabases or predictive algorithms. To select the
best signalon for each phosphosite and/or protein, we use the
approach introduced by the metaVIPER algorithm33, where the
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signalon producing the highest differential activity is selected, based
on the assumption that incorrect signalons can only reduce the NES
computed by the enrichment analysis.

Phosphopeptides can frequently harbor multiple phosphosites,
signalons generated at a site-specific level can be redundant. To gen-
erate a non-redundant set, VESPA identifies and removes highly cor-
related signalons associated with the same phosphopeptide using the
“findCorrelation” function from the R-package “caret” with a specified
correlation cutoff (default: C =0:5).

Integrated generation of signalons on phosphostate- and activity-
level. The “vespa.net” Snakemake workflow automates the process of
implementing all the above-described steps to generate optimized
phosphostate- and activity-level signalons starting from one or more
input PVMs (and optionally related protein abundance matrices). As
discussed, the analysis requires an additional PVM representing a
reference phosphoproteomic dataset with respect to which the dif-
ferential activity is assessed. For instance, the samples representing
vehicle control-treated cells can be used as a control set to assess KP-
enzyme differential activity in drug-treated samples. In alternative, the
entire PVM matrix can be used as a reference dataset.

Application to target datasets. After running “vespa.net” and gen-
erating phosphostate- and activity-level signalons, the “viper” function
of “vespa” is used to computeKP-enzymeactivity basedon the inferred
network. These frameworks provide a flexible toolkit suitable to sev-
eral applications, as discussed in the main text. The tutorial dataset
(“vespa.tutorial”) illustrates the use cases of this study and describes
the required parameters.

Cell culture
The six CRC cell lines used in this study (HCT-15, HT115, LS1034,
MDST8, NCI-H508, SNU-61) were previously selected to ideally repre-
sent the clinical phenotypes covered by TCGA as assessed by their
transcriptional state inferred by VIPER, while also fulfilling practical
culture condition considerations45. The cell lines were obtained from
ATCC (American Type Culture Collection) (HCT-15: ATCC#CCL-225,
LS1034: ATCC#CRL-2158, NCI-H508: ATCC#CCL-253), the Korean Cell
Line Bank (KCLB) (SNU-61: KCLB#00061), and the EuropeanCollection
of Authenticated Cell Cultures (ECACC) (MDST8: ECACC#99011801,
HT115: ECACC#85061104) and cultured using prescribed conditions to
the amounts as described below. No authentication was conducted
after purchase from the vendors. All cell lines were routinely tested for
Mycoplasma contamination and were kept in a 37 °C humidity-
controlled incubator with 5.0% CO2.

IC20 determination
As discussed, to avoid off-target effect and activation of stress and cell
deathpathways, thatmay confound the analysis of a drug’smechanism
of action, cells were treated with a drug concentration representing its
48 h IC20. To assess this value, cell lines were first plated into 384-well
plates, in 50 µL total volume, and incubated at 37°C. After 16 hours
plates were removed from the incubator and compounds were trans-
ferred into assay wells (100 nL) in triplicate, according to a 10-point
dilution curve starting at 10 µM. Plates were then returned to the
incubator. After 48hours plates were again removed from the incu-
bator and allowed to cool to room temperature prior to the additionof
100 µL of CellTiter-Glo (Promega Inc.) per well. Plates were then
mechanically shaken for 5minutes prior to readout on the EnVision
Multi-Label Reader (Perkin Elmer Inc.), using the enhanced lumines-
cence module. Relative cell viability was computed using matched
Thimerosal control wells as reference. IC20 was estimated by fitting a
four-parameter sigmoid model to the titration results. The high-
throughput screening table for the IC20 screen is available in Supple-
mental Table 1.

Drug perturbation profile generation
Each cell line was treated with seven different drugs, as well as vehicle
control (DMSO). Each cell line was plated in 6-well plates in numbers
that would approach confluency by 96 h for the fastest-growing cell
line. After allowing overnight attachment, cells were treated with each
drug at a concentrations C selected to be (a) C ≤0.5μM, (b) C ≤ Cmax,
the maximum approved drug concentration, and (c) C ≤ IC20 value of
the most sensitive cell line in the panel, as discussed above: Based on
this logic, the following concentration were used: alpelisib (BYL719):
0.12 µM, imatinib (STI571): 0.5 µM, linsitinib (OSI-906): 0.14 µM, osi-
mertinib (AZD9291): 0.5 µM, ralimetinib (LY2228820): 0.5 µM, trame-
tinib (GSK1120212): 0.036 µM, WIKI4: 0.5 µM. DMSO was titrated at
0.5%. Cells were then harvested at multiple time points, including
5min, 15min, 1 h, 6 h, 24 h, 48h, and 96 h, lysed and processed as
described below for the generation of phosphoproteomic profiles.
Each sample was run in triplicate. To generate baseline (i.e., untreated)
phosphoproteomic profiles, cell lines were grown in 150mm × 25mm
dishes to about 80% confluency and split into 3 batches. At the time of
harvest, cells were washed 3x with PBS, pelleted, snap-frozen by liquid
nitrogen, and stored at -80 °C.

Proteomic sample preparation
For frozen cell pellets, cells were lysed on ice, by adding 10M urea
containing a complete protease inhibitor cocktail (Roche) and Halt™
Phosphatase Inhibitor (Thermo); pellets were then resuspended and
processed for tryptic digestion. For cells in 6-well plates, plates were
washed 3x with pre-cooled PBS and cells in wells lysed on ice imme-
diately in 10M urea containing complete protease inhibitor cocktail
(Roche) and Halt™ Phosphatase Inhibitor (Thermo) and lysates stored
at -80°C until for further analysis. Lysates were processed for tryptic
digestion as follows. Cell pellets/lysates underwent sonication at 4°C
for 2min, using a VialTweeter device (Hielscher-Ultrasound Technol-
ogy), and then centrifuged at 18,000× g for 1 h to remove the insoluble
material. A total of 300-500μg supernatant proteins (determined by
BioRad Bradford assay) were transferred to clean Eppendorf tubes.
Supernatant protein mixtures were then reduced by 10mM tris-(2-
carboxyethyl)-phosphine (TCEP) for 1 h at 37°C and 20mM iodoace-
tamide (IAA), in the dark for 45min, at room temperature. Then, five
volumes of precooled precipitation solution containing 50% acetone,
50% ethanol, and 0.1% acetic acid were added to the protein mixture
and kept at −20 °C overnight. Themixture was centrifuged at 18,000 ×
g for 40min. The precipitated proteins were washed with 100% acet-
one and 70% ethanol with centrifugation at 18,000 × g, 4 °C for 40min,
respectively. Protein pellets were dried in SpeedVac for 5min. 300μL
of 100mM NH4HCO3 was added to all samples, which were digested
with sequencing grade porcine trypsin (Promega) at a ratio of 1:20
overnight at 37 °C. After digestion, the peptide mixture was acidified
with formic acid and then desalted with a C18 column (MarocoSpin
Columns, NEST Group INC). The amount of the final peptides was
determined by Nanodrop (Thermo Scientific). About 5% of the total
peptide digests were kept for total proteomic analysis of the cell line
baseline profiles.

Phosphoproteomic sample preparation
From the same peptide digest above, ~95% of the peptides from each
sample were used for phosphoproteomic analysis. Phosphopeptide
enrichment was performed using the High-Select™ Fe-NTA kit
(Thermo Scientific, A32992), according to the kit instruction. Briefly,
the resins of one spin column in the kit were divided into five equal
aliquots, each used for one sample. The peptide-resin mixture was
incubated for 30min at room temperature and then transferred into
the filter tip (TF-20-L-R-S, Axygen). The supernatant was removed after
centrifugation. Then the resins adsorbed with phosphopeptides were
washed sequentially with 200μL× 3 washing buffer (80% ACN, 0.1%
TFA) and 200μL × 3H2O to removenonspecifically adsorbedpeptides.
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The phosphopeptides were eluted off the resins by 100μL × 2 elution
buffer (50% ACN, 5% NH3⋅H2O). All centrifugation steps above were
conducted at 500 g, 30 sec. The eluates were collected for speed-vac
and dried for mass spectrometry analysis.

Mass spectrometry data acquisition
For each proteomic (N = 18) and phosphoproteomic (N = 354) sample
generated above, DIA-MS analysis was performed on 1μg of peptides,
as described previously107,108.

Briefly, LC separation was performed on EASY-nLC 1200 systems
(Thermo Scientific, San Jose, CA) using a self-packed analytical
PicoFrit column (New Objective, Woburn, MA, USA) (75 μm × 50cm
length) using C18 material of ReproSil-Pur 120A C18-Q 1.9 μm
(Dr. Maisch GmbH, Ammerbuch, Germany). A high-throughput, 75-min
measurement with buffer B (80% acetonitrile containing 0.1%
formic acid) from 6% to 37% and corresponding buffer A (0.1% formic
acid in H2O) during the gradient was used to elute peptides from the LC.
Theflow ratewas kept at 300nL/minwith the temperature-controlled at
60 °C using a column oven (PRSO-V1, Sonation GmbH, Biberach,
Germany).

The Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo
Scientific) instrument coupled to a nanoelectrospray ion source
(NanoFlex, Thermo Scientific) was calibrated using Tune (version 3.0)
instrument control software. The spray voltage was set to 2000V and
the heating capillary temperature at 275 °C. All the DIA-MS methods
consisted of one MS1 scan and 40 MS2 scans of variable isolated
windows108, with 1 m/z overlapping between windows. The MS1 scan
range is 350–1650m/z, and the MS1 resolution is 120,000 at m/z 200.
The MS1 full scan AGC target value was set to be 2.0E5, and the max-
imum injection timewas 100ms. TheMS2 resolutionwas set to 15,000
at m/z 200 with the MS2 scan range 200–1800 m/z, and the normal-
ized HCD collision energy was 28%. The MS2 AGC was set to be 5.0E5,
and the maximum injection time was 50ms. The default peptide
charge state was set to 2. Both MS1 and MS2 spectra were recorded in
profile mode. Detailed MS settings can be inspected through raw files
provided via ProteomeXchange.

Mass spectrometry data analysis
Raw data files were processed and converted to mzXML by
ProteoWizard109 (version 3.0), enabling centroiding (using the vendor-
provided algorithm) onMS1 andMS2 levels. For peptide identification
and quantification, an integrated Snakemake workflow consisting of
DIA-Umpire110,111 (version 2.1.6), MSFragger112 (version 2.3.0), the Trans-
Proteomic Pipeline (PeptideProphet113,114, PTMProphet115, iProphet116,
version 5.2.0), EasyPQP (version 0.1.6), OpenSWATH102 (OpenMS117,
version 2.5.0), PyProphet63,118 (version 2.1.4) and TRIC119 (msproteo-
micstools, version 0.11.0) was used.

A UniProtKB/Swiss-Prot protein sequence database was used for
MSFragger. The spectral library was controlled to 1% PSM-, peptide-
and protein-level FDR in global context and the best site-localization
per phosphosite was selected. EasyPQP exported a global library, as
well as a sample-specific library for each run.

OpenSWATH was run using the sample-specific high-confidence
library for mass calibration and non-linear retention time alignment
with enabled IPF62 module for peptidoform-level confidence estima-
tion. PyProphet with enabled IPF module and using the XGBoost
classifier120 was used for statistical validation. Peptides and proteins
were filtered to 1% FDR in global context. TRIC was used for feature
alignment using the IPF peptidoform-level scores in run-specific con-
text, aligning detected peptides by lowess with a seed FDR of 1% to a
maximum of 5%.

For quantitative protein abundance inference, the R-package
“iq”121 (version 1.9), implementing the MaxLFQ algorithm104 for DIA-
based datasets, was used with default parameters.

The full workflow, all used parameters, and software distributed
as Docker containers that enable accurate reproduction of the analysis
are provided with the dataset via ProteomeXchange.

CRISPRko validation experiment
Cell culturing. The following cell culture conditions were used: (1)
HCT-15 – RPMI 10% FBS + pen/strep, (2) NCI-H508 - RPMI 10% FBS +
pen/strep, (3) 293 T – DMEM 10% FBS + pen/strep.

All cell lines were routinely tested forMycoplasma contamination
andwere kept in a 37 °C humidity-controlled incubator, with 5.0%CO2.

Optimizing drug concentrations for pooled CRISPRko screens.
Drug concentrations were optimized for each cell line to ensure ideal
long-term CRISPRko screen readouts. The time to reach 10-population
doublings depended primarily on characteristics of each cell line and
could take 25 to 40 days. Trametinib and linsitinib perturbations were
testedwith 5 concentrations (10μM, 1μM, 0.1μM, 0.01μM, andDMSO
only) and the cellular growth effect was assessed for each of those
concentrations for each of the cell lines in a long-term growth assay.
The DMSO concentration was optimized for 0.15%.

Cells were grown and underwent drug treatment in 15 cm plate
format, splitting the cells whenever they became approx. 80-90%
confluent. When the DMSO-plate reached 10-population doublings,
the total number of cell divisions was counted for each of the above-
mentioned drug treatment plates. Final concentrations for the pooled
CRISPRko-screens were selected to represent drug concentrations
which had only a modest effect on cell division rate (approx. 10-20%
slower cell divisions compared to DMSO), similarly as previously
suggested122.

CRISPRko library design. For CRISPRko screening we designed the
target gene list to include all human kinases (obtained from UniProt:
pkinfam.txt) and phosphatases (obtained from reference10). All these
genes were targeted with 4 sgRNAs/gene. For guide designs we used
CRISPick123,124.

CRISPRko oligo synthesis and library cloning. Oligo libraries (4404
oligos) were ordered from Twist-biosciences in following format:

cttgtggaaaggacgaaacaccgNNNNNNNNNNNNNNNNNNNNgtttAa-
gagctagaaatagcaagttTaaataaGgct.

The following Twist oligo pool amplification conditions
were used:

Concentrations: 1μl Twist oligo library (1 ng/ul), 10μl 5x KAPA
HIFI buffer, 1μl dNTPs, 1μl KAPA, 2μl sgRNA_insert_dd_F (10μM), 2μl
sgRNA_insert_dd_R (10μM), 2.5μl 20xSYBR, 30.5μl H2O.

Cycles: 95 °C 3min, 98 °C 20 sec, 56 °C 15 sec (done with qPCR,
stopped before saturation), 72 °C 20 sec, 72 °C 5min, 4 °C ∞

sgRNA_insert_dd_F:CTTGTGGAAAGGACGAAACACCG
sgRNA_insert_dd_R:AGCCTTATTTAAACTTGCTATTTCTAGC

TCTTAAAC.
After PCR, the insert was gel purified (GeneJet) and Gibson cloned

into BsmBI-digested modified lentiGuide-Puro.3xBsmBI (Addgene
#196709). For this study, the 3rd BsmBI-site was mutated from the
vector.

Gibson cloned insert + vector was Isopropanol precipitated and
large-scale electroporated into Lucigen Enduro competent cells. The
bacterial colonies were scraped from 10 x 24, 5 cm x 24, 5 cm agar
plates so that the estimated library complexity was > 1000 colo-
nies/sgRNA.

CRISPRko library viral packaging. 13 million 293T cells were seeded
for each 15 cm dish previous night of the transfections. The following
morning the viral transfections were conducted as follows: 22.1μg
sgRNA-library containing lentiGuide-Puro or modified lenti-Cas9-
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sgHPRT1, 16.6 μg PsPAX2 (Addgene 12260), 5.5μg PMD2G (Addgene
8454), 1660 μl of sterile H2O.

After mixing the plasmids 1106μl of Fugene HD (Promega) was
added to the mix.

The transfection mixture was briefly vortexed and incubated
10minutes at room temperature before adding dropwise to 293T cells.
Altogether 3 x 15 cm plates were transfected for sgRNA-library con-
taining lentiGuide-Puro and 1 x 15 cm plates were transfected with
modified lenti-Cas9-sgHPRT1 (Addgene #196713). For this study, the
sgHPRT1 part was removed from the lenti-Cas9-sgHPRT1-vector.

The transfection mixture was removed the following day and the
virus was collected at 48 h and 72 h after initial transfections. To
remove cellular debris, the virus-containing supernatant was cen-
trifuged 500 x g for 5min and filtered by using 0.45μm PES filters
(Millipore). The lentivirus was concentrated by using Lenti-X con-
centrator (Clontec), aliquoted, and stored at −80 °C.

Generation of Cas9 expressing CRC cell lines. Cas9 expressing cell
lines were generated as follows: Concentrated lenti-Cas9-lentivirus
was transduced to CRC cell lines (in the presence of 8μg/ml
polybrene) with estimated MOI 0.3. The virus was removed the
followingday and4μg/mlBlasticidinwas added to the cells. Blasticidin
selection was continued as long as the control cells (non-transduced)
were viable.

CRISPRko screening. sgRNA containing lentiviruses were transduced
into Cas9 expressing CRC cell lines (in 15 cm plate-format) in quad-
ruplicates (in presence of 8μg/ml polybrene), at an estimated MOI =
0.2. After 24 h, the lentivirus-containing media was removed, cells
were washed with PBS, and puromycin-containing media
(3μg/ml) was added to the cells for 48–96 h until all control cells (not
virus-infected) were dead. After this the cells were cultured for two
additional days, allowing plates to reach approx. 80% confluency. At
this point, cells were divided into 3 parts; 1/3 going into −80 °C as time
point 1 to assess sgRNA representation baseline, 1/3 to continue to
culture with DMSO and 1/3 to continue to culture with either with
Linsitinib or Trametinib. Cells were always maintained at >1500 cells
per guide throughout the screens and finally harvested after 10
population doublings to assess gene essentiality. The exact time (in
days) for this varied for DMSO/Linsitinib/Trametinib with different cell
lines. After the screen, the genomic DNA from the first and the last
timepoints (DMSO & Drug perturbed) were extracted by using Blood
and Cell culture DNA Maxi kits (Qiagen).

Preparation of the sequencing library from genomic DNA. NGS
library preparationswereperformedas follows: Briefly, 40μgof gDNA,
theoretically corresponding to 6million diploid cells, was used as PCR
template in 4 parallel NGS PCR1 reactions (10μg template DNA per
reaction) using ExTaq DNA polymerase (Takara bio). After 18 cycles,
the 4 replicate reactions were pooled together. 2μl of pooled NGS
PCR1 productwas used as a template forNGS PCR2whichwas runwith
qPCR with index primers and stopped before the amplification started
to saturate. The resulting products of approx. 360bpwere gel purified
(GeneJet), pooled together and Next generation sequenced.

NGS_PCR1_mastermix:10μg gDNA, 0.75μl ExTaq, 10μl 10 x ExTaq
Buf, 8μl dNTPs, 0.5μl CRISPRko_PCR_1R (pool of 5 (100μM)), 0.5μl
CRISPRko_PCR_1F (100μM) to 100μl H2O.

PCR1 protocol (18 cycles): 98 °C 1min, 98 °C 10 sec (18 cycles),
58 °C 30 sec (18 cycles), 72 °C 30 sec (18 cycles), 72 °C 10min, 4 °C ∞.

NGS_PCR2_master mix: 2μl DNA (from 1st PCR), 0.375μl ExTaq, 5μl
10 x ExTaq Buf, 4μl dNTPs, 0.5μl CRISPRko_PCR_2F (100μM), 0.5μl
CRISPRko_PCR_2R(index) (100μM), 1.25μl 20xSYBR, 36.4μl H2O.

PCR2 protocol: 98 °C 1min, 98 °C 10 sec, 60 °C 30 sec (done
with qPCR, stopped before saturation), 72 °C 30 sec, 72 °C
10min, 4 °C ∞.

CRISPRko Oligos used for NGS library preparation. CRISPR-
ko_PCR_1F: TGGAGTTCAGACGTGTGCTCTTCCGATCTTCTACTATTCT
TTCCCCTGCACTGT

CRISPRko_PCR_1R:CTTTCCCTACACGACGCTCTTCCGATCT(1-
5nt_stagger)TGTGGAAAGGACGAAACACCG

CRISPRko_PCR_2F: AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGCTCTTCCGATCT

CRISPRko_PCR_2R(index): CAAGCAGAAGACGGCATACGAGATNN
NNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

High-throughput screening reporting table. The high-throughput
screening table for the CRISPRko screen is available in Supplemental
Table 2.

Data processing & statistical analysis
For all data analysis steps, “viper” (version 1.22.0), “vespa” (version
1.0.2), “vespa.db” (version 1.0.2), and “vespa.aracne” (version 2.2) were
used. “vespa.net” (version 1.0.2)was executedusing the corresponding
Docker images of the algorithms converted to Singularity images. All
software tools are available from the corresponding repositories as
referred below.

Inference of a CRC-specific signaling network. To generate a CRC-
specific signaling network, we obtained the processed phos-
phoproteomic and total proteomic profiles from the CPTAC
study S04534 (referred to as “CPTAC-S045”). To account for
potential confounding factors originating from protein abun-
dance levels, we further generated a derived dataset, referred to
as “CPTAC-S045N”, where phosphopeptide abundance was
normalized by the corresponding protein-level intensity values.
The datasets were imported from CCT and CPTAC formats and
converted to PVM by the corresponding “vespa” functions
without further processing except mapping of identifiers. Only
tumor samples were used across all analyses.

The phosphoproteomic dataset generated in this study (referred
to as “U54”) was imported from the OpenSWATH file format and
converted to PVM by the corresponding “vespa” function, with quan-
tile normalization grouped by cell line and centering enabled. The
baseline profiles of the six cell lines measured in triplicates (“U54-BL”),
as well as drug perturbations across three distinct time points (1 h,
24 h, 96 h; “U54-NET”) and the full-time series (“U54-DP”) were
exported as separate PVM files.

These three PVMmatrices (CPTAC-S045, CPTAC-S045N, and U54-
NET) were used as input to the “vespa.net” workflow. By default,
separate signalons were generated using the stDPI/DPI, LP16 (published
dataset), HSM/P15 (published dataset), and PC18 (version 12) methods.
For all analyses, the PVM of U54 BL was used to generate optimized
signalons. For all analyses, except for benchmarking, stDPI/DPI-based
signalons were used.

To estimate the fraction between KP-enzymes covered by a
phosphopeptide or a signalon in our study and the total number of
different KP-enzymes present in cells, we measured the overlap with
expressed KP-enzymes, based on gene expression profiles. Pre-
processed RNA-seq profiles for the six CRC cell lines were obtained
from CCLE46. Counts were normalized to TPM and identifiers mapped
to SwissProt/UniProtKB. KP-enzymes were considered to be expressed
when their average TPM across the six cell lines was ≥ 10 TPM, con-
sistent with the expression of the first quantile of KP-enzymes covered
by at least one phosphopeptide in the U54BL dataset (kinases: 9.96
TPMs; phosphatases: 8.99 TPMs).

Benchmark and validation of VESPA
Benchmark signaling network generation. SigNets based on differ-
ent data completeness thresholds of the U54-NET datasets were gen-
erated as described above.
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Comparison of MI methods. To compare the effect of different MI
estimators, the HSM priors were used as ground truth, as provided by
the vespa.db R-package. Based on the U54-NET datasets, subsets were
generated with ≥ 20%, ≥ 40%, ≥ 60%, ≥ 80% and 100% data complete-
ness. To compute hpMI and dMI, the sparse input matrices were used,
to compute iMI, missing values were imputed row-wise, as previously
described. To compute dMI, “vespa.aracne” was extended to support
dMI (Git branch “depletion_support”; revision 470944f). “vespa.ar-
acne”was run as described above, but without stDPI/DPI and using 100
bootstraps. Only significant interactions (<5% FDR) were considered.
The overlap of these interactions with HSM was used to compute the
summed score.

DPI benchmarking. stDPI, DPI, and noDPI-based SigNets were gener-
ated from U54-NET as previously described. Interactions were selected
as ground truth (positive gold standard) if they were identified as ST-
K→ S pairs based on HSM analysis with PDZ, SH3, WH1, and WW
domains, since these represent the primary determinants of specific ST-
K interactionswith serine and threonine phosphopeptides. As a negative
gold standard, we used candidate TK→ S interactions with an HMS-
predicted, phosphotyrosine-specific PTB, PTP and SH2 domain interac-
tion. This is because the dataset used in the benchmark (U54-NET) is not
enriched for phosphotyrosine peptides and should thus result in no
such interactions. This produces a context-specific reference dataset
identifying themost and least likely direct and indirect interactions, thus
providing a suitable framework for relative methodological compar-
isons. Receiver-Operating-Characteristics (ROC) were generated using
the pROC R-package (version 1.17.0.1) and default parameters for each
signaling network separately. Two-tailed P-values for ROC curve com-
parisons were also computed using pROC by DeLong’s test and using
default parameters. Precision-recall curves (PRC) and corresponding
metrics were computed using the PRROC R-package (version 1.3.1).

mVESPA Benchmarking. To benchmark mVESPA, we used the base-
line (untreated) phosphoproteomic profiles from the six cell lines in
the U54-BL dataset. We downloaded the curated GDSC36 drug sensi-
tivity dataset and the primary target list from the original INKA
publication24 (Dataset_EV6.xlsx). The phosphostate- and activity-level
signalons used for the benchmarkwere generated as described above.
For the analysis, we used the “viperSignature” of the “viper” R-package
to compute the differential activity of relevant KP-enzymes in sensitive
vs. resistant or insensitive cell lines, with default parameters.

Wemodified the INKA24 benchmark strategy to use thedifferential
activity of KP-enzymes representing established drug targets in sen-
sitive vs. resistant cells, rather than the absolute protein activity in
sensitive cells. The analysis was performed independently for each cell
line (Fig. 2c). The GDSC identifies sensitive (low z-score) vs. resistant
(high z-score) cell lines, based on the compound’s log(IC50), as mea-
sured across 1000 cell lines. For this benchmark, we thus selected
compounds eliciting the greatest differential sensitivity (i.e., z-score ≤
−1.0 and ≥ 1.0 for resistant and sensitive cell lines, respectively), when
assessed for all possible CRC cell line pairs (Fig. 2d). For each selected
drug, we used mVESPA to assess the activity of the target enzyme in
sensitive vs. resistant cells, using the CRC SigNets (Fig. 2c). Finally, we
assessed the method’s sensitivity using an empirical score, as pro-
posed by INKA. Specifically, let’s define DPi as the differential activity
of the ith protein, ranked based on their differential activity from the
most to the least significant one, and wi as a weight representing the
sensitivity of a cell line (C) to a specific drug (D); then the empirical
score for a specific inhibitor and cell line is defined as the integrationof
the product wiDPi over the n most differentially active proteins.

SD,C nð Þ=
XN

i = 1

wiDPi ð3Þ

ROC metrics were computed as described previously (see Sup-
plemental Notes: “Precision-specificity analysis using ROC curve”)59

and individual ROC curves were averaged. Statistical comparison of
the differential comparison AUC metrics was conducted using
unpaired, right tailed Wilcox’ tests (R-package “stats”, version 4.2.1).

Comparative analysis of previously published algorithms. To
benchmark the algorithm against previously published ones, we
applied the KSTAR benchmark suite38, downloaded from (https://
github.com/NaegleLab/KSTAR_Applications/tree/95563ddc57d39c
200f06dd78a2c3672cd2d04bf2), according to the instruction of the
original authors. We used mVESPA to predict KP-activity using either
the Johnson or and KSTAR-benchmark-supplied PSP reference net-
works. KP-enzymes with <5 substrates were excluded from the analy-
sis, and signalons with >500 substrates were trimmed to 500, as
previously discussed. Crosstalk correction was not used in the analysis
and only phosphostate-level signalons were used. P-values were
obtained from VESPANES values and corrected formultiple-testing by
the Benjamini-Hochberg (FDR) approach125.

Application of VESPA to decryptM dataset. The A431 kinase inhibi-
tion profiles for Afatinib, Gefitinib and Dasatinib were obtained from
the original decryptM publication21. Due to the absence of suitable
datasets for the generation of signaling networks for A431, we used a
dVESPA-generated signaling network based on the CPTAC Lung
Squamous Cell Carcinoma (LSCC) Discovery Study41, which was gen-
erated as described above, but optimized for the CPTAC instead of the
A431 profiles.

mVESPA was applied as described above, using the t-statistic
reported by the decryptM dataset instead of peptide abundance.
mVESPA was applied with default parameters and the integrated
results were used for further visualization.

Representation of CRC subtypes by cell line models
Cell line selection. Cell lines were selected based on their ability to
recapitulate the activity of the top 50 most differentially active pro-
teins (i.e., candidate Master Regulators) in TCGA CRC samples, as
implemented by the OncoMatch methodology42,45, at a conservative
statistical significance threshold (p < 10−5). To rank matching cell lines
for each cluster, we used the OncoMatch scoring function45 to select
six CRC cell lines, representative of five out of eight subtypes (for cell
lines with the top 5 OncoMatch scores) and all eight subtypes (for cell
lines with the top 10 scores), as identified by MOMA analysis of the
TCGA CRC cohort45.

MSI classification. Information on the MSI status of CPTAC
S045 samples was obtained from the original publication34. Informa-
tion on the MSI status of the six cell lines was obtained from CCLE126.

CMS transcriptome-level classification. Preprocessed RNA-seq pro-
files for CPTAC S04534 were obtained from the original publication.
Preprocessed RNA-seq profiles for the six CRC cell lines were obtained
from CCLE46. Counts were normalized to TPM for both datasets and
identifiers were mapped to be compatible with CMS. Only transcripts
measured in both datasets were used for downstream analysis. The
CMS classifier47 was then applied using the RandomForest predictor
and default parameters to assess subtype membership.

VESPA analysis. KP-enzyme activities were inferred by VESPA using
the CRC-specific signalons, as described above. Because the phos-
phoproteomic profiles of CPTAC-S045 and U54-BL had very different
levels of missing values, the profiles were first randomly subsampled,
to ensure that phosphopeptide detectability was equivalent in both
datasets. The two datasets were then combined and rank-normalized,
first column-wise, then row-wise, as described previously45. The “viper”
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function was applied to compute phosphostate- activity-, and
integrated-level-based KP-enzyme activities, including crosstalk
correction.

Cluster analysis. Phosphostate- and activity-level VESPA matrices
were clustered by the k-medoids approach, prioritizing cluster
robustness, as previously described45.

Gene set enrichment analysis. GSEA analysis was performed using
the R-package “fgsea” (version 1.14.0) to analyze enrichment of Reac-
tome pathways (version 75), reduced to include only KP-enzymes
(downstream pathway “R-HSA-162582”). Only statistically significant
results (adj. p < 0.05), in at least one sample were reported.

Feature selection. To select the top 50 most important features for
subtype classification we used the Random Forest recursive feature
elimination method from the R-package “caret” (version 6.0-86). For
simplicity, Fig. 3b only shows the cumulative most important features
of the CMS and pVC classification systems, grouped according to pVC.
Supplementary Figs. 7, 8 show the full results, whereas Supplementary
Fig. 9 depicts the data underlying Fig. 3b, grouped according to CMS.

Visualization. Heatmaps were generated using the “pheatmap” (ver-
sion 1.0.12) R-package. Hierarchical clustering on row-level was con-
ducted using the default R “hclust” function with default parameters.

Targeted drug perturbations of CRC cell lines
VESPA analysis. The 336 perturbed U54-DP phosphoproteomic pro-
files were preprocessed to impute missing values using the row-wise
minimumasdescribed above. The peptide abundances of each sample
were normalized by the corresponding DMSO controls, separately for
each cell line. Time point values were averaged using a sliding window
including the preceding and following time point, if available. E.g., the
15min time points were normalized using the average of the 5min,
15min and 1 h timepoints from the correspondingDMSO treated cells.
Log2 fold changes were then used as input for all downstream steps.
KP-enzyme activity was inferred by VESPA using the stDPI/DPI CRC
signalons as previously described. The “viper” function was applied at
the phosphostate- and activity-level, using a bootstrapped “viper-
Signature” null model based on the DMSO controls, with 1000 per-
mutations. Crosstalk correction was included as previously described.

Drug/cell line sensitivity analysis. Drug sensitivity data from GDSC36

was obtained and z-score was transformed per drug and GDSC dataset
over all covered cell lines. Drug/cell line pairs with z-score < −1.0 were
defined as sensitive, while those with z-score > 1.0 were defined as
insensitive. Violin plots were generated using the “geom_violin” func-
tion with default parameters of the R-package “ggplot2” (ver-
sion 3.4.0).

Visualization. Heatmaps were generated using the “pheatmap” (ver-
sion 1.0.12) R-package.Hierarchical clustering on rowandcolumn-level
was conducted using the default R “hclust” function with default
parameters.

Temporal dynamics of primary drug targets. Known primary targets
for the drug compounds were obtained from DrugBank64 and
ProteomicsDB65. Only the top fivemost downregulated target proteins
per drug compound were visualized.

Context-specific wiring of signaling pathways
VESPA analysis. The 336 perturbed U54-DP phosphoproteomic
profiles were preprocessed as described above. The “viper” function
was applied separately for each cell line on phosphostate- and

activity-levels using a rank-normalized matrix45 and including cross-
talk correction. Phosphostate- and activity-level VESPA results were
integrated as described above.

DeMAND analysis. DeMAND assesses the dysregulation of individual
PPIs using the Kullback-Leibler divergence, by computing changes in
mutual information across drug perturbations at different time points
and/or drug concentrations vs. vehicle control-treated samples59.
Enrichment of dysregulated PPIs (edges) originating on the same
protein (node) in the network can then be used to identify proteins
most dysregulatedby a drug. TheDeMAND59 (version 1.18.0) algorithm
was used to assess context-specific wiring of signaling pathways.
DeMAND was applied on both phosphostate- and activity-level VESPA
analysis results. First, phosphostate-level VESPA scores were used with
the corresponding signalons. Second, activity-level VESPA scores were
used in combination with STRING PPI DB (version 11) as reference
interactiondatabase, including only interactionswithprobability >0.5.
The results were then combined using Stouffer’s method. To generate
non-subtype-specific DeMAND MoA profiles, for each drug perturba-
tion, the temporal profiles of all cell lines were compared against the
DMSO controls. To generate subtype-specific DeMAND MoA profiles,
the temporal profiles generated for each cell line/drug pair were
compared to the matched DMSO controls, used as null distribution.
Edge and node p-valueswere integrated using Fisher’smethod andBH-
adjusted for multiple testing.

Visualization. Heatmaps were generated using the “pheatmap” (ver-
sion 1.0.12) R-package.Hierarchical clustering on rowandcolumn-level
was conducted using the default R “hclust” function with default
parameters.

Cytoscape. To visualize the interaction networks, Cytoscape (version
3.8.2) was used. Nodes indicate themost affected KP-enzymeswith the
inner circle colors indicating cell line type and the outer circle color
and node size indicating VESPA activity. Edges indicate dysregulated,
undirected interactions between the KP-enzymes as inferred by
DeMAND. Line thickness indicates the significance of dysregulation.
Dysregulated nodes (BH-adjusted p < 0.05) and known primary targets
are colored. Grey nodes indicate connecting dysregulated nodes (BH-
adjusted p < 0.1).

Context-specific adaptive stress resistance mechanisms
To identify the mechanism of adaptive resistance for each cell line/
drug combination, we assessed the effect of drug perturbation vs.
vehicle control treated samples at the late time points using a time-
point-paired t-test for differential testing of the VESPA inferred protein
signaling activities (Supplemental Data 17). The p-values of all condi-
tions were then integrated by Stouffer’s method to select significant,
increased activity of candidate resistance factors across all conditions
(q < 0.05, mean(t-statistic) > 0) (Fig. 7a, Supplemental Data 18).

VESPA differential testing. Time series were used to investigate the
adaptive responseofKP-enzymes todrugperturbations, by comparing
their late (24 h, 48 h, 96 h) differential activity, compared to DMSO-
treated samples, using a paired, one-tailed t-test (R version 4.2.1). To
select candidates for visualization, p-values were integrated by Stouf-
fer’s method across all conditions and corrected for multiple test-
ing (q < 0.05).

Protein abundance differential testing. For quantitative phospho-
protein abundance inference, the R-package “iq”121 (version 1.9),
implementing the MaxLFQ algorithm104 for DIA-based datasets, was
used with default parameters. Differential testing was then conducted
identically as for VESPA.
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Identification of essential genes using DESeq2. Alignment of NGS
with sgRNA guides was performed using the “ShortRead” R-package
(1.54.0). Essential genes for the DMSO vs. T0 comparison were
obtained from a published repository127; CRC-specific essential genes
were obtained from DepMap128, and filtered to the 10% quantile of the
gene effect. Differential expression analysis was performed separately
for each gRNA guide with the “DESeq2” R-package (1.36.0). P-values
were integrated using Stouffer’s method and corrected for multiple-
testing by the Benjamini-Hochberg FDR approach125.

Receiver operating characteristics. ROC curves and statistics were
generated using the R-package “pROC” (version 1.18.0). Significant
(FDR <0.01) CRISPRko results were used as ground truth values
(negative beta: true; positive beta: false) and the VESPA (t-statistic),
differential abundance (t-statistic), or VESPA-DeMAND (−log10(De-
MAND BH−adjusted p−value) * sign(VESPA t−statistic)) scores were
used as predictors. ROC p-values were computed using the function
“roc.area” from the R-package “validation” (version: 1.42).

Correlation analysis. Correlation analysis was performed by com-
paring the t-statistic of the differential VESPA analysis with the sig-
nificant (FDR <0.01) log-fold-changes reportedbyDESeq2. Correlation
statistics were computed using a one-tailed Spearman correlation test
(R version 4.2.1).

Exclusion of tumor suppressor genes. For the analyses excluding
tumor suppressor genes, all genes present in TSGene 2.0 database94

were excluded.

Visualization. Heatmaps were generated using the “pheatmap” (ver-
sion 1.0.12) R-package. The t-statistic values of the described above are
visualized. Hierarchical clustering on row- and column-level was con-
ducted using the default R “hclust” function with default parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The CRC mass spectrometry proteomic and phosphoproteomic raw
and preprocessed data generated in this study have been deposited to
the ProteomeXchange Consortium via the MassIVE partner repository
with the data set identifiers MSV000091204/PXD039859 [https://doi.
org/10.25345/C5R20S61Q]. The CRISPRko RNA-seq raw and pre-
processed data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus129 and are accessible through GEO
Series accession number GSE224396 [https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE224396]. The VESPA analysis results for
selected CPTAC datasets are available fromZenodo130 [https://doi.org/
10.5281/zenodo.8220610]. Supplemental Data 1-20 is available from
Zenodo131 [https://doi.org/10.5281/zenodo.10925250]. CPTAC mass
spectrometry proteomic and phosphoproteomic raw and pre-
processed data (PDC000116 and PDC000117) was obtained from
Proteomic Data Commons (PDC) under the Creative Commons CC-BY
4.0 licensing terms: [https://proteomic.datacommons.cancer.gov/
pdc/]. Source data are provided with this paper.

Code availability
VESPA is available as modular platform-independent open-source
software under a non-commercial usage license. VESPA consists of five
different modules, which are provided as versioned source code,
binaries or docker containers. The “vespa” R-package for signaling
protein activity inference is available fromGitHub (https://github.com/
califano-lab/vespa) and Zenodo132 (https://doi.org/10.5281/zenodo.
10731059). The “vespa.db” R-package providing preprocessed

reference networks is available from GitHub (https://github.com/
califano-lab/vespa.db) and Zenodo133 (https://doi.org/10.5281/zenodo.
10731069). The “vespa.aracne” algorithm is available from GitHub
(https://github.com/califano-lab/vespa.aracne) and Zenodo134 (https://
doi.org/10.5281/zenodo.10731065). The “vespa.net” Snakemake work-
flow to generate context-specific signalons from one or multiple
datasets is available from GitHub (https://github.com/califano-lab/
vespa.net) and Zenodo135 (https://doi.org/10.5281/zenodo.10731073).
A tutorial describing the full analysis workflow with example data is
available from GitHub (https://github.com/califano-lab/vespa.tutorial)
and Zenodo136 (https://doi.org/10.5281/zenodo.10731075).
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