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Type 2 diabetes mellitus (T2DM) is a common comorbidity among Parkinson’s disease (PD) patients.
Yet, little is known about dysregulated pathways that are unique in PD patients with T2DM. We applied
high-resolution metabolomic profiling in serum samples of 636 PD and 253 non-PD participants
recruited from Central California. We conducted an initial discovery metabolome-wide association
and pathway enrichment analysis. After adjusting for multiple testing, in positive (or negative) ion
mode, 30 (25) metabolic features were associated with T2DM in both PD and non-PD participants, 162
(108) only in PD participants, and 32 (7) only in non-PD participants. Pathway enrichment analysis
identified 17 enriched pathways associated with T2DM in both the PD and non-PD participants, 26
pathways only in PD participants, and 5 pathways only in non-PD participants. Several amino acid,
nucleic acids, and fatty acid metabolisms were associated with T2DM only in the PD patient group

suggesting a possible link between PD and T2DM.

Parkinson’s disease (PD) is a chronic neurodegenerative disease affecting
roughly 8 million people globally'. Comorbidities frequently occur in PD
patients and at a rate higher than similar age controls, which complicates the
management of the disease’™. This includes a variety of health conditions,
including type 2 diabetes mellitus (T2DM)*’. PD patients with comorbid-
ities are an especially vulnerable subpopulation among all PD patients, as
these patients often have worse prognosis, reduced quality of life, and
increased medical costs’”.

Previous research has indicated that T2DM, characterized as insulin
resistance that results in impairment of glucose regulation and metabolism,
may contribute to the onset of neurodegenerative diseases, such as PD, and
also influence the progression of these conditions®’. Research points toward
dysregulation of shared pathophysiologic pathways between T2DM and
PD, including insulin resistance, mitochondrial dysfunction, inflammation,
or metabolic dysregulation™"’. Few epidemiologic studies, however, have
analyzed metabolic profiles associated with T2DM among PD patients to
help identify physiologic responses that are similar or different in those
suffering from both medical conditions. To date, no published study has

investigated metabolic features associated with T2DM in PD patients using
untargeted metabolomics.

High-resolution metabolomics (HRM)'' has emerged as a useful tool
that can profile thousands of small molecules produced from metabolism
(metabolites) in different biospecimens. Previous research has described
metabolomic profiles in PD'*"", including our own", and T2DM'® sepa-
rately. Two previous studies including both targeted and untargeted
metabolomics found that lower levels of low-density lipoprotein cholesterol,
higher level of fibrinogen, and lipid metabolic dysregulation were associated
with a higher risk of dementia in PD patients with T2DM than without
T2DM'"". The current study builds on this previous work, specifically
assessing the metabolic profile of T2DM among PD patients. We applied
untargeted HRM to serum samples of 636 PD patients of whom 96 also
suffered from T2DM and 253 older adults without PD, among whom 36
were diagnosed with T2DM. The goal of the study is to describe shared and
unique metabolic features in PD patients with and without T2DM and shed
light on unique dysregulated metabolic pathways in PD with T2DM. Given
the aging of populations and the projected increase of prevalence in both

"Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA. 2Division of Pulmonary, Allergy, Critical Care and Sleep Medicine,
Department of Medicine, Emory University School of Medicine, Atlanta, USA. *Department of Biochemistry, Emory University School of Medicine, Atlanta, USA.
“‘Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA. *Center for Health

Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA. ®Department of Neurology, David Geffen School of Medicine,

Los Angeles, CA, USA. e-mail: kimberlp@ucla.edu

) Parkinson's
Foundation

npj Parkinson’s Disease | (2024)10:100


http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00711-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00711-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00711-4&domain=pdf
http://orcid.org/0000-0002-8557-2416
http://orcid.org/0000-0002-8557-2416
http://orcid.org/0000-0002-8557-2416
http://orcid.org/0000-0002-8557-2416
http://orcid.org/0000-0002-8557-2416
http://orcid.org/0009-0006-7383-100X
http://orcid.org/0009-0006-7383-100X
http://orcid.org/0009-0006-7383-100X
http://orcid.org/0009-0006-7383-100X
http://orcid.org/0009-0006-7383-100X
http://orcid.org/0000-0002-2090-0677
http://orcid.org/0000-0002-2090-0677
http://orcid.org/0000-0002-2090-0677
http://orcid.org/0000-0002-2090-0677
http://orcid.org/0000-0002-2090-0677
http://orcid.org/0000-0002-8051-0064
http://orcid.org/0000-0002-8051-0064
http://orcid.org/0000-0002-8051-0064
http://orcid.org/0000-0002-8051-0064
http://orcid.org/0000-0002-8051-0064
http://orcid.org/0000-0001-8717-0245
http://orcid.org/0000-0001-8717-0245
http://orcid.org/0000-0001-8717-0245
http://orcid.org/0000-0001-8717-0245
http://orcid.org/0000-0001-8717-0245
http://orcid.org/0000-0003-1930-6619
http://orcid.org/0000-0003-1930-6619
http://orcid.org/0000-0003-1930-6619
http://orcid.org/0000-0003-1930-6619
http://orcid.org/0000-0003-1930-6619
http://orcid.org/0000-0001-6976-7339
http://orcid.org/0000-0001-6976-7339
http://orcid.org/0000-0001-6976-7339
http://orcid.org/0000-0001-6976-7339
http://orcid.org/0000-0001-6976-7339
http://orcid.org/0000-0002-4476-2352
http://orcid.org/0000-0002-4476-2352
http://orcid.org/0000-0002-4476-2352
http://orcid.org/0000-0002-4476-2352
http://orcid.org/0000-0002-4476-2352
mailto:kimberlp@ucla.edu

https://doi.org/10.1038/s41531-024-00711-4

Article

PD" and T2DM®, understanding the links between PD and T2DM is a

21,22

public health priority”"*.

Results

Study population

As shown in Table 1, 15% of the 636 PD patients had T2DM and the mean
age of PD diagnosis was similar in PD patients with T2DM (68,
SD = +10y) and without T2DM (67 y, SD = £10y). PD patients with and
without T2DM were also similar in terms of the percentages of men, people
with >12 years of education, and have never smoked. However, more of the
PD patients with T2DM reported non-European ancestry than those
without T2DM. Race and ethnicity of the study population is shown in
Supplementary Table 1. In total, 253 non-PD participants were included in
the analysis, with 36 (14%) having T2DM. The patterns of age, lifestyle, and
ethnicity were also similar to T2DM (see Table 1).

Metabolome-wide analysis and annotation

For untargeted, high-resolution metabolomics, we analyzed serum samples
using both hydrophilic interactions (HILIC) chromatography with positive
electrospray ionization (ESI) and C18 chromatography with negative ESL
After feature alignment and quality control, we included 2913 metabolic
features detected in the positive ion mode (HILIC) and 2222 metabolic
features from the negative ion mode (C18) in our MWAS analysis. MWAS
results are shown in Figs. 1 and 2 and complete summary statistics for the
metabolic features associated with T2DM are available through figshare
(https://doi.org/10.6084/m9.figshare.22589464). After adjusting for multi-
ple testing and considering a significance level of FDR < 0.05, 192 metabolic
features from the HILIC column and 133 in the C18 column were associated
with T2DM among the PD patients. When considering only replication of
the T2DM MWAS metabolites discovered in this PD population, after
multiple testing correction, 49 of the 192 metabolic features associated in
HILIC and 38 out of 133 metabolic features in C18 were also associated with
T2DM at a replication FDR < 0.05 in the non-PD participants (Supple-
mentary Table 2). The coefficients for T2DM association across metabolic
features from the MWAS among the PD patient group and non-PD par-
ticipant group were moderately correlated (HILIC: r=0.4, p <2.2e—16;
C18: r =045, p <2.2e—16). This is displayed in Fig. 2, which plots meta-
bolite feature coefficients from the T2DM MWAS in PD and non-PD
participants, colored features by association status (i.e., associated with
T2DM in PD patient group, non-PD participant group or both). Most
features showed concordance in the direction of association with T2DM
among both the PD and non-PD participants.

Annotations for all metabolic features using the in-house library and
xMSannotator are included in Supplementary Tables 3 and 4. Among the
T2DM-associated metabolic features, 9 metabolites were uniquely anno-
tated at high confidence, while 9 features were annotated at high confidence

to multiple metabolites based on both the in-house library and xMSanno-
tator (see Table 2). For example, the top feature (mz = 215.0328, retention
time = 30.913) associated with T2DM among PD patients (OR = 1.80 per
SD, 95% CI =146, 2.25, FDR =1.30e—05) and non-PD patients (OR =
3.62, 95% CI=2.22, 591, FDR = 1.33e—04) was annotated at high con-
fidence to glucose. Similarly, another top feature (mz = 179.0562, retention
time = 36.803) in both groups (PD patients, OR = 1.75,95% CI = 1.41, 2.15,
FDR =2.81e—05; non-PD participants, OR =2.80, 95% CI = 1.84, 4.26,
FDR = 2.83e—04) was annotated to simple sugars (i.e., glucose, fructose and
mannose). The amino acid metabolite citrulline (mz = 174.088, rt = 30.043)
was inversely associated with T2DM in both PD patients (OR = 0.54, 95%
CI=0.43, 0.68, FDR =2.35e—05) and non-PD participants (OR =0.48,
95% CI =0.33, 0.70, FDR = 1.07e—02).

Most were associated with T2DM only among PD patients, though
many showed similar trends among the non-PD participants. Metabolites
with unique annotation matches included several amino acids (cystathio-
nine, cystine, glutamic acid, gulonolactone, proline, aspartic acid, and
indoleacetaldehyde), nucleic acids (uridine, hypoxanthine), and tri-
carboxylic acid (TCA) cycle/coenzyme A (CoA) related metabolites (oxo-
glutaric acid, pantothenic acid, trans-aconitic acid, and mevalonic acid).

Pathway enrichment analysis

Weidentified 55 metabolic pathways enriched (p < 0.05) among the features
associated with T2DM in PD patients and 28 metabolic pathways from the
features associated with T2DM among non-PD participants (see Table 3).
After removing duplicate pathways identified in both HILIC and C18 in
either group, 17 metabolic pathways remained associated with T2DM
(p <0.05) in both PD patients and non-PD participants, 26 pathways were
only enriched in PD patients, and 5 only in non-PD participants. Figure 3
shows these pathways, along with each pathway’s biochemical classification
and functional group.

The pathways enriched for T2DM-associated metabolites in both PD
and non-PD participants included carbohydrate-associated metabolic
pathways (e.g., simple sugar metabolism, such as fructose, mannose,
galactose metabolism and glycolysis, and complex sugar metabolism, such
as starch and sucrose metabolism, n-glycan pathway, amino sugars meta-
bolism) and glycosphingolipid metabolism.

The T2DM-associated pathways enriched only among PD patients
included multiple amino acid metabolism pathways (e.g., alanine, aspartate,
arginine, proline, glutamate, and glutathione metabolism), nucleic acid
metabolism pathways (e.g., purine metabolism and pyrimidine metabo-
lism), and fatty acid metabolisms (e.g., butanoate metabolism and mono-
unsaturated fatty acid beta-oxidation). In addition, the T2DM-associated
metabolites from PD patients were also enriched for urea cycle and TCA
cycle-related pathways, including CoA catabolism and vitamin B5 - CoA
biosynthesis from pantothenate.

Table 1 | Parkinson’s disease (PD) patients’ and non-PD participants’ characteristics by diabetes among those with

metabolomics data

Characteristic Statistics PD Patients (N = 636) Non-PD participants (N = 253)
Diabetes (N = 96) No diabetes (N = 540) Diabetes (N = 36) No diabetes (N =217)

Age? Mean (SD) 68.03 (9.83) 66.62 (10.44) 68.92 (11.47) 65.39 (12.93)

Male gender n (%) 65 (68%) 341 (63%) 22 (61%) 97 (45%)

Years of education >12 years® n (%) 75 (78%) 455 (84%) 30 (83%) 195 (90%)

Past or current smoker® n (%) 45 (47%) 252 (47%) 17 (47%) 117 (54%)
Non-European ancestry® n (%) 40 (42%) 117 (22%) 11 (31%) 38 (18%)

Study wave

PEG1 n (%) 33 (34%) 248 (46%) 27 (75%) 163 (75%)

PEG2 n (%) 63 (66%) 292 (54%) 9 (25%) 54 (25%)

?Age refers to age of PD diagnosis for PD patient group and age of enroliment in the study for non-PD participants.
7 PD patients with imputed education, 5 non-PD participants with imputed education, and 4 non-PD participants with imputed smoking and ethnicity data.
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Fig. 1 | Manhattan plots of results of metabolome-wide association study for diabetes mellitus (DM). a Among Parkinson’s disease (PD) patients in HILIC column,
b among PD patients in C18 column, ¢ among non-PD participants in HILIC column, and d among non-PD participants in C18 column.
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Fig. 2 | Correlations between coefficients of metabolic features from metabolome-wide association study for diabetes mellitus (DM) among Parkinson’s disease (PD)
patients and non-PD participants. a HILIC column and b C18 column colored by significance level adjusting for multiple testing.

Full pathway analysis results are included in Supplementary Table 5.
The pathway classifications and supporting references are provided in
Supplementary Table 6. In addition, when we used a significance level of
0.15 for pathway enrichment analysis among non-PD participants, the
T2DM-associated metabolic pathways were similar to the pathways iden-
tified using a significance level of 0.05 among non-PD participants (See
Supplementary Table 7).

Power analysis

Based on power analysis for replication of the T2DM metabolite associa-
tions discovered among the PD patients in the non-PD participants, we were
powered to detect betas >0.81 and <—0.82 [power = 0.8, alpha = 0.05/192 of

tests (HILIC), sample size of 253, event rate of 0.14] and betas >0.80 and <
—0.80 [power = 0.8, alpha = 0.05/133 of tests (C18)]. For a full, untargeted
MWAS among the non-PD participants with logistic regression, we were
powered to detect betas >0.93 and <—0.94 [power = 0.8, alpha = 0.05/2931
of tests (HILIC)] and betas >0.92 and <—0.92 [power = 0.8, alpha = 0.05/
2222 of tests (C18)]. Additionally, for the pathway analysis among the
T2DM-associated metabolites from non-PD controls, we assessed enrich-
ment with more relaxed significance thresholds from the MWAS for
metabolite inclusion. This included an unadjusted p = 0.15, which we were
powered to detect betas >0.41 and <—0.42 (power = 0.8, alpha = 0.15) and
unadjusted p =0.05, which we were powered to detect betas >0.51 and
<—0.51 (power = 0.8, alpha=0.05).
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0.299

0.012

0.66
[0.47,
0.91]
15

0.702

0.360

0.91

Cc18

27.424

Unique 140.011

In-house

O-Phosphoethanolamine

[0.74,
1.11]
1.11

0.440

0.044

0.713

0.397

Cc18

242.644

281.248

Multiple

In-house

Petroselinic acid/Oleic acid/Elaidic acid

[1.01,
2.23]
0.61

[0.87, 1.4]

0.274

0.024

0.581 0.849

0.94

HILIC

30.716

Unique 108.081

In-house

Benzylamine

[0.39,
0.94]

[0.75,

1.18]

Comparison between T2DM and PD MWAS

We have previously published the findings from a PD MWAS using the
same population”. Overall, there were 13 metabolites identified as asso-
ciated with T2DM among the PD patients and PD (Supplementary Table 8).
These metabolites include indoleacetaldehyde, glutamic acid, indoleacrylic
acid, 3-methyldioxyindole, tryptophan, glutamate, uridine, serine, oxoglu-
taric acid, threonine, aminobutyric acid, squamolone, and 3-mercapto-3-
methylbutan-1-ol.

Sensitivity analyses

The results from the T2MD MWAS among the PD patients stratified by
gender (Supplementary Table 9) and European Ancestry (Supplementary
Table 10) can be found in the supplement. Beta coefficients were highly
correlated between those found among the men and the primary MWAS
(r=0.91 and 0.93, p <2.2e—16 for HILIC and C18) and somewhat less,
though still correlated, comparing the women and the primary MWAS
(r=0.63 and 0.67, p < 2.2e—16 for HILIC and C18), which shown in Sup-
plementary Fig. 1. Beta coefficients were also highly correlated between the
European ancestry only group and the primary MWAS (r = 0.91 and 0.93,
p <2.2e—16 for HILIC and C18) and between the non-European ancestry
group and our main analysis (r = 0.74 and 0.75, p < 2.2e—16 for HILIC and
C18), which shown in Supplementary Fig. 2.

The results of 3-fold cross-validation can be found in Supplementary
Table 11. The significance rates for the validation are the number of sig-
nificantly replicated metabolic features in the replicate sample divided by the
total number of significant metabolic features in the discovery sample for
each fold. For the T2DM MWAS among PD patients, the significance rates
were 49%, 50%, and 70% in HILIC with the correlation of the betas between
discovery and the replication fold at 0.88, 0.85, and 0.92 (Supplementary Fig.
3), and 25%, 77%, and 58% in C18 with beta correlations at 0.69, 0.98, and
0.94 (Supplementary Fig. 3). For the T2DM MWAS among non-PD par-
ticipants, the significance rates and beta correlations were 95%, 75%, and
96% and 0.93, 0.88, and 0.88 (Supplementary Fig. 4) for HILIC metabolites,
and 85%, 48%, and 100% and 0.98, 0.70, and 0.87 (Supplementary Fig. 4) for
C18 metabolites.

Further sensitivity analyses, additionally controlling for levodopa
equivalent daily dose (Supplementary Table 12 and Supplementary Fig. 5)
and sample year (Supplementary Tables 13, 14 and Supplementary Figs.
6 and 7) showed very similar results (MWAS beta correlations >0.99).
Similarly, considering T2DM with T2DM medication use as the exposure
resulted in very similar results (MWAS beta correlations >0.96, Supple-
mentary Table 15 and Supplementary Figs. 8 and 9).

Discussion

Comorbidities including type 2 diabetes mellitus (T2DM) can significantly
impact the prognosis of PD patients and increase their financial burden’.
Recent studies have suggested that T2DM contributes to faster motor
progression and more severe cognitive impairment among PD patients™ .
However, the underlying mechanisms are unknown”. To better understand
the influence of T2DM on PD physiology, we used untargeted HRM to
profile thousands of metabolites in the serum of PD patients and non-PD
elderly participants with and without T2DM.

Our results suggest that—as one would expect—some of the most
dysregulated T2DM-related metabolic pathways are shared by PD and non-
PD study participants, confirming the impact of T2DM on the human
metabolome independent of PD. Even though the number of statistically
significant metabolic features was small, the correlation of the coefficients
across metabolic features was somewhat high (R >0.4) (see Fig. 2). These
metabolites were enriched in sixteen pathways of high biologic plausibility
for T2DM, that is, one would expect to find them enriched in T2DM, such as
carbohydrate metabolism, glycosaminoglycans, glycan metabolism, and
amino sugars metabolism, as well as glycosphingolipid metabolism, the
latter has been linked to insulin resistance™.

In terms of individual metabolites, we observed many expected asso-
ciations, such as glucose and simple sugars, along with several interesting
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Table 3 | Metabolic pathways associated with diabetes mellitus (DM) using metabolites captured by positive ion mode (HILIC)
and negative ion mode (C18) among Parkinson’s disease (PD) patients and non-PD participants

pathway Column PD Patients Non-PD participants
Overlap size Pathway size p-value Overlap size Pathway size p-value
Metabolic pathways associated with DM only among PD patients
Alanine and aspartate metabolism C18 6 10 0.0211 2 10 0.2405
HILIC 6 7 0.0003 1 7 0.2601
Arginine and proline metabolism c18 8 13 0.0073 3 13 0.1682
HILIC 6 14 0.0118 1 14 0.3388
Ascorbate (Vitamin C) C18 7 14 0.0385 0 14 0.3702
Aldarate metabolism C18 7 14 0.0385 0 14 0.3702
Aspartate and asparagine metabolism C18 11 17 0.0015 4 17 0.1385
Beta-Alanine metabolism Cc18 5 7 0.0124 2 7 0.1519
Butanoate metabolism C18 5 5 0.0014 2 5 0.0888
CoA Catabolism HILIC 2 2 0.0118 0 2 0.3738
Glutamate metabolism C18 5 5 0.0014 1 5 0.2759
HILIC 3 5 0.0186 0 5 0.3738
Glutathione metabolism HILIC 3 5 0.0186 0 5 0.3738
Glycine, serine, alanine and threonine metabolism c18 10 15 0.0018 & 15 0.214
Histidine metabolism C18 3 4 0.0367 1 4 0.2443
Lysine metabolism C18 5 6 0.005 1 6 0.3025
Methionine and cysteine metabolism C18 6 9 0.0102 1 9 0.3451
Mono-unsaturated fatty acid beta-oxidation C18 2 2 0.0405 0 2 0.3702
Nitrogen metabolism HILIC 3 3 0.0029 0 3 0.3738
Pentose and glucuronate interconversions C18 4 5 0.0135 0 5 0.3702
Phosphatidylinositol phosphate metabolism HILIC 4 8 0.0177 2 8 0.0858
Porphyrin metabolism c18 5 7 0.0124 0 7 0.3702
Purine metabolism HILIC 5 11 0.0157 2 11 0.1524
Pyrimidine metabolism HILIC 6 14 0.0118 3 14 0.0778
C18 9 14 0.003 4 14 0.0843
Selenoamino acid metabolism C18 2 2 0.0405 1 2 0.1441
TCA cycle C18 5 9 0.0426 0 9 0.3702
Tryptophan metabolism C18 9 18 0.0255 3 18 0.2708
Urea cycle/amino group metabolism C18 12 21 0.0029 3 21 0.3142
Vitamin B3 (nicotinate and nicotinamide) metabolism HILIC 4 7 0.0082 0 7 0.3738
Vitamin B5 - CoA biosynthesis from pantothenate HILIC 2 3 0.0339 0 3 0.3738
Metabolic pathways associated with DM only among non-PD participants
Glycerophospholipid metabolism C18 5 18 0.368 7 18 0.0066
Glycosphingolipid metabolism Cc18 3 9 0.2925 4 9 0.0177
Keratan sulfate degradation c18 3 5 0.0722 3 5 0.0129
HILIC 2 4 0.0623 2 4 0.019
N-Glycan biosynthesis c18 2 3 0.112 2 3 0.0291
Vitamin B2 (riboflavin) metabolism HILIC 0 1 0.4588 1 1 0.0329
Metabolic pathways associated with DM among both PD patients and non-PD participants
Aminosugars metabolism HILIC 3 5 0.0186 1 5 0.2012
C18 4 7 0.055 3 7 0.034
Caffeine metabolism C18 4 5 0.0135 3 5 0.0129
HILIC 2 3 0.0339 1 3 0.1257
Chondroitin sulfate degradation HILIC 2 3 0.0339 2 3 0.0093
C18 4 4 0.0038 1 4 0.2443
Fructose and mannose metabolism C18 5 5 0.0014 5 5 0.0002
HILIC 3 4 0.0066 2 4 0.019
Galactose metabolism C18 6 8 0.005 5 8 0.0016
npj Parkinson’s Disease | (2024)10:100 8
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Table 3 (continued) | Metabolic pathways associated with diabetes mellitus (DM) using metabolites captured by positive ion
mode (HILIC) and negative ion mode (C18) among Parkinson’s disease (PD) patients and non-PD participants

pathway Column PD Patients Non-PD participants
Overlap size Pathway size p-value Overlap size Pathway size p-value
HILIC 5 5) 0.0003 2 5) 0.0297
Glycolysis and gluconeogenesis C18 6 7 0.0018 4 7 0.0066
Glycosphingolipid biosynthesis —ganglioseries HILIC 2 3 0.0339 2 3 0.0093
Glycosphingolipid biosynthesis —globoseries HILIC 2 3 0.0339 2 3 0.0093
Heparan sulfate degradation HILIC 2 3 0.0339 2 3 0.0093
C18 4 4 0.0038 1 4 0.2443
Hexose phosphorylation C18 4 5 0.0135 3 5 0.0129
HILIC 4 5 0.0019 2 5 0.0297
N-Glycan degradation HILIC 2 2 0.0118 2 2 0.0023
C18 2 3 0.112 3 3 0.0017
Pentose phosphate pathway HILIC 1 2 0.1668 2 2 0.0023
C18 7 10 0.0046 3 10 0.0993
Propanoate metabolism C18 2 2 0.0405 2 2 0.011
Sialic acid metabolism C18 5 8 0.0268 5 8 0.0016
HILIC 4 5! 0.0019 2 5 0.0297
Starch and sucrose metabolism C18 3 4 0.0367 3 4 0.0066
HILIC 3 4 0.0066 1 4 0.1665
Valine, leucine and isoleucine degradation c18 5 7 0.0124 & 7 0.034
Xenobiotics metabolism HILIC 5 12 0.0219 4 12 0.0093
a
o [ame] o [ wowm [omoma [ Gy [oegee] omgee [ e [ % viamin o

value)

Loglp

Pathways

Proportion of Pathways.

Pathways' Functional Group

*Proportion of pathways s calculated by dividing number of pathways over 44 total unique pathways in PD patient group and 22 total unique pathways in non-PD participant group.

**One pathway can have multiple functions and thus proportions do not add up to 1.

**+After removing duplicate pathways identified in both HILIC and C18 in either group, 17 metabolic pathways remained associated with T2DM (p<0.05) in both PD patients and non-PD participants, 26 pathways

were only enriched in PD patients, and 5 only in non-PD participants

Fig. 3 | Pathway enriched among Parkinson’s disease (PD) patients and non-PD participants. a Annotation of pathways by chemical groups, b by functional proporties.

associations, including biliverdin, which was negatively associated with
T2DM among PD patients. Biliverdin is derived from the breakdown of
heme, which is then generally quickly broken down to bilirubin by biliverdin
reductase”. Interestingly, both a buildup of and reduction in biliverdin have
been associated with disease”. For instance, biliverdin has been shown to
have anti-inflammatory effects and be protective against insulin resistance™.

However, liver failure and impaired metabolism also result in elevated
biliverdin®.

We also observed several pathways that were altered with T2DM
among PD patients. These include essential amino acid pathways such as
histidine metabolism, lysine metabolism, and tryptophan metabolism.
These amino acids are important for many physiologic functions, including
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energy production and nitrogen balance, which are essential for growth,
development, and tissue repair’ ", as well as regulating neurological func-
tion, gene expression, cell signaling, antioxidative responses, and
immunity”. Essential amino acids have also been linked to mitochondrial
dysfunction via disrupted energy production and oxidative stress*. Mito-
chondrial dysfunction is strongly linked to the pathogenesis of both T2DM*®
and PD*. Tryptophan is also metabolized into indole derivatives, including
3-methyldioxyindole, indoleacetic acid, and indoleacetaldehyde via gut
microbiota” ™. In the present study, these indole derivatives were also
negatively associated with T2DM among the PD patients. Interestingly,
tryptophan metabolism, indole metabolism, and metabolic disease have
been linked recently through the gut microbiome’***'. The importance of
the gut microbiome and gut-brain axis is also increasingly recognized
in PD*,

There is also evidence that several non-essential amino acids, including
glutamate” and glycine®, are involved in oxidative stress pathways. Our
study showed elevated levels of glutamate metabolites associated with
T2DM in PD patients. Glutamate can be converted to a-ketoglutarate to
participate TCA cycle®”. However, excessive amounts of glutamate, called
glutamate excitotoxicity, can lead to Ca’* influx that can promote mito-
chondria dysfunction and cell death®. Furthermore, these amino acid
pathways have other links to PD. For instance, through overexpression of
PGC-1a, which can result in mitochondrial function and a decrease in
phenylalanine, tyrosine, and glutamine*”*, or involvement of PINK1, which
has been linked to an increased glutamate and dysregulation of the TCA
cycle”. Oxidative stress has been suggested as a shared pathway between PD
and T2DM™ and is closely linked to mitochondria dysfunction among other
mechanisms’'. In T2DM, oxidative stress is induced by hyperglycemia™. In
PD, oxidative stress is thought to play an important role in the death of
dopaminergic neurons™. It is especially interesting that nearly 20% of the
pathways enriched in PD patients with T2DM are linked to oxidative stress
versus <1% of the pathways enriched among non-PD participants
with T2DM.

Dysregulation of the urea cycle and nitrogen metabolism was also
linked to T2DM among PD patients. Increased levels of urea in the kidneys
are associated with insulin resistance and suppression of insulin, with evi-
dence from both experimental and epidemiological studies™**. Elevated urea
levels were also found in the brains of PD patients in a brain tissue study™.
Urea accumulated in the blood can slowly cross the blood-brain barrier as it
becomes compromised with PD, resulting in elevated levels of urea in the
brain”*. In addition, previous metabolomics studies also identified urea
metabolism associated with PD and T2DM independently”>®.

Several other pathways with compelling links to both PD and T2DM
were also implicated by our results. Both pyrimidine and purine metabolism
were enriched in the T2DM-associated metabolites of PD patients. Purines
have roles in energy metabolism and signaling, and, along with pyrimidines,
DNA and RNA production. A previous metabolomics study identified
altered purine metabolism with T2DM®" and mouse models have linked
purine metabolites to faster T2DM progression®. Similarly, purine meta-
bolism has also been linked to faster PD motor progression in epidemio-
logical studies and DN A damage has been implicated as contributing to PD
pathogenesis by epidemiological and experimental studies™ . Two fatty
acid metabolism pathways, butanoate metabolism, and mono-unsaturated
fatty acid B oxidation were also associated with T2DM among PD patients.
Higher levels of fatty acid metabolites can impact the severity of insulin
resistance™*. Fatty acid oxidation has been linked to PD onset and mild
cognitive impairment in a previous metabolic study of PD patients”. In
addition, { oxidation has been suggested as a potential biomarker for the
diagnosis of PD at an early stage*’. Butanoate or butyrate metabolism refers
to short-chain fatty acid metabolism produced by the bacterial formation in
the human colon and butyrate is important for maintaining energy
balance®. A previous metabolic profiling of T2DM patients also showed an
elevated level of butanoate’’ and a meta-analysis of gut microbiome-focused
studies found bacterial butanoate metabolism to be upregulated among PD
patients”". Our results suggest that PD patients with T2DM have levels of

these important PD-linked metabolites that are more strongly altered than
in PD patients without T2DM.

Our study had several limitations to note. First, HRM analyses were
performed after the onset of both T2DM and PD and therefore, detected
metabolite alterations likely capture metabolic responses related to existing
PD and T2DM. This information can be very informative for understanding
disease progression and biological pathways affected by both diseases.
However, further longitudinal studies assessing metabolomic patterns prior
to disease onset will be needed for causal inferences. The analyses among
non-PD participants were also underpowered. So, while we report asso-
ciations related to T2DM among PD patients, many of which were not
related to T2DM among the non-PD participants, the smaller sample size
limits conclusions related to the specificity. There are also limitations related
to metabolite annotation and pathway analysis. Many of the metabolic
features could not be annotated or were annotated one to many. However,
we did make use on an in-house library, providing confidence in features we
were able to match’. Pathway analysis also depends on linking metabolites
to pathways, which requires some level of annotation. mummichog pathway
analysis is designed for untargeted, unannotated MWAS data”. But many
top features could not be linked to annotation even using mummichog.
However, given that the identification of metabolites and metabolic path-
ways is based on existing knowledge, when new information is made
available, future analyses can use our summary statistics for annotation and
pathway analysis. In addition, our summary statistics provide an opportu-
nity for future meta-analytical explorations. Given our sample size, we were
also unable to consider the effects due to better or worse diabetes disease
management. In addition, T2DM medication use was almost perfectly
correlated with T2DM status and therefore, we were not able to adjust
T2DM medication use. This would be of interest for future studies as per-
haps better T2DM disease management may mitigate the contributions of
T2DM to PD progression. Finally, it is important to note that this is an initial
discovery study to uncover the molecular link between PD and T2DM. Our
untargeted metabolomics analysis needs to be replicated, but the knowledge
gained by this approach may help to eventually improve the prognosis of PD
patients with T2DM in the future.

Our study provides insights into metabolic profiles related uniquely to
diabetes among PD patients. The differences in metabolites and dysregu-
lated metabolic pathways shed some light on mechanisms that possibly
contributed to PD progression or pathogenesis and may eventually provide
targets for disease management for comorbid patients. We found that the
most important metabolic pathways associated with T2DM do not depend
on PD status as expected. However, more informative are pathways we
found to be uniquely associated with diabetes among PD patients, including
amino acid, nucleic acid, and fatty acid metabolisms pathways. These
pathways implicate the enhanced dysregulation of energy metabolism,
nitrogen balance, mitochondrial dysfunction, and oxidative stress as
potential contributing factors to progression in PD patients with T2DM as
these pathways were found to be enriched even compared to PD patients
without T2DM.

Methods

Study population

PD patients were recruited as part of a community-based case-control study,
the Parkinson’s Gene and Environment (PEG) study. Idiopathic PD
patients were recruited between 2000 and 2017 from central California
(Kern, Fresno, and Tulare) in two separate study waves, referred to as PEG1
and PEG2. PEGI participants were recruited between 2001 and 2007 and
PEG2 participants between 2011 and 2017. Eligibility criteria for cases
included: living in California for five years at minimum, having been
diagnosed with PD for <3 years for PEG1 and <5 years for PEG2, and
agreeing to participate in the study. PD patients were recruited from local
clinics, neurologists, medical groups, radio advertisements, and the Cali-
fornia PD registry. Most of the PD patients (>70%) were taking PD medi-
cations (see Supplementary Table 1). Population controls for PD were
randomly sampled from the study area using either Medicare enrollee lists
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(prior to Health Insurance Portability and Accountability Act) or residential
parcels listed in property tax assessor records. PEG1 and PEG2 also enrolled
aset of household controls for PD patients. These household controls for PD
were limited to one per household. Eligibility criteria for controls included:
being more than 35 years old, living in California for five years at minimum,
and not being diagnosed with PD. Household controls had an additional
requirement of living in the same household with the PD participants for at
least 1 year. In total, 831 PD patients and 873 non-PD older adults were
enrolled in the PEG study. Detailed study population and recruitment
methods were published elsewhere”*””. For our analysis, we included 636 PD
patients and 253 non-PD older adults with metabolomics data. These were
all study participants with serum available for metabolic profiling. The
participants contributing to the metabolomics data included in the analysis
were similar in covariate distribution to those without metabolomics data
(see Table 1 and Supplementary Table 1).

We collected demographic and lifestyle information including age (age
at interview for controls and diagnosis for PD patients), gender, race/eth-
nicity, education, smoking status, as well as their self-reported medical
history, including T2DM status and age of diagnosis for T2DM. We
excluded PD patients and non-PD participants without blood samples or
who did not report their medical history. We imputed education, smoking
status, and race/ethnicity for 7 PD patients (education only) and 5 non-PD
patient controls.

We obtained blood samples at enrollment and all lab staff followed the
same sample processing and storing procedure. A detailed procedure was
published previously”’. Briefly, after blood was drawn, we let the blood sit for
30 min to clot. We then centrifuged the blood for 20 min to remove the clot
and aliquoted 1 mL of the serum per 1.5 mL microcentrifuge tubes. Bios-
pecimens were then transferred from the field on dry ice and stored in a
—80 °C freezer at UCLA within the same day. Serum samples were mailed
out on dry ice and analyzed for metabolomics at Emory University. We used
serum instead of plasma primarily due to sample availability.

High-resolution metabolomics (HRM)

Briefly, serum samples along with quality control samples were centrifuged
and analyzed using both hydrophilic interactions (HILIC) chromatography
with positive electrospray ionization (ESI) and C18 chromatography with
negative ESI (Ultimate 3000, Q-Exactive HF, Thermo Fisher, m/z range
85-1275)>"°. The samples were analyzed in batches of 40. Two quality
control samples were used: NIST 1950, which was run as the first and last
sample, and commercially purchased plasma pooled from an unknown
number of males and females, which were run at the beginning, middle, and
end of each batch. HRM detected ions by producing metabolic features
including mass-to-charge ratio (m/z), retention time (rt), and abundance.
The raw data were extracted and aligned using apLCMS”” with modifica-
tions by xMSanalyzer’®. Batch effects were corrected by using ComBat from
the sva package””. For data analyses, we only included metabolomic features
detected in >50% of all samples, with median coefficients of variation (CV)
among technical replicates <75% and Pearson correlation >0.7. The meta-
bolic abundance was imputed for missing values with minimum value of
each metabolic feature, median-normalized, and auto-scaled.

Annotation

Confirmed metabolites were identified by comparison to an in-house library
of reference standards that includes over 300 metabolites that were pre-
viously analyzed using identical analytical parameters’* using a mass error
of <10 ppm and a retention time difference of <30 s. Metabolites without
standard available were annotated using xMSannotator’'. We retained
annotations with a confidence score >2, mass error <10 ppm for m/z, and
retention time difference <30 s for grouping adducts and isotopes.

Statistical analysis

We conducted a metabolome-wide association analysis (MWAS) to assess
each metabolic feature’s association with T2DM among PD patients
(i.e., comparing PD patients with and without T2DM to each other) using

logistic regression and controlling for age of PD diagnosis, gender, educa-
tion, smoking, non-European ancestry, and study wave. We applied a false
discovery rate (FDR) to correct for multiple testing. We then conducted
pathway enrichment analysis using mummichog version 2 with metabolic
features including m/z, retention time, and test statistics from the logistic
model (z-value and crude p-value)*’. Mummichog primarily uses the Kyoto
Encyclopedia of Genes and Genomes (KEGG), UCSD Reconl, and the
Edinburgh human metabolic network. Unlike the traditional method that
identified metabolites and then maps them to the metabolic network,
Mummichog takes untargeted data and maps all possible metabolites, and
then searches for local enrichment. The algorithm has been previously
validated”. For the mummichog analysis parameters, we selected the
M[1+], M+ H[1+], or M+Na[1+] adduct types for positive ion mode
feature annotation and M-H[-], M-2H|[2-], or M-H20-H]-] for the negative
ions. We repeated the same MWAS and pathway enrichment analysis to
assess associations with T2DM among the non-PD participant group. We
controlled for the same set of potential confounders except for the age of
enrollment in place of the age of PD diagnosis. We adjusted for multiple
testing, both based on just replication of the T2DM-associated metabolites
among PD patients and for the full MW AS. The sample size for the non-PD
participant group was limited, therefore, we also present results from a
power analysis. Furthermore, to take into account a potential lack of sta-
tistical power due to the smaller number of non-PD participants, we
compared enrichment analyses using a significance level of 0.15 and 0.05 for
metabolic features.

We additionally performed 3-fold cross-validation to assess the gen-
eralizability of the findings using an FDR-adjusted p-value of 0.05 in the
discovery population to identify associated metabolic features and a crude p-
value of 0.10 in the replication population to identify whether metabolites in
the discovery population were replicated. We chose these cut-off p values
due to the smaller sample size when splitting the population into 3 folds. We
then calculated a significance rate as the number of significantly replicated
metabolic features in the replicate sample divided by the total number of
significant metabolic features in the discovery sample.

To identify metabolites associated with both T2DM and PD in the
study population, we compared our present T2DM MWAS results with
previously performed PD MWAS results”’. We also performed several
sensitivity analyses for the metabolic features identified in the main analysis.
We present gender-stratified and race/ethnicity-stratified results to assess
the potential effect measure modification. To assess potential confounding,
we additionally adjusted the T2DM MWAS among PD patients for the
amount of levodopa equivalent daily dose taken in mg, and for the sample
collection among both PD and non-PD participants. We also compared the
results using T2DM diagnosis with T2DM medication treatment, com-
paring the metabolic differences between participants who reported both
having T2DM and using T2DM medication with those participants who
reported not having T2DM and not using T2DM medication.

All analyses were performed in R version 4.1.3.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability

The data is publicly available at Metabolomics Workbench [project
(PR001964): https://doi.org/10.21228/M8VDY6]. The complete summary
statistics for the metabolic features associated with T2DM are available
through figshare (https://doi.org/10.6084/m9.figshare.22589464).

Code availability
The code is available on GitHub at https://github.com/sherlocklil/
metabolomics-PD-and-DM.git.
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