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Alzheimer’s disease rewires gene
coexpression networks coupling different
brain regions
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Manikandan Narayanan 1,2,3,4

Connectome studies have shown how Alzheimer’s disease (AD) disrupts functional and structural
connectivity among brain regions. But the molecular basis of such disruptions is less studied, with
most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD
rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-
regionDifferential Correlation (Inter-DC) analysis of RNA-seqdata fromMount Sinai BrainBankon four
brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus,
comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was
assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in
the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network
complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes
since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes
when couplingwith other regions, with parahippocampal gyrus showing themost rewiring, consistent
with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at
genesZKSCAN1,SLC5A3,RCC1, IL17RB,PLK4, etc.), inter-regiongenemodules enriched for known
AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could
mediate region-region communication. The Inter-DC network generated in this study is a valuable
resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional
coupling is disrupted in AD, thereby offering a new perspective of AD etiology.

The human brain connectome is comprised of a functional and a structural
connectome, which are essentially large-scale networks linking distinct
brain regions, mapped using different neuroimaging techniques1,2 (e.g.,
functional Magnetic Resonance Imaging or fMRI maps functional con-
nectivity from correlations of brain activity measurements, and diffusion
MRIordMRImaps structural or anatomical connectivity fromwhitematter
tract measurements). The structural connectome can influence the func-
tional connectome shaping brain region specific activity3; and includes two
major types of intercellular communication found in the central nervous
system: wired transmission (synaptic point-to-point communication
between neurons) and volume transmission (extra-synaptic transmission

between neurons or neurons and glia through cerebrospinal fluid and
extracellular fluid)4,5. Normal brain activity relies on the overall connectome
map, which disease can rewire and disrupt i.e., alter the functional con-
nectivity between brain regions6.

Investigating the brain connectome revealed the abnormalities in brain
connectivity of progressive neurodegenerative diseases such as Alzheimer’s
disease (AD)7,8,which is characterizedby the extracellular amyloidbeta (Aβ)
plaque development and intracellular neurofibrillary tangles (NFTs) for-
mation at the molecular level, and manifests as memory loss, cognitive
dysfunction, and social disorders at the clinical level9. Genome-wide asso-
ciation studies (GWAS) of AD have identified risk loci and potential

1Bioinformatics and IntegrativeData Science group, Department of Computer Science andEngineering, Indian Institute of Technology (IIT)Madras, Chennai, India.
2Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India. 3Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras,
Chennai, India. 4Sudha Gopalakrishnan Brain Centre, IIT Madras, Chennai, India. 5These authors contributed equally: Sanga Mitra, Kailash BP.

e-mail: nmanik@cse.iitm.ac.in

npj Systems Biology and Applications |           (2024) 10:50 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00376-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00376-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00376-y&domain=pdf
http://orcid.org/0000-0002-1501-4881
http://orcid.org/0000-0002-1501-4881
http://orcid.org/0000-0002-1501-4881
http://orcid.org/0000-0002-1501-4881
http://orcid.org/0000-0002-1501-4881
http://orcid.org/0009-0000-4380-7304
http://orcid.org/0009-0000-4380-7304
http://orcid.org/0009-0000-4380-7304
http://orcid.org/0009-0000-4380-7304
http://orcid.org/0009-0000-4380-7304
http://orcid.org/0000-0002-8490-4087
http://orcid.org/0000-0002-8490-4087
http://orcid.org/0000-0002-8490-4087
http://orcid.org/0000-0002-8490-4087
http://orcid.org/0000-0002-8490-4087
mailto:nmanik@cse.iitm.ac.in


causative genes10,11, butwhich brain regions andmechanisms these genes act
through is not fully characterized. Lack of understanding about molecular
changes in the brain connectome hampers therapeutic interventions aimed
at slowing down or halting neuronal loss associated with AD.

Genomic studies are becoming instrumental to understand the
molecular basis of neural circuits12,13 connecting different brain regions in
health and disease. Brain functional connectivity is known to be under
genetic control14,15, and recent studies are linking gene expression to con-
nectome data16,17. Transcriptomic analysis have elucidated gene regulatory
interactions operating within brain tissues or regions of healthy/diseased
individuals. For instance, the effect of AD on different cortical regions has
been studied using gene-gene coexpression (correlation) network and
module-trait networkanalyses18. Furthermore,many establisheddifferential
expression (DE) studies have identified individual geneswhose expression is
affected by disease in a region-specific manner. Brain region-specific
coexpression network analysis combined with GWAS studies has also
revealed significant AD genes19. Gene coexpressionmodules prevalant in all
brain regions or specific to one region in different neuropsychiatric disease
have also been explored20,21. As of nowmost ADgene expression studies22,23,
have mainly focused on within-tissue/within-region analysis to provide
insights into disease genes/processes. Therefore, themolecularmechanisms
supporting inter-brain-region connectivity, i.e., gene-expression coordina-
tion across brain regions, especially in neurodegenerative disease states,
remain undefined. How genes from one brain region can affect another
brain region, how the inter-brain-region communication occurs needs to be
explored. While tissue-tissue communication has been studied before24,25,
brain region communication on gene level is rarely explored.

To understand the gene-gene couplings across brain regions under
normal vs. disease conditions,we constructed a differential correlation (DC)
network across four brain regions using multi-region transcriptomic (spe-
cifically RNA sequencing, RNA-seq) data from theMount Sinai Brain Bank
(MSBB) based study26. We account for cellular composition effects in the
data to better capture cell-intrinsic changes in disease. The Inter-DC net-
work is comprised of numerous gene pairs whose correlation strength is
altered (lost or gained) in disease (AD) group compared to control (CTL)
group. Interestingly, each brain region uses a unique set of genes when
interacting with genes in other brain regions. The rewired Inter-DC gene
pairs is most prominent for coupling of parahippocampal gyrus with other
brain regions, in accordance with earlier studies on vulnerability27 or white
matter degeneration28 of different brain regions.

Bipartite network clustering and associated analysis of the overall
network of Inter-DC relations uncovered dysregulated gene-gene interac-
tions, and identified biological processes related to synaptic signaling, reg-
ulation of synaptic vesicle cycle and neurogenesis as the most affected
processes across brain regions. Systematically screening the Inter-DC net-
work for hub genes revealed an AD-GWAS signal enriched gene
ZKSCAN129 as a dominant (dys)regulator, with its DC partner genes clar-
ifying ZKSCAN1’s hypothesized role and mechanism in AD pathogenesis.
Some of our Inter-DCmodules are enriched for different types of signaling
molecules, such as ligand-receptor molecules, AD-CSF markers (Cerebro-
Spinal Fluid), secreted proteins, and neurotransmitters-neuroreceptors.
These suggest plausible mechanistic hypotheses of information transfer
across brain regions that are affected by AD. Taken together, our results
from assessing the effect of AD on the network of inter-brain-region gene-
gene correlations furnish us with vital molecular information about AD
pathogenesis that may help in promoting AD therapeutics.

Results
Gene pairs between brain regions are rewired in AD pathology
Studying how a network of gene-gene correlations (coexpression patterns)
observed in a group of healthy individuals gets altered in a disease group is a
good starting point to understand the molecular disruptions caused by the
disease condition30. Inter-DC analysis identifies such gene pairs that have
either gained or lost correlation strength significantly in the disease com-
pared to control group. Performing Inter-DC analysis (see Fig. 1a and

Methods) onRNA-seqdata fromMSBB26 of 372CTLvs. 264ADsamples of
four brain regions; namely Brodmann Area (BM10) - frontal pole (FP),
BM22 - superior temporal gyrus (STG), BM36 - parahippocampal gyrus
(PHG), and BM44 - inferior frontal gyrus (IFG); we observed significant
rewiring of gene pairs between two brain regions in AD compared to CTL
samples (Table 1, Fig. 1b).Details of allDCgenepairs discovered at FDR1%
are in Supplementary File 1 (note that the termsDC and Inter-DC are used
interchangeably in this work).

Interestingly, our inter-brain-region comparison of PHG-IFG, the
twomost vulnerable of these four regions according to an earlier study27,
shows the maximum rewiring of gene pairs (12,979) compared to the
other five inter-brain-region comparisons (Table 1). To clarify this
further, we also calculated the percentage of detected DC pairs (at FDR
1%) out of all tested gene pairs. This measure, which we call DC Dys-
regulation percentage, attained a maximum of 14.01% for the same
PHG-IFG region pair, and a minimum of 2.54% for FP-STG (Table 1).
This indicates that gene interactions between the two most vulnerable
brain regions in AD are most affected, whereas those between less vul-
nerable regions (FP-STG) are the least affected. Notably, the DC dys-
regulation percentage also declined depending on the decreasing
vulnerability rank of the brain regions interacting with PHG. Note that
PHGwas reported as themost vulnerable site in AD27, and also exhibited
prominent white matter tract degeneration28.

For each significantDCgenepair, it has either lost or gainedcorrelation
in AD compared to CTL (e.g., Fig. 1b). Further, delineating a DC pair based
on a z-score threshold yielded 4 categories (Fig. 1c, Supplementary Fig. 1a,
and Supplementary Table 1), which can be grouped into 3 classes: gained
positive correlation (PG), lost correlation (LC), and gained negative corre-
lation (NG). The distribution of DC edges in these 3 categories are noted in
Supplementary Table 2. DC edges with gained correlation outnumber those
with lost correlation. The position and class of DC for the gene pairs, IRF8-
C3 and NRXN3-CCKBR from PHG and IFG, are highlighted in Fig. 1c.
NRXN331 and C332 proteins in CSF are already reported as biomarkers for
AD, suggesting that CSF (along with ISF (Interstitial Fluid)) may act as a
medium enabling the normal coupling of certain gene pairs between two
brain regions and its rewiring in AD. This further indicates that volume
transmission is required tomaintain inter-brain-region gene-gene network.
Furthermore, assessing overlap of DC gene sets from all six inter-brain-
region comparisons resulted in only a few gene pairs that are common
across these comparisons (Supplementary Fig. 1b). This indicates that the
rewiring of gene pairs varies based on which pair of brain regions are
considered for DC analysis.

DE genes do not drive DC gene pairing
Since DE-based vulnerability index from an earlier study and our DC-
based dysregulation index provide similar rankings for how the different
brain regions are affected by AD, we wanted to check if DC results are
driven byDE or if they complement DE.We checked the overlap between
DC and DE genes for every inter-brain-region comparison. In this study,
we have used cell type corrected (CTC) DEGs for comparison since CTC
data is also used for computing DC. Significantly altered CTC-DEGs are
compared with DC genes participating in all six inter-brain-region
comparisons at FDR0.05, 0.1, and0.2. Even at a relaxed cut-off of FDR0.2,
more than 90% of DC gene pairs are not driven by DEG (Table 1). While
testing howmanyDCedges overlapwithDEGs, it became evident that 9%
of edges are driven by DEG for FP-STG comparison, whereas for PHG-
IFG, only 1% are affected. This shows that DEGs do not confound DC
relations.

Additionally, to substantiate our argument, we conducted a compar-
isonbetween the aggregateDEscore andDCz-score for the tested genepairs
in a given inter-brain-region comparison. Supplementary Fig. 1a vividly
demonstrates that as the DC score increases, the DE score decreases (as
depicted by the orange dots), underscoring the complementary nature of
DC to DE. Furthermore, we offer a detailed elucidation of this relationship
using two gene pairs for clarity (Supplementary Figs. 1b, 2c).
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Inter-DC network contains region-exclusive interactions, and
hubs of AD dysregulation
For each inter-brain-region BR1-BR2 (BR1 stands for brain region 1 and
BR2 for brain region 2) comparison, we sought to identify whether the DC
genes were exclusive to or shared among the two regions.We detected only
7–21% gene overlap between the BR1 vs. BR2 DC genes (Supplementary
Fig. 3). Inspecting whether these common genes in each inter-brain-region
analysis had the same gene neighbors in both brain regions, we found it not
to be the case surprisingly (Supplementary Table 3). Next, we pooled the

genes that a given brain region (say FP) uses to interact with the three other
brain regions (STG, PHG, and IFG) in the DC networks (Fig. 2a), and
realized that only 20–32%of theseDCgenes are common across at least two
regions—the remaining genes constituting a large fraction of all pooled DC
genes are exclusive toa region (Fig. 2b).DCedges sharedbyonebrain region
with the other three brain regions are illustrated in Supplementary Fig. 4,
showcasing both the overlapping and unique DC edges across inter-brain
region comparisons. It seems a complex interplay between genes and
region-specificity influences the activity of genes and their involvement in

Fig. 1 | Gene pairs are differentially correlated (DC) in inter-brain-region
comparison in AD pathology. a Schematic of our methodology—To understand
inter-brain-region dysregulation, we obtained RNA-seq gene expression data from
MSBB for four different brain regions (details in text); grouped them into AD and
CTL samples based on CERAD (Consortium to Establish a Registry for AD) score,
and computed Spearman’s correlation between all pairs of genes in each pair of brain
regions separately in the AD group and the CTL group. By correcting the expression
data for cell-type composition effects before Inter-DC analysis, the confounding
influence of cell-type proportions causing DC patterns is mitigated (we specifically
used a CellCODE model for this cellular deconvolution based on 80 marker genes
(MG); i.e., 20 MG each for the four major cell types, was identified as the best

performing model and hence used to estimate the relative frequencies of the cell
types; details in “Methods”). b Gene pairs gained (IRF8-C3 gene pair) or lost
(NRXN3-CCKBR) correlation in the AD group relative to CTL samples. All such
rewired gene pairs constitute the altered gene network in AD pathogenesis. The
ellipses in these plots are generated using R ggplot2 stat_ellipse() function using
default arguments (95% confidence interval based on amultivariate t-distribution fit
to the data). c The Inter-DC pairs form four distinct clusters in a scatter plot
representing the different categories of changes detected from the AD vs. CTL Inter-
DC analysis. Comparing the size of the two gained correlation clusters (both posi-
tively and negatively gained) with the lost correlation clusters, there are more gene
pairs that gained correlation (see Methods and Supplementary Table 2).
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disease pathology. Further, this region-exclusive interaction can also be
attributed to volume transmission, because diffusion of neuroactive sub-
stance across extracellular space, responsible for inter-brain-region com-
munication, is often heterogenous and anisotropic5. Together these analyses

reinforce the importance of focusing on multiple brain regions and asso-
ciated gene-gene interactions to understand AD etiology.

To further understand the inter-brain-region interactions dysregulated
in AD, we focused on the hub genes which participate in a large number of
DC relations, and tested if they are shared or exclusive across inter-brain-
region analyses. We are interested in gene hubs as they can underpin
structural connectome hubs, due to the link between gene expression and
neuronal activity12.When examining the degree (number of DC interaction
partners) of each gene for each inter-brain-region comparison (Supple-
mentary Fig. 5), we observed only a few hub genes, with more than 50%
being non-hub having unit degree (single DC interaction) out of 15,905 DC
genes.Moreover, the highest degree of hub gene in each brain region ranges
from 20 (FP in FP-STG) to 113 (IFG in FP-IFG) (Supplementary Table 4).
However, we noticed that a few hub genes with the highest degree are
lncRNAs, pseudogenes, and antisense RNAs. Since their functionality is not
well documented,wedecided to select theprotein-coding genes for our hub-
gene analysis (Table 2). Interestingly, gene ZKSCAN1 (Zinc Finger With
KRABAndSCANDomains 1) is found to act as a hub gene (309 uniqueDC
partners) for different inter-brain-region comparisons. Top 20 hub genes
selected from all 6 inter-brain-region DC interactions based on number of
DC partners and in how many of six inter-brain-region comparisons they
are present at FDR 1% are noted in Supplementary File 1. ZKSCAN1 is
reported to have a role as a transcription factor that modulatesGABA type-
A receptor expression in the brain33. Exploring DC partners of ZKSCAN1,
we realized it has region-exclusive partners mostly. Two of its DC partner
genes, SGK2 (Serum/Glucocorticoid Regulated Kinase 2) and TCF12

Fig. 2 | In the Inter-DC network, each brain region uses a distinct gene profile to
interact with other brain regions. a Schematic Inter-DC network between Frontal
Pole (FP) and other three brain regions, depicting distinctive dysregulation patterns.
b Stacked bar graph denotes that each brain region has an exclusive set of genes
mostly when interacting with other brain regions in the DC network. c Hub gene
NTM from STG is differentially correlated with 35 genes in FP. The edge color
represents the category of Inter-DC relation. Green (solid line) represents positively
gained, and red (dashed line) represents negatively gained. d In this network, NTM

from PHG is differentially correlated (positively gained in DC) to only one gene
ALMS1 in IFG. e The Spearman correlation coefficients between the hub geneNTM
and its Inter-DC partner genes (noted in panel c, d) are shown for the CTL and AD
conditions as boxplots, both for FP-STG and PHG-IFG inter-brain-region com-
parisons. Boxplots in this figure and elsewhere in this paper show the median as the
center line, upper and lower quartiles as box limits, 1.5x interquartile range as
whiskers, and outliers outside the whiskers as points.

Table 1 | For each inter-brain-region comparison, the number
of DC gene pairs (edges) and unique DC genes (nodes) in the
DC network detected at FDR 1% are reported (A DC gene is
anygeneparticipating in at least oneDCrelation;BR1andBR2
stands for Brain Region 1 and 2 respectively; and DC Dysre-
gulation index is the percentage of detectedDCpairs out of all
tested gene pairs)

Brain
Region
Pair
(BR1-BR2)

Total
DC
edges

BR1- #
DC
Genes

BR2- #
DC
Genes

DC Dysregulation
percentage (%)

DC edges
driven
by DE

FP-STG 2961 2013 1844 2.54% 266 (9%)

FP-PHG 2629 1597 1409 5.41% 169 (6%)

FP-IFG 9962 4609 4235 3.40% 741 (7%)

STG-PHG 6274 2580 2549 8.94% 218 (3%)

STG-IFG 8179 3297 3548 5.24% 173 (2%)

PHG-IFG 12979 3642 4202 14.01% 141 (1%)

A DC edge is said to be driven by DE if any of the two genes in this DC edge or both are DE.
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(Transcription Factor 12), are found in four inter-brain region comparisons
(FP-IFG, STG-PHG, STG-IFG and PHG-IFG), where the DC edge
ZKSCAN1-SGK2 is positively gained in all four and ZKSCAN1-TCF12 is
negatively gained in all four analyses. While SGK2 is known to regulate ion
channel transport and transport of glucose, metal ions34, etc., its involve-
ment in AD is not known. On the other hand, TCF12, required for the
initiation of neuronal differentiation35, is known to be dysregulated in AD36.
PPDPF (Pancreatic Progenitor Cell Differentiation And Proliferation Fac-
tor) that acts as a hub gene in STG for STG-PHG interactions is also a DC
partner ofZKSCAN1. Though, not the highest connected hub gene in any of
the six inter-brain-region comparisons, genes SLC5A3 (Solute Carrier
Family 5 Member 3), TFCP2 (Transcription Factor CP2) and RCC1(Re-
gulator Of Chromosome Condensation 1) have second highest (total 187),
third highest (total 159) and fourth highest (total 156) DC gene partners
after ZKSCAN1. All these genes act as DC partners of ZKSCAN1. TFCP2 is
only connected in PHG-IFG and RCC1 in STG-PHG whereas SLC5A3 is
connected in3 inter-brain-region interactions.This shows the tophubgenes
are highly connected among themselves, dictating the change in inter-brain-
region DC gene network in AD pathology.

Moreover, NTM (Neurotrimin), LZTS1 (Leucine Zipper Tumor Sup-
pressor 1), and FSD1 (Fibronectin Type III And SPRYDomain Containing
1) are among a few other hub genes detected. The different DC partners of
the hub gene NTM from FP-STG comparison is shown in Fig. 2c; inter-
estingly, in PHG-IFG comparison,NTM in PHG is DCwith only one gene,
ALMS1 (ALMS1 Centrosome And Basal Body Associated Protein) in IFG
(Fig. 2d). This observation highlights that even the same gene fromdifferent
regions have distinctive patterns of disease dysregulation. To verify that the
region exclusivity is not biased by stringent FDR cut off and is due to actual
molecular changes imparted by disease, we assembled gene-gene correla-
tions (NTM vs. all its DC partner genes denoted in Fig. 2c, d) for both inter-
brain-region comparisons (FP-STG and PHG-IFG) in CTL and AD con-
ditions and representedas boxplot inFig. 2e. It is clearly evident fromFig. 2e
that NTM-DC partner gene correlation is significantly different between
CTL and AD in FP-STG compared to PHG-IFG. This justifies the DC
behavior of NTM gene in different inter-brain-region comparisons. Such
dominant region-exclusive DC relations is due to the disease affecting dif-
ferent regions in different ways, as well as the coexpression networks in
healthy control states being region-specific to begin with (i.e., same genes in
multiple brain regions having different coexpression relations with genes
from another region, possibly due to the different spatial/molecular context
they are in).

Bipartite network clustering reveals pathways with disrupted
inter-brain-region connectivity
DC genes are expected to provide valuable insights into the underlying
biological processes of the clinical development of AD. To identify such
biological processes, we partitioned the Inter-DC network into smaller
bipartite (two-region)modulesusing theLouvain algorithm, such that genes
within each module are more tightly connected among themselves than
with genes in other modules (Fig. 3a). We identified 19–34 modules per
inter-brain-region comparison (Supplementary Table 5). In total we
obtained 151modules encompassing 302 gene sets (eachmodule has 2 gene
sets, one gene set belonging to each brain region, Supplementary File 2).
Enrichment tests for Gene Ontology biological processes (GO_BP, using
Over Representation Analysis (ORA); Fig. 3a) showed that most modules
are enriched for response to stimulus, synaptic signaling, and synaptic
vesicle transporter activities (Fig. 3b). Top GO_BP with the lowest FDR in
eachmodule is highlighted inTable 3 (all the enriched functional profiles are
in Supplementary File 3 and summarized in Supplementary Fig. 6). Further,
we generated randommodules, maintaining the same network structure as
the identified modules, and did ORA on these random modules—this
resulted in a few GO_BP enrichments not related to brain functions, and
thereby substantiates the robustness of Inter-DC module enrichments
compared to random modules’ enrichment (details in “Methods”).
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Among all the modules enriched, the two query gene sets of module
number 715 (hereafter referred to asmod715) from each brain region in the
FP-PHG pair were enriched for all three GO categories and KEGG path-
ways, with synaptic signaling being very prevalent. The prevalence of

synaptic signaling is also evident from the top ten GO_BPs enriched in the
gene sets of mod715 displayed as a dendrogram along with the genes
overlapping eachBP in SupplementaryFig. 7.Todissectmod715 further,we
depicted the DC relation between only the synaptic signaling annotated

Fig. 3 | Bipartite Inter-DC modules provide insights into the inter-brain-region
biological processes affected byAD. aThe union of correlated gene pairs in ADand
that in CTL are tested for DC, and the resulting bipartite (two-region) Inter-DC
network partitioned into modules using the Louvain method (see “Methods”). To
identify biological pathways and potential signaling factors enriched in each of these
Inter-DC modules, we perform Over Representation Analysis (ORA; see “Meth-
ods”) with background gene set being all correlated genes and query gene set being
the genes in each of the two sides (regions) of the module (so for module modAbc in
the schematic, two ORA analyses, one for modAbc:BR1 genes and another for

modAbc:BR2 genes, are performed). b Alluvial plot represents the GO_BP that the
modules are enriched for (at a significant cut-off of FDR 5%). Thickness of edges
represent the number of modules enriched for each BP for each inter-brain-region
comparison. In FP-STG, only query gene sets pertaining to the FP side of the
modules are (significantly) enriched. c Inter-DC network connectivity between the
synaptic signaling annotated genes in mod715 of FP-PHG shown as a heatmap of
Inter-DC z-scores. GO_BP annotations of each gene are indicated via color labels
(with GO_BP names shortened here; details in Supplementary Fig. 7).
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genes inmod715 in Fig. 3c.WNK2 (WNK lysine deficient protein kinase 2)
from FP and LZTS1 (Leucine Zipper Tumor Suppressor 1) from PHGhave
the highest degree in FP and PHG respectively. As evident from ‘The
Human Protein Atlas’37, both genes and their corresponding proteins are
expressed in the cerebral cortex. Studies have shown

WNK2 is present in cerebral cortex as well as cerebellum of mouse
brains, enriched in neurons, and a regulator of GABAergic signaling38.
Recently, it has been reported that Lzts1 is associated with microtubule
formation, contributes to the increasing intricacyof the cerebral architecture
during evolution inmouse, and is mainly enriched in glial cells39. Their link
to the brain motivates to find their connection with AD pathology. More-
over, we noted that most of the gene-gene correlations are lost in AD
compared toCTL inmod715, suggesting that synaptic signaling betweenFP
and PHG is disrupted in AD.

The genes in GO_BP “Synaptic signaling” and its related terms that
overlap with the FP vs. PHG side of mod715 are mostly different (Supple-
mentary Fig. 7), thereby reinforcing our previous observation that every
brain region’s dysregulated gene sets are distinctive. Only five synaptic
signaling related genes, BSN, CACNA1B, GRIN1, IQSEC2, and SYNGAP1,
are shared between the FP vs. PHG gene sets ofmod715.BSN (Bassoon) is a
component of the presynaptic active zone (AZ) involved in organizing the
presynaptic cytoskeleton40. In contrast, voltage-dependent N-type calcium
channel subunit alpha-1B (CACNA1B)mediates the ingress of calcium ions
(Ca2+) into excitable cells, thus controlling the neurotransmitter release
from the presynaptic compartment41. On the other hand, GRIN1 encoding
the essential subunit GluN1 that is present in all NMDARs (N-methyl-d-
aspartate, receptors) found in the postsynaptic membrane, regulates the
flow of Ca2+ through the channel42. Lastly, IQSEC2 (IQ Motif And Sec7
Domain ArfGEF 2)43 and SYNGAP1 (Synaptic Ras GTPase Activating
Protein 1)44 form components of the postsynaptic density at excitatory
synapses and are critical for the development of cognition and proper
synapse function. Excepting GRIN1, none of these other genes have been
reported till date to be involved in AD pathology45. Since all these genes are
involved inmaintaining synaptic signaling, dysregulation of these genes can
lead to neurodegeneration in a variety of disorders, including Alzheimer’s
disease. Since our results support involvement of differential correlation of
these less-studied genes in AD pathogenesis, it will be interesting to study
how the gene andprotein expression levels ofBSN,CACNA1B, IQSEC2, and
SYNGAP1 are dysregulated in AD, and how that contributes to AD
pathology.

In addition to performing ORAwith bipartite modules, we conducted
ORA for PG, NG, and LCDC edges (mentioned in Supplementary Table 1,
2). A summary of the enrichments is provided in Supplementary Table 6.
Noteworthy functions associated with PG-DC edges include cellular orga-
nization and transport, synaptic signaling, response to stimuli such as heat
andmetal ions, and variousmetabolic pathways including lipid biosynthesis
and oxidation-reduction processes. For NG-DC edges, enrichment is
observed in regulation of cellular response to stress, protein folding,
chaperone-mediated protein folding, DNA metabolic processes, cell cycle
regulation, cellular response to heat, and neuronal development. The LC-
DC edges are linked to functions such as synaptic plasticity regulation,
vesicle-mediated transport, mRNA processing, regulation of cellular loca-
lization, andmodulation of chemical synaptic transmission.Detailed results
from ORA are included in Supplementary File 4.

AD genetic factors are associated with certain Inter-DC genes
and modules
In recent studies on the genetic architecture of AD, a multiplex model has
beenproposed to understandADgenetics. Thismultiplexmodel is basedon
pathway enrichment analysis using AD risk gene scores46–48. Interestingly,
we found three of our DC modules, mod715 (FP:FP-PHG), mod770
(PHG:PHG-IFG) and mod1088 (IFG:STG-IFG), to be enriched for GO
terms pertinent to certain multiplex model pathways like endocytosis,
cholesterol metabolism and immune system process (Supplementary File
5). Specifically, mod715 and mod1088 are enriched for synaptic vesicleT
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endocytosis and presynaptic endocytosis involving genes DNM1, NLGN2,
PACSIN1, PIP5K1C, SLC17A7, SNCB, SYT1 and SYT7. Mod1088 is also
enriched for ether lipid biosynthetic process and cellular lipid biosynthetic
process encompassing genes AGPS, FASN and GNPAT. In addition,
mod770 is enriched for different immune system relatedprocesses such asT
cell proliferation,T cell activation, positive regulationofB cell activation, etc.
This prompted us to check if any of the inter-brain-region DC genes and
modules we found are linked to AD phenotypes, using results from inde-
pendent GWAS studies on AD.

Over the last decade, GWAS have revealed many risk loci for AD,
implicating many potential causative genes49,50 and SNPs (single nucleotide
polymorphisms), beyond the well-established APOE association51. We test
enrichment of such AD risk loci and AD-GWAS signals in the inter-brain-
region DC genes/modules, using a tool called MAGMA (Supplementary
Fig. 8). Gene-level analysis using MAGMA yielded 208 AD-GWAS genes,
i.e., genes forwhich SNPs in their genomic vicinity are significantly enriched
for ADGWAS associations; and 34 of these AD-GWAS genes overlap with
the already knownADbiomarkers. Out of these 34 genes,ADAMTS4 is also
aDCgene. Further, 125ADGWASsignal enriched genes out of 208overlap
with DC genes from all six inter-brain-region comparisons. Interestingly
our DC hub gene ZKSCAN1 discussed above is also enriched for AD-
GWAS signal, making it an excellent candidate for AD pathogenesis that
canbe studied further in the context of itsDCpartners.Other identifiedAD-
GWAS DC genes include CARF (Calcium Responsive Transcription Fac-
tor) and PLEKHA1 (Pleckstrin Homology Domain Containing A1), being
involved in the rewiring of gene coexpression networks in AD and further
based on their functional relevance in the brain, theymay also be considered
as promising candidates for AD pathogenesis.

Gene set level analysis usingMAGMA andmultiple testing correction
across all the 302 tested gene sets belonging to all 151modules (identified in
the bipartite clustering analysis; see Supplementary Table 5) did not yield
any significant result at a stringent cut-off (i.e., none of the modules are
significantly enriched for AD GWAS signal at FDR 5%). However as
mentioned above, three of our modules are enriched for multiplex model
related GO biological processes, which are composed of AD genetic factors.
Since disease causal mechanisms have been discovered using disease-
associated genetic factors identified in GWAS52, our GO enrichment results
suggest that these three Inter-DCmodules contain risk genes that are causal
for AD, besides other genes that are dysregulated as a consequence of AD.
To further decipher themolecular factors responsible for inter-brain-region
connectivity, we did custom enrichment analysis using signalingmolecules.

Distribution of signalingmolecules in inter-brain-regionmodules
leads to molecular hypothesis of AD dysregulation
We inferred the rewiring of the gene network inAD via de-coupling and re-
coupling of genes across different brain regions using RNA-seq gene
expression data; however the molecular mechanisms supporting this
functional organization and re-organization remain elusive. Towards this
end, we checked if signaling molecules which are essential for commu-
nication between cells or regions (located near or far) overlap significantly
with the modules we identified in the rewired bipartite network. Using
signaling molecules such as ligand-receptor molecules, Cell-Cell signaling
molecules (CCsignaling),CSFmarkers, secretedproteins (secretome), genes
enriched for AD-GWAS signals (208 genes, referred below) and
neurotransmitters-neuroreceptors (neurotransmission) as functional cate-
gories in ORA, we could uncover 4 signaling/communication-related cus-
tomized gene sets are enriched in 6 modules after multiple testing
correction. (Supplementary Table 7).

Modules fromFP-IFG aremost enriched formolecules responsible for
communication. This may be due to their close proximity as both FP and
IFG are located in the frontal cortex. We found 4 customized gene sets
namely CCsignaling, CSF, Neurotransmission and Receptor to be enriched.
Twomodules are enriched for 13 CCsignaling genes and three modules for
34Neurotransmission genes. Between these two categories, 5 genes namely,
DAGLA, IQSEC2,RAB3A, SYN1 and SYT1 are found to be common.On the

other hand, 11 genes in Receptor category and 3 genes in CSF category are
enriched for one module each. It would be interesting to find out which of
these signalingmolecules are involved in wired (synaptic) transmission and
which others in volume (extrasynaptic) transmission.

Noteworthy is that the previously determined mod715, which is
enriched for synaptic signaling and endocytosis pathway is also enriched for
neurotransmission and CCsignaling in the FP side. Interestingly, genes in
mod715 is also enriched for the gene ontology molecular function-voltage-
gated cation channel activity, particularly calcium ion channel (Supple-
mentary File 5). Voltage-gated cation channel is known to be activated by
neurotransmitters. The specific signalingmolecules and interactions within
the DCmodule mod715 can thereby lead to specific hypothesis of how this
module is affected in multiple regions in AD (Supplementary Table 7).
Further, many of the ZKSCAN1 DC partners are AD biomarkers (34),
ligand (5), receptors (7) and secreted proteins (2). This indicates a plausible
way how ZKSCAN1, by controlling these signaling molecules, (Fig. 4a)
enacts its role in AD pathogenesis. Overall this analysis shows the invol-
vement of signaling molecules at different layers of inter-brain-region
network.

Discussion
An across-region perspective of AD-dysregulated genes and
pathways
We have presented here a new DC-based approach to find gene-gene cor-
relations across brain regions that are altered in disease, and use it as a
window to inspect how functional coupling among genes in four brain
regions can contribute to AD pathology. These analyses enabled us to find
how the genic effect of one brain region on another rewires in disease; in this
aspect, our study on differential correlation is different from earlier studies
on correlations that are conserved betweenADandControl groups (e.g., an
inter-region study28 that showed high number of conserved gene-gene
correlations between brain regions connected via AD-associated white
matter tracts). We could further decipher genes that are not yet designated
as ADbiomarkers, but from our analyses, we could clearly observe that they
are involved in gene pair rewiring in AD compared to CTL. Partitioning the
Inter-DC network into robust modules highlighted that

gene pair rewiring is tightly linked to synaptic signaling and synaptic
vesicle transport. Enrichment of these modules further for AD-GWAS
signal as well as signaling molecules, helped us to build mechanistic
hypotheses supporting the brain molecular connectivity. Further, hub gene
analysis revealed ZKSCAN1 as a key DC gene for most of the inter-brain-
region comparisons. Using results from this systematic analysis, we propose
an Inter-DCmodel (Fig. 4b) that gives us a new perspective to decipher the
genetic components of AD pathology.

While our approach presents new facts about multiple brain region
functioning in AD pathology, it is worth pointing out that our results are
limited by the number of brain regions for which data is available; and
further should be viewed as in-silico genomic-data-driven hypotheses that
require further experimental validation, due to the statistical nature (gain/
loss of correlation) of the DC relationships. We will get a better view once
more genomic data specific for brain regions is available, and experiments
are pursued in future around the most promising lead DC relations/genes/
pathways from this study to understand the mechanisms leading to Inter-
DC. Further, while CTC helps to reduce confounding effects of cellular
composition, the cell type (CT) frequencies are estimated only for four
major brain cell types and CellCODE cannot also yield absolute cell fre-
quencies. Nevertheless, we get meaningful results that are not enriched for
CT specific marker genes. Despite some caveats, the result showing gene-
pair rewiring across inter-brain-regions is of much interest andmay help to
study AD pathology in a new light.

From our analysis, we realized that more than one aspect of synaptic
function are affected such as synaptic vesicle trafficking, trans-synaptic
signaling, chemical synaptic transmission, and regulation of synaptic plas-
ticity. Interestingly, we noted that even if two brain regions e.g., FP and
PHG, are coupled through synaptic signaling, they use a different set of
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genes to exert their effect.Downregulation of synaptic genes inADand their
specificity to brain regions have been previously reported53. However, the
usage of different synaptic genes by different brain regions and their func-
tional coupling across brain regions have not been reported before. Shifts in
harmony of brain molecular connectivity involving synaptic genes is
expected to compromise communication processes between brain regions
leading to neurodegeneration, thus causing Alzheimer’s disease.

Within-region dysregulation in AD
While this study focuses on Inter-DCrelations associatedwithAD, anatural
question is the extent to which within-brain-region gene networks are
rewired in AD and whether they overlap with the Inter-DC networks. We
present results on Intra-DC or Within-DC networks for the four brain
regions inSupplementaryTable 8. For eachbrain regionBR,wediscovered a
muchhighernumberof genepairs thatwere correlated in the Intra-DC(BR-
BR) than Inter-DC (BR-BR2) analysis, due to which manymore gene pairs
had to be tested for DC. This procedure resulted in subsequently few Intra-
DC gene pairs that passed the FDR1% (adjustedDC p value <= 0.01) cutoff,
because of high multiple testing burden. To reduce this burden, we per-
formed Intra-DC (BR-BR) analysis on only the gene pairs detected in the
Inter-DC networks involving BR (see Supplementary Fig. 4 and Supple-
mentary Table 8 caption). Using this approach, we found that gene pairs

involved in Inter-DC relations, when projected onto a single brain region of
interest, did not show evidence of Intra-DC within that region (see Sup-
plementary Table 8). Taken together, this implies that Inter-DC rewiring
pattern in AD is largely distinct from Intra-DC rewiring.

Signaling and genetic factors underlying inter-region
dysregulation in AD
There remains a lackofdetailedmechanistic knowledge abouthowthebrain
neuronal network is controlled and how wired transmission and volume
transmission complement each other tomaintain this brain network. This is
complicated by the fact that different brain regions are affected variedly by
region specificity as well as AD pathology, adding a spatial element to the
disease. However, using the DC framework, we could identify modules of
genes, whose gene network architecture between brain regions is altered in
AD group relative to controls. We tried to hypothesize and visualize the
cause and consequence of gene network dysregulation in AD pathogenesis
using these modules of genes. We used customized gene set enrichment
analysis to confect our hypothesis. Enrichment of the gene sets “Cell-Cell
signaling” and “Neurotransmission” shows that inter-brain-region con-
nectivity is most compromised in AD. Interestingly, mod715 along with
synaptic signaling is also enriched for these 2 gene sets. All these analyses
help us to hypothesize possible mechanisms around inter-brain-region

Fig. 4 | Biomolecules underpinning inter-brain-region communication and
disease dysregulation. a Inter-DC partners of ZKSCAN1 are composed of AD
biomarkers and signaling molecules. (edges in green solid line represents positively
gained edge and in red dashed line represents negatively gained edge, according to
the Inter-DC z-score). “Common” denotes those Inter-DC partners that are shared
between two nodes. ARNTL gene is shared between AD biomarker and secretome,

HSPA4 and SPP1 genes are shared between AD biomarker and Ligand. b Inter(-
brain-region)-DC model highlighting the biological processes perturbed in AD due
to gene pair rewiring across brain regions. Genes involved in different biological
processes that support multiple hypotheses (based on both genetic evidence and
clinical trial) of AD pathogenesis are noted in Discussion and those involved in
mitochondrial cascade hypothesis are highlighted in Supplementary File 6.
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regulation. It seems during this dysregulation, volume transmission is also
compromised making the signaling molecule transport less efficient across
brain regions, which may be complementary to Aβ deposition. Recently,
spatial transcriptomics studies have shed some light on the spatial element
ofADdysregulation, but no such studies have beendone for the samepair of
regions inspected in our study. When we inspected two AD gene modules
from a single-brain-region spatial transcriptomics study (specifically FP-
region derived myelin/oligodendrocyte genes; OLIGs and plaque-induced
genes; PIGs), we didfind thosemodules to overlapwith our Inter-DCgenes.
But this overlapwasnot statistically significant, andhencewedidnot pursue
or discuss it further54. However as more spatial transcriptomics studies
become available in the future, the associateddatasets and genemoduleswill
surely help us better understand the overlap between Inter-DC and spatial
DE genes.

Finally, hub gene analysis and AD SNP enrichments revealed that
ZKSCAN1, located in chromosome 7, is a prominent node in the gene
network functionally connecting different brain regions and has 309unique
Inter-DC partners.ZKSCAN1, when located in IFG, differentially correlates
with the largest number of genes in other regions in AD. The pairing of
ZKSCAN1with genes fromdifferent regions is either positively or negatively
gained in AD compared to CTL. Previous literature indicates that
ZKSCAN1 can act as a transcription factor. Using this information and
assuming that ZKSCAN1 protein could be secreted, we looked for a known
ZKSCAN1 motif in the transcription start site of genes pairing with the
ZKSCAN1 gene using the HOMER motif analysis algorithm55. However,
none of the genes participating in DC relation with ZKSCAN1 has its cor-
responding transcription factor motif. This suggests that ZKSCAN1 uses a
differentmechanism tomaintain correlationwithgenes fromdifferent brain
regions (for instance via regulation of target genes within the brain region
whereZKSCAN1 is active, and the subsequent effect of these target genes on
the genes in the other brain regions), or there is not sufficient statistical
power to detectZKSCAN1motifs in itsDCpartner genes. Conversely,many
of the ZKSCAN1 DC partners are AD biomarkers, ligand, receptors and
secreted proteins. This indicates a possible route through which ZKSCAN1
enacts its function.

Putting our results in the context of current models for AD
pathology/etiology
The complexity of AD can be explained via multiple hypotheses, which are
already put through clinical trials. These hypotheses include the cholinergic
hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial
cascade hypothesis, calcium homeostasis hypothesis, neurovascular
hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic
system hypothesis56. The tau propagation hypothesis and the amyloid
hypothesis are believed to interact, and the APOE4 isoform is a significant
factor in AD pathogenesis as it affects amyloid-beta (Aβ) clearance and
enhances tau hyperphosphorylation. Themitochondrial cascade hypothesis
suggests that mitochondrial dysfunction plays a role in AD, impacting the
expression and processing of amyloid precursor protein (APP) and the
accumulation of Aβ. Mitochondrial dysfunction and oxidative damage play
crucial roles in AD, as neurons exhibit increased oxidative stress and
reduced mitochondrial numbers. Dysfunctional mitochondria can lead to
impaired mitophagy, a process of removing damaged mitochondria, which
is regulated by Sirtuins, a class of nicotinamide adenine dinucleotide
(NAD)-consuming enzymes that includes nuclear-localized SIRT1, SIRT6,
and SIRT7, cytosolic SIRT2, and threemitochondrial SIRTs (SIRT3, SIRT4,
and SIRT5). Except SIRT5, all sirtuins specially SIRT4 and SIRT7 are
strongly integrated in the DC network (Supplementary File 6). Along with
mitophagy, autophagy related genes (ATG) and unc-51-like kinase 1
(ULK1) are also seen to be part of the DC network. Deficiencies in mito-
phagy and autophagy contribute to AD etiology and may be potential
therapeutic targets.

The neurovasculature and inflammatory processes are also implicated
in AD. Factors such as hyperlipidemia and obesity increase the risk of AD.
Inflammatory cytokines, including tumor necrosis factor (TNF-α) and

interleukins, contribute to insulin resistance, Aβ accumulation, and tau
phosphorylation. In the Inter-DC network, TNF and interleukins, along
with their receptor molecules, have numerous connections such as IL17RB
whenpresent inPHGhas111DCpartners in IFG, further emphasizing their
involvement in AD. Overall, understanding the interplay between these
hypotheses and processes provides valuable insights into the etiology of AD
and potential targets for therapeutic interventions, such as enhancing
mitophagy and autophagy or utilizing anti-inflammatory drugs to reduce
AD occurrence.

Recent studies employing gene set or pathway analysis of AD GWAS
signals (usingMAGMAor similarmethods applied on disease risk scores of
genes) havebeenconverging to amultiplexmodel ofADpathology,wherein
multiple pathways are implicated in the genetics of AD. Though an
enrichment analysis of our Inter-DC modules for the multiplex model
pathways collated from these studies did not yield significant enrichments
(which pass a stringent cut-off after multiple-testing correction), our GO
enrichment analysis did reveal three of our Inter-DC modules to be sig-
nificantly enriched for GO terms related to the multiplex model pathways
(specifically endocytosis, cholesterol metabolism, and immune related
pathways).Our Inter-DCanalysis framework thushelps recapitulate certain
aspects of the currentmultiplex-model-based understanding ofADgenetics
and opens up new avenues to enhance this understanding.

To conclude, comprehending AD pathology is not easy, however
understanding brain connectivity alterations can give a better perspective.
While functional and structural brain connectomeswith respect toADhave
been studied for a while now, focus on the molecular basis of these con-
nectomes (molecular connectivity) is rare. Our Inter(-brain-region)-DC
framework addresses this gap by enlightening us with new findings and
hypotheses on how AD affects the coupling between genes and biological
processes in different brain regions, mediated by signaling molecules that
aid in synaptic (wired) or extra synaptic (volume) transmission. These
results demonstrate the value of inter-brain-region analysis in AD, and
encourage its application to different neurological diseases and extension to
inter-organ/inter-tissue analysis to understand the molecular connectome
of the whole body.

Methods
Data collection
The datawas collected and pre-processed as per original study and also used
in our recent study Multicens, to address different sets of questions com-
pared to this study. The covariate-adjustedRNA-seqdatawith the following
synapse ids - syn16795931 – Brodmann Area (BM10) – frontal pole (FP),
syn16795934 - BM22 - superior temporal gyrus (STG), syn16795937 -
BM36 - parahippocampal gyrus (PHG), syn16795940 – BM44 - inferior
frontal gyrus (IFG), were downloaded from AD Knowledge Portal – The
Mount Sinai/JJ Peters VAMedical Center Brain Bank cohort (MSBB) study
(10.7303/syn3159438). The pre-processed data is corrected for library size
differences using the trimmed mean of M-values normalization (TMM
method – edge R package) and linearly corrected for sex, race, age, RIN
(RNA Integrity Number), PMI (Post-Mortem Interval), sequencing batch,
exonic rate and rRNA (ribosomal RNA) rate. As in the earlier study26,
normalization was performed on the concatenated data from all four brain
regions to avoid any artificial regional difference.

The clinical (MSBB_clinical.csv) and experimental metadata
(MSBB_RNAseq_covariates_November2018Update.csv) files available on
the portal are used to classify the samples into control (CTL) and Alzhei-
mer’s disease (AD) based on CERAD score (Consortium to Establish a
Registry forAD; funded byNIA, 1986)57. CERAD score 1was used to define
CTL samples, and 2 (‘Definite AD’) was used for defining AD samples.
Probable AD (CERAD= 3) and Possible AD (CERAD= 4) samples were
not considered for this study. Sample sizes divided according to the four
brain regions along with metadata are noted in Supplementary Table 9.
Further, we considered two brain regions at a time for our analyses and
selected the samples accordingly to handle missing data (Supplementary
Table 10; note that not all individuals had all four brain regions sampled).
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The genes in the gene expression data are denoted in the hg37
ENSEMBL gene identifier (ENS. ID) format. The initial analysis is per-
formed using the ENS. ID. For the downstream analyses (visualization/
enrichment), the ENS. IDs are mapped to the HGNC gene symbols using
the comprehensive gene annotation file for Release 19 (GRCh37.p13)
downloaded from Gencode - https://www.gencodegenes.org/human/
release_19.html (h37).

The Wang et al., 2016 study27 ranked 19 brain regions for their vul-
nerability to AD based on how many genes in these regions are associated
with disease status (DE genes) and disease traits like the accumulation of
NFT and Aβ. The brain regions used in this study are sorted based on the
same ranking, such as BM36: rank 1, BM44: rank 2, BM22: rank 7, and
BM10: rank 14, with rank 1 being the most vulnerable region in AD, and
other ranks being proportionately less vulnerable.

To perform replication testing, we retrieved data on an independent
cohort associated with the Harvard Brain Tissue Resource Center
(HBTRC)58. Two brain regions - visual cortex (VC, BM17) and dorsolateral
prefrontal cortex (DLPFC, BM9) - comprising of 300 samples (116CTLand
184 AD) was used for our study. Gene expression data has been linearly
adjusted for these covariates: age, gender, RIN, Batch, PMI and pH.Missing
value of any covariate has been imputed with the respective mean value.
Adjusted data is subjected to CTC as is done for MSBB; and same protocol
for DC analysis is followed in this case also (explained below).

Cell type correction (CTC)
Theexpressionof a gene inabulk tissue canbe capturedby theproportionof
different cell types in the tissue and the expression of the gene in these cell
types59,60. Our ideal aim is to remove the former contribution and study the
latter to reveal cell-intrinsic changes in gene pair correlation structure
between disease vs. control group. Towards this, we corrected the bulk gene
expressiondata for cell-typeproportions,whichwere in turn estimated from
bulk data using a cellular deconvolution method. Specifically, we estimated
the frequencies of four major brain cell types, astrocytes, microglia, neuron,
and oligodendrocytes, using a cellular deconvolutionmethod implemented
in the getAllSPVs function from the CellCODE (Cell-type Computational
Differential Estimation) R package61. CellCODE is a singular value
decomposition (SVD) based reference-free method to perform cellular
deconvolution. It only requires the RNA-seq expression matrix of a set of
marker genes. Human marker genes (markers_df_human_brain data
frame) for the four major cell-types were obtained from the BRETIGEA
(BRain cEll Type specIfic Gene Expression Analysis) meta-analysis study62.
CellCODE performs F-tests on the supplied set of marker gene expression
data to identify robust marker genes i.e., marker genes, which are not dif-
ferentially expressed between the disease group vs. control groups. Only
these robust marker genes are used to estimate cell-type proportions. The
cell-type corrected gene expression data is obtained by linearly adjusting the
bulkRNA-seqdata for the cell-typeproportions estimatedusingCellCODE.

Patrick et al. (2020) study60 generated gene expression and Immuno-
histochemistry (IHC) data. We use the cell-type proportions for neuronal,
astrocyte, microglia, and oligodendrocyte cells from this study to assess the
performance of our cellular deconvolution methods. Data is available at
https://github.com/ellispatrick/CortexCellDeconv. We compared the cell-
type estimates obtained for MSBB BM10 brain region with the IHC esti-
mates, since BM10 is the closest brain region when considering the brain
tissue from which IHC data was generated. We evaluated two different
methods of cellular deconvolution, namely BRETIGEA and CellCODE on
the cortical gene expression data set fromPatrick et al. 202060 to identify the
best performing model, i.e., the model with the highest correlation with the
IHC estimated cell-type proportions –which can be considered the ground
truth data. For BRETIGEA, we used the function call: brainCells(gen-
eExpmatrix, nMarker = 20, species = “human”), where nMarker is the
number of markers that will be considered for each cell type to build the
model. For CellCODE, we used the getAllSPVs function with input argu-
ments: data, dataTag, grp, method, andmix.par, to build the model. Data is
the gene expression data of the marker genes, dataTag is a binary matrix (#

marker genes (MG) X # cell-types) which indicates whichmarker genes are
associated with which cell type, and grp is the CERAD classification of each
sample considered. Mixed method at the CellCODE-suggested 0.3 mix.par
cutoffwas used.Themodels forBRETIGEAandCellCODEwere built using
different sets of top 20, 40, 80, 200, 500, and 1000marker genes sets for each
of the four cell types to arrive at the best model.

Through this analysis, CellCODE 80MG (i.e, 20MG each of the four
major cell types) was identified as the best performing model for pre-
dicting neuronal frequencies and henceforth used to estimate the relative
frequencies of the other cell types as well for consistency. These predicted
cell frequencies could in turn be used for the CTC. Specifically, using
CellCODE, we built one cellular deconvolution model for each brain
tissue. By inferring the DC interactions from the CTC data, which is
corrected for the cell-type composition effects, the confounding influence
of cell-type proportions on the DC results is mitigated63,64. To underscore
the significance of cell type correction (CTC) and its impact on our DC
analysis, we have provided a comparison of DC edges before and after
applying CTC in Supplementary Table 11. The Table shows that CTC
causes a significant reduction in thenumber ofDCedges identified at FDR
1%.Nevertheless, there is still a sufficient number of DC pairs that we had
identified from theCTCdata, andwe aremore confident about these pairs
being driven by cell-intrinsic DC signal (the focus of our study), rather
than cellular composition effects. The final set of DC pairs includes pairs
that are originally masked by cellular composition effects but revealed
after CTC, and also DC pairs that are resilient to cellular composition
effects (and hence found in both before- and after-CTC analyses; see
Supplementary Table 11).

Differential correlation (DC) analysis
We are interested in identifying gene pairs across brain regions whose
correlation strength in the disease group (AD) is significantly different from
that in the control group of individuals (CTL), and call such pairs as dif-
ferentially correlated or co-expressed (DC) pairs.We also use the termsDC
and Inter-DC interchangeably in this work, since these DC pairs that we
work with represent inter-brain-region DC gene pairs.

Gene-gene spearman correlation coefficients (ρ) for each of the gene
pair combinations possible across brain regions are calculated for the AD
group and CTL group separately. The Spearman correlation p-values are
corrected for multiple testing using the Benjamini-Hochberg (BH) FDR
method, and the resulting BH-corrected p-values are subject to a 1% FDR
cutoff to identify statistically significant correlation coefficients. All gene
pairs significantly correlated either in the AD or Control group are con-
sidered for the Inter-DC analysis65. Here, absolute correlation cut-off of at
least 0.4, moderate strength, is used to call a gene pair correlated. Note that
we are not considering gene-gene interaction within a particular tissue. The
union of correlated gene pairs of AD and CTL groups for any inter-brain-
region comparison is referred to as correlated pairs throughout the manu-
script. Only these correlated pairs are tested for DC.

We use the r.test function from the psych R package to test a gene pair
for DC. The r.test function transforms the AD as well as CTL gene-gene
correlation coefficient values obtained for each gene pair into their corre-
sponding z scores, known as the Fisher’s r to z transformation. The differ-
ence between the Fisher z transformed correlation coefficients, divided by
the standard error of the difference, yields the final z-scores and associated
DC p-values to be tested. For any inter-brain-region comparison BR1-BR2
(BrainRegion 1–2),we subject theDC p-values of all correlated gene pairs in
BR1-BR2 tomultiple testing correctionusing theBenjamini-HochbergFDR
method and use 1% FDR cut-off to report significant DC pairs. For any
given inter-brain-region comparison, the DC Dsyregulation Index is the
ratio of the number of significantDCgene pairs detected for that region pair
to the number of all gene pairs tested forDC (i.e., all correlated pairs) for the
same region pair. Note that the sign of a (Inter-DC) z-score indicates
whether a particular DC gene pair’s correlation coefficient increased
(positive z score) or decreased (negative z score) in the AD group relative to
the CTL samples.
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In addition, to check whether the sets of DC gene pairs in two inter-
brain-region comparisons are similar, the Jaccard similarity index, which is
the ratio of the intersection of two sets to the size of their union, was
calculated66.

We tested DC gene pairs found in inter-brain region analysis from
MSBBcohort for replicationusing another cohort data fromHBTRC,where
different brain regions have been profiled using different technology
(microarray)58. This replication test has lent some confidence to proceed
with further downstream analyses and reinforced the robustness of our
methodology and findings (Supplementary Fig. 9).

Differential gene expression analysis
In this study, Differentially Expressed Genes (DEGs) were identified from
CTC (cell type corrected) bulk RNA-seq data using a Wilcoxon rank-sum
test for each of the four brain regions. DEGs identified at FDR cut-off 0.05,
0.1, and 0.2 were used to check whether the Inter-DC relation between each
gene pair is driven by DEGs or not.

Identification of bi-partite (two-region) modules
The set of gene pairs identified as DC for two given brain regions (BR1 and
BR2) can be viewed as a bipartite (two-layered) network of Inter-DC rela-
tions.We are interested in identifying amodule comprising one set of genes
in the first region (BR1) and another in the second region (BR2) that
participates inmanyDC relations among themselves.Wewould also prefer
that the modules be tightly-knit modules such that genes within a module
are more likely to be related to one another than they are to the rest of the
network. These preferences can be expressed as a modularity objective
function. The bipartite network can be partitioned into a collection of
modules that maximize this modularity function using a heuristic method
called the Louvain method67. The cluster_louvain function under the R
package igraph was used for this purpose. Using the ‘modularity’ function,
we calculated the modularity score for each bipartite network (inter-brain-
region DC gene set). To detect the modules enriched for significant Gene
Ontology (GO)biological categories andpathways,we set a threshold that at
least 20 genes must be present in each module. Partitioning each DC gene
pair list from each inter-brain-region comparison resulted in multiple
modules (see Supplementary Table 5). Each module comprises two gene
sets, one from BR1 and one from BR2.

Over representation analysis (ORA)
Over Representation Analysis (ORA) is a method that tests if genes from
pre-defined functional sets (such as those belonging to a specificGO termor
KEGG pathway) are enriched or over-represented (i.e., present more than
would be expected by chance) in a given query set of gene. To identify the
potential biological functions associated with the gene sets in the modules
we identified, we performed ORA using the WebGestaltR package68. Bio-
logical processes and pathways are controlled by vast interacting molecules
whose expression levels are frequently co-regulated or co-expressed. After
identifying tightly correlated Inter-DC modules, we performed over-
representation analysis (ORA) to test if a set of DC genes is enriched for
genes belonging to known Gene Ontology (GO) categories. We performed
this enrichment analysis only on modules of reasonable size (specifically
those with at least 20 genes). Each module consists of 2 gene sets, one from
eachbrain region (BR1orBR2).A correlated gene list corresponding to each
brain region (union of AD group and CTL group) was used as the back-
ground genes for this analysis, whereas the DC genes from each module
acted as query genes. WebGestaltRBatch function was used to run the
enrichment analysis so that the gene sets for multiple modules can be
submitted at the same time. Under the ‘Functional database category’, Gene
Ontology, GO (Biological process, cellular component, and molecular
function), and pathways (KEGG & REACTOME) were selected for
enrichment. We used FDR thresholds of 0.05 and used redundancy
reductionmethods (affinity propagation andweighted set cover) to find the
most significantly enriched terms. In the main manuscript mainly GO_BP
results are highlighted.DetailedGO_BP result is included in Supplementary

File. 5 whereas the rest of the functional enrichment results (molecular
function, cellular components, KEGG and Reactome pathways) are inclu-
ded in Supplementary File 3.

For the enriched modules, we ran the ORA with ShinyGO v0.6669 to
generate the hierarchical clustering tree. This tree groups related GO terms
together based on how many genes they share. The top 10 processes were
selected for hierarchical clustering tree representation.

We also used customized functional categories, including genes enri-
ched for AD GWAS signal, ligand-receptor molecules, CCsignaling, CSF
markers, secretome, and neurotransmitters-neuroreceptors (neuro-
transmission) for ORA. The AD GWAS enriched genes are retrieved from
MAGMA analysis (explained below). Ligand-Receptor pairs are assembled
by combining the latest data of the year 2020 from GitHub repositories
(https://github.com/LewisLabUCSD/Ligand-Receptor-Pairs). CSFmarkers
are extracted from literature mining. Secreted proteins, CCsignaling and
neurotransmitters are downloaded using AmiGo70. Custom gene sets as
.gmt file is available in Supplementary File 7.

Robustness check for ORA. We wanted to check if the enrichment of
Inter-DC modules for GO Biological Processes or other functional
categories/pathways are statistically significant, compared to enrich-
ments seen in some random modules. For that we generated random
modules from the correlated gene list for each brain region per inter-
brain-region comparison, maintaining the respective module structure
based on DC module identifiers. For each inter-brain-region pair, using
Louvain algorithm we generated Inter-DC modules, each gene being
designated with module id. We used the same module id list for the
respective inter-brain-region pair and background genes, sampled it
every time and generated the random modules based on the sampled
module id. In total, 10 permutations are done for each region per inter-
brain-region comparison. Total number of modules enriched in DC vs.
random is represented in Supplementary Table 12 and Supplementary
Fig. 10a, 9b. Further, in Supplementary Fig. 10c, 9d, empirical FDR of 2
representative modules reflects the robustness of DC module enrich-
ment. Lastly, Supplementary Table 13 highlights that the functions
enriched in random module are not related to brain or AD pathology
except for one GO_BP “GO:0007628- adult walking behavior”. This
clearly reflects Inter-DC module enrichment is much more robust and
meaningful compared to random modules’ enrichment.

In the case of custom gene set enrichment, we retrieved the raw
p-values of all the 302 gene sets (151 modules) tested and adjusted them to
perform multiple testing correction using the Benjamini-Hochberg FDR
method (implemented in p.adjust function in the R programming envir-
onment). Only those that are enriched at FDR < = 0.05 cut-off are reported
to be enriched (Supplementary Table 6). Same adjustment was done for
testing multiplex model pathway enrichment in our Inter-DC modules.

SNP enrichment analysis
GWAS studies have revealed numerous risk loci associated with AD, which
harbor putative causative genes and variants.Weaimed to check if Inter-DC
genes or Inter-DCmodule gene sets are enriched for such GWAS-detected
AD associations. The AD GWAS association signals in the form of SNP
summary statistics are available for a comprehensive set of SNPs from a
recent meta-analysis study of four major AD GWAS studies - the Psy-
chiatric Genomics Consortium (PGC-ALZ), the International Genomics of
Alzheimer’s Project (IGAP), the Alzheimer’s Disease Sequencing Project
(ADSP), andUKBiobank (UKB). This study assessed the effect of 9,862,738
SNPs in 71,880AD samples and 383,378 controls samples11.Wewould now
like to test whether a given gene (or set of genes) is in the vicinity of many
SNPs associatedwithAD in the abovemeta-analysis study. For this purpose,
we use MAGMA, a tool for gene analysis and generalized gene-set analysis
of GWAS data, in order to predict gene and gene-set level p-values using
SNP-level p values71. Inputs toMAGMA include SNP summary statistics of
the meta-analysis study11 (downloaded from the CNCR/CTG LAB (Center
for Neurogenomics and Cognitive Research/Complex Trait Genetics)
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website), and European 1000 Genomes reference data as described next.
22,665,064 SNPs retrieved from European 1000 Genomes data files were
first annotated to 19,354 genes from the hg19 genetic reference (human
genome Build 37), using a 10 kb annotation window on either side of the
gene. Next, using SNP p value and European 1000 Genomes reference data,
18,445 genes were mapped to SNPs, of which genes significantly enriched
for AD GWAS signal at FDR 5% (BH-adjusted p < 0.05) were retained.
Further, MAGMA basic gene set analysis was performed on 302 gene sets
(151 Inter-DCmodules), to test if these gene sets were significantly enriched
for AD GWAS signal at FDR 5% (BH-adjusted p < 0.05).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Theprimarydatapertaining toMSBBcohort analyzed in this studyhas been
previously published and available via the AD Knowledge Portal (as
described in detail in Methods). Availability of all other data used in this
studyhas alsobeendescribed in themain text andassociatedSupplementary
Information files.

Code availability
The source code relevant for conducting the analyses in this study and
pointers to the associated data/results are available at https://github.com/
BIRDSgroup/InterTissueDC.
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