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An updated framework for SARS-CoV-2  
variants reflects the unpredictability 
of viral evolution
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The World Health Organization framework 
for tracking SARS-CoV-2 variants has been 
updated to reflect the continued evolution of 
the virus; this framework could be adapted 
for other emerging respiratory diseases with 
epidemic and pandemic potential.

Throughout the COVID-19 pandemic, SARS-CoV-2 variants have been 
designated as variants of concern (VOCs) and variants of interest (VOIs) 
on the basis of their potential to replace previously circulating variants 
and cause new waves of increased transmission globally; such variants 
may require adjustments in public health responses. During the first 
two years of the pandemic, four VOCs and eight VOIs were designated 
by the World Health Organization (WHO), and these were overall closely 
related to the index virus.

Omicron descendants
The B.1.1.529 lineage was reported to the WHO from South Africa on 24 
November 2021 and, on the advice of the WHO Technical Advisory Group 
on Virus Evolution (TAG-VE), was classified as a VOC and named Omicron 
on 26 November 2021. This decision was based on the large number 
of amino acid substitutions (Fig. 1), including some in key antigenic 
sites of the spike protein, as well as preliminary evidence suggesting an 
increased risk of reinfection and data suggesting a growth advantage in 
multiple provinces of South Africa, compared with other VOCs1.

Within months after its emergence, Omicron became the globally 
predominant lineage. The combined evidence from its distinct genetic 
profile, comparison of antigenic cross-reactivity using animal sera2, 
replication studies in experimental models of the human respiratory 
tract3 and clinical and epidemiological data in humans4 showed that 
Omicron was an immune escape variant and had increased affinity for 

upper respiratory tract cells, explaining its advantage over previously 
circulating variants despite high vaccination coverage. Since then,  
Omicron has continued to evolve genetically and antigenically, creating 
an expanding range of descendant lineages. So far, Omicron’s descend-
ant lineages have all been characterized by the properties of evasion 
from existing population immunity and a preference for infecting the 
upper rather than the lower respiratory tract5.
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Fig. 1 | Number of amino acid substitutions from the index virus in  
SARS-CoV-2 variants of interest and variants of concern. A curated 
phylogenetic tree and associated metadata were downloaded from nextstrain, 
which uses data from the Global Initiative for Sharing All Influenza Data (GISAID) 
database. The number of amino acid substitutions from the index for each taxon 
refers to the full genome and was extracted from the phylogenetic tree branch 
lengths and plotted in R (v4.3.0).
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antigens included in the vaccine11, contributed to the recommendation 
by the WHO in May 2023, on advice from TAG-CO-VAC, to update vac-
cine antigen composition to a monovalent XBB.1 descendant lineage.

Reduced impact of variants
The increasing levels of population immunity globally since the emer-
gence of Omicron have provided substantial long-term protection 
against severe disease. This makes it challenging to distinguish a clear 
signature of higher severity for any newly emerging lineage based on 
clinical and epidemiological data in humans. Existing immunity, along-
side the use of diagnostics and therapeutics and advances in clinical 
care, has probably had a critical role in mitigating the potential impact 
of emerging SARS-CoV-2 variants.

Despite this pattern of continuous lineage replacement, none of 
the XBB descendant lineages have met the WHO’s updated definition of 
a VOC. Given the relatively poor cross-neutralization of early Omicron 
lineages, however, XBB variants may represent a different antigenic clus-
ter within the Omicron family11. Quantitative thresholds to determine 
new antigenic clusters using neutralization assays need to be agreed 
upon by the scientific community. The ability to establish meaningful 
thresholds depends greatly on the reproducibility and repeatability of 
estimates characterizing antigenicity across laboratories. The WHO has 
established the Coronavirus Network (CoViNet), through which harmo-
nization of antigenic characterization across laboratories in different 
geographic regions will be coordinated. The results of this initiative 
may inform the feasibility of defining such thresholds.

A risk-evaluation framework
The WHO SARS-CoV-2 variant risk-evaluation framework12 is designed 
to assist in evaluating the risk posed by emerging SARS-CoV-2 vari-
ants based on the evidence available and the level of confidence in the 
gathered information. Although the framework is focused on the risk 
posed by new SARS-CoV-2 variants and lineages to the human popula-
tion, it also provides a relevant risk-assessment framework that can 
be adapted for the evaluation of any newly emerging coronavirus 
or other respiratory pathogen that demonstrates human-to-human 
transmission. The framework is designed to address the challenges 
of summarizing and evaluating existing evidence to inform timely 
decision-making for public health response. Guidance is provided by 
proposing a list of relevant risk indicators along with a set of studies 
that can be conducted to support prompt and balanced weighting of 
information for an overall risk evaluation of a newly detected variant 
of potential concern.

As part of the 2022 Strategic Preparedness, Readiness and 
Response Plan13, the WHO presents case scenarios to consider the differ-
ent directions that SARS-CoV-2 could take in its evolution. Although the 
weighting of the various components of the assessment may change, 
for example as a function of how an emerging virus evolves, clinical 
severity is currently given more weight than growth advantage and 
antibody escape (which includes considerations related to vaccines) 
because of its potential greater impact on healthcare systems and 
population health. Treatability (impact on therapeutics) and detect-
ability (impact on diagnostics) are also assessed.

A variant associated with high clinical severity could lead to higher 
morbidity and increased hospitalizations and deaths. In contrast, a 
variant with high growth advantage or antibody escape may be more 
transmissible but may not result in greater number of severe illnesses 
requiring hospitalization. However, a substantial rise in total infections 
within a short time could create a substantial strain on health systems, 

The original WHO variant tracking system was designed to identify 
and label variants of interest or concern with Greek alphabet letters 
according to their associated risk6. In line with the original VOC defi-
nition, all Omicron descendant lineages were considered part of the 
Omicron VOC. However, the emergence of Omicron, changes in the clin-
ical and epidemiological landscape from increased population-level 
immunity from past infection and/or increasing vaccination coverage 
into the fourth year of the pandemic, and the improved availability 
of diagnostics and therapeutics required the WHO’s classification 
system to be revised. On 15 March 2023, the WHO updated its working 
definitions of variants under monitoring (VUMs), VOI and VOCs so that 
Omicron descendant lineages could be independently characterized 
and classified as VUMs, VOIs or VOCs as needed. The aim was to refine 
the definition of VOC to encompass new SARS-CoV-2 variants that 
are substantially genotypically and phenotypically different from 
pre-Omicron and Omicron variants. This implied that the use of a 
VOC assignment would clearly indicate that a variant poses a greater 
threat to public health than the Omicron descendant lineages already 
in circulation — for example, that it shows a clear change in disease 
severity or tropism.

During the pandemic, the WHO established two COVID-19 techni-
cal advisory groups. The mandate for designating a VOC based on the 
associated public health risk lies with the TAG-VE. The WHO TAG on 
COVID-19 Vaccine Composition (TAG-CO-VAC) considers the genetic 
and antigenic characteristics of SARS-CoV-2 variants and the implica-
tions for COVID-19 vaccines. The mandate of the TAG-CO-VAC is to 
formulate advice to the WHO on when to update the COVID-19 vaccine 
antigen composition7. Whereas the TAG-VE’s mandate focuses on severe 
disease and impact on health systems, the TAG-CO-VAC focuses on 
advice to enhance vaccine-induced immune responses to circulating 
SARS-CoV-2 variants.

New variants of interest
Pre-Omicron variants, including the index virus, VOCs Alpha, Beta, 
Gamma and Delta, and VOIs Epsilon, Zeta, Eta, Theta, Iota, Kappa, 
Lambda and Mu (as well as their respective descendant lineages), repre-
sent a distinct set of genotypic and phenotypic variants compared with 
Omicron and its descendants. The immunity induced by infection with 
pre-Omicron variants or from pre-Omicron vaccines provides higher 
protection against infection caused by pre-Omicron variants than 
against infections caused by Omicron and its descendant lineages8,9. 
Some Omicron descendant lineages, such as BA.1, BA.2 and BA.5, have 
caused large surges in incidence rates, especially in geographic regions 
without immunity from Omicron variants, irrespective of vaccination 
coverage4. This can partly be explained by the divergent antigenic evo-
lution of Omicron and its descendant lineages7.

In October 2022, XBB, a recombinant between two Omicron BA.2 
descendant lineages, increased in circulation. XBB and its descendant 
lineages reached >90% of the sequences submitted to repositories 
globally in April 2023. The spread of XBB descendant lineages such as 
XBB.1.5, XBB.1.16 and EG.5 (a descendant lineage of XBB.1.9.2), all des-
ignated as VOIs, was characterized by a pronounced growth advantage 
over other circulating variants, which is likely driven by the immune 
escape potential of these VOIs; this includes escape in individuals 
with recent history of BA.2 and/or BA.5 infection10. The observed 
reduction in neutralizing antibody titers against XBB.1 descendant 
lineages in individuals who had received two, three or four doses of 
index virus–based vaccines, or a booster dose of a bivalent (BA.1- or 
BA.4/5-containing) mRNA vaccine, compared with titers specific for the 
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and therefore the public health risk posed by a new variant or lineage 
could be high even if the severity of associated clinical illness was 
unaffected (as with the emergence of Omicron). The risk evaluation 
considers levels of immunity to specific variants in a population and 
encompasses the available data regarding cross-protection with other 
previously circulating variants.

The WHO risk-evaluation framework should rigorously and com-
prehensively examine quantitative and qualitative information from 
multiple sources, which should be triangulated to provide an additional 
reality check on the assessed situational level. The context assessment, 
including local capacities and vulnerabilities, may result in an upward 
or downward adjustment of the calculated situational level.

The framework12 describes actions to be taken for each public 
health risk level. For example, variants assessed as posing very high risk 
require urgent reporting and action, including increased sequencing 
and investigation, targeted public health measures and changes to 
pharmaceutical interventions. As this is a rapidly evolving landscape, 
consultation with the experts from the WHO TAG-VE remains necessary 
for the determination of risk.

Unpredictability of SARS-CoV-2 evolution
SARS-CoV-2 evolution remains unpredictable, but the data collected 
during its 4 years of circulation have informed planning for future 
scenarios of virus evolution. Population immunity acquired from vac-
cines and prior infection has reached very high levels in most settings.

This genetic diversity, illustrated in Fig. 2, could be acquired by 
various means. For example, the circulation of viruses in animals gener-
ates very high genetic diversity14, resulting in variants whose potential 
to spill over into humans and spread in the human population remains 
undetermined. Gradual yet undetected viral circulation in the human 

population for extended periods of time can occur, especially if such 
circulation remains geographically restricted in an heavily under sam-
pled (and under-sequenced) region; this would build immunity in that 
limited region, but not in the rest of the world15. Alternatively, genetic 
diversification might be enhanced in persistent or chronic infections, 
which can cause viral shedding for months to years, resulting in the 
emergence of divergent viruses16.

Knowledge of SARS-CoV-2 is only 4 years old, as indicated by the 
recent example of the emergence of BA.2.86. The number and nature 
of amino acid substitutions carried by BA.2.86 alerted the WHO, the 
TAG-VE and other scientists that this variant could evade current popu-
lation immunity and spread globally. However, live virus-neutralization 
studies have shown no substantial differences in this variant’s ability 
to be neutralized by antibodies from vaccinated individuals who have 
also experienced infection with an Omicron variant, compared with 
that of XBB.1.5 (ref. 17). A BA.2.86 descendant lineage ( JN.1, which car-
ries the additional spike mutation L455S) has become dominant, and 
as of March 2024, it represented 96% of publicly available sequences. 
It remains unclear to date what genetic and phenotypic features have 
made JN.1 so successful relative to its parent lineage.

New variants can be identified faster by robust monitoring of 
virus evolution in susceptible animal species; efforts to provide more 
visibility of genomic surveillance blind spots; and enhanced genomic 
surveillance among high-risk populations, such as immunosuppressed 
individuals. Surveillance mechanisms, such as early warning systems 
for clinical severity caused by respiratory pathogens, genomics data 
with associated metadata, wastewater monitoring programs, and 
comprehensive monitoring of the effectiveness of countermeasures, 
including therapeutics, vaccines and diagnostics, will continue to have 
a pivotal role going forward in guiding public health interventions.
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In order for us to be prepared to future variants of concern, it 
is essential that genomics surveillance strategies within integrated 
respiratory virus surveillance systems remain active and that further 
laboratory and epidemiological studies be rapidly performed to ensure 
a fast risk assessment of novel emerging variants.
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