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A high-resolution dataset of water 
bodies distribution over the Tibetan 
Plateau
Zhengchao Chen1,9, Linan Guo2,3,9, Yanhong Wu2,4, Bing Zhang   5,6 ✉, Pan Chen7, Xuan Yang8 
& Jiawei Guo2

Water body (WB) extraction is the basic work of water resources management. Tibetan Plateau is one 
of the largest alpine lake systems in the world. However, research on the characteristics of water bodies 
(WBs) is mainly focused on large and medium WBs due to spatial resolution. This research presents a 
dataset containing a 2-m resolution map of WBs in 2020 based on Gaofen-1 data, and morphometric 
and landscape indices of WBs across the Tibetan Plateau. The Swin-UNet model is well performed 
with overall accuracy at 98%. The total area of WBs is 56354.6 km2 across Tibetan Plateau in 2020. The 
abundance compared with that from size-abundance relationship indicate WBs in the Tibetan Plateau 
conformed to the classic power scaling law. We evaluate the influence of spatial-resolution in WB 
extraction, which shows the dataset could be valuable to fill the gap of existing WBs map, especially for 
small waters. The dataset is valuable for revealing the spatial patterns of WBs, and understanding the 
impacts of climate change on water resources in Plateau.

Background & Summary
Terrestrial water bodies (WBs), such as lakes, ponds, and reservoirs, are essential components of the hydrolog-
ical and biogeochemical water cycles1, which provide essential ecosystem services for human society, such as 
river flow, biodiverse habitats, fisheries, and supplying irrigation water2,3. Monitoring the dynamic changes of 
WBs provides important information on understanding changes of the surrounding regions2,4.

Understanding the abundance and size distribution of global or regional WBs has been a persistent effort for 
several years. Traditionally, this information comes from map compilations1 and statistical extrapolations based 
on abundance-size relationships5–7. However, map compilation tends to underrepresents small WBs8, while 
statistical extrapolations of abundance likely overestimate abundance of small WBs9–11. The morphology of 
WBs can quantitatively describe the geometric features of water landscapes, such as water area, depth, shoreline 
length, shoreline development index12. Morphological characteristics of WBs influence the ecological function-
ality in a region and is hard to be obtained. Benefiting from the comprehensive information of high-resolution 
satellite imagery, it is possible to accurately resolve the abundance, size distribution and morphological charac-
teristics of WBs at large scale13,14.

Water body extraction is the basic work of water resources management15. The extraction of WBs in large 
scale from remote sensing images can be considered as a target detection process16, which mainly includes 
single-band density slicing17, spectral water indexes18,19, object-oriented approaches, and deep learning meth-
ods20. There are several researches for regional or global WBs extraction in past decades. The global surface 
water dataset (GSWD) developed by Pekel et al.21 describes the changes of WBs from 1984 at 30 m resolution21 
and updated to 2022 now. Verpoorter et al.5 inventoried the world’s lakes larger than 0.002 km2 in size, including 

1State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of 
Sciences, Beijing, 100094, China. 2International Research Center of Big Data for Sustainable Development Goals, 
Beijing, 100094, China. 3China University of Mining & Technology-Beijing, Beijing, 100083, China. 4Key Laboratory 
of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, 
China. 5Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China. 6University 
of the Chinese Academy of Sciences, Beijing, 100049, China. 7Center for Geo-Spatial Information, Shenzhen 
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. 8China Remote Sensing 
Satellite Ground Station, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, 
China. 9These authors contributed equally: Zhengchao Chen, Linan Guo. ✉e-mail: zb@radi.ac.cn

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-024-03290-4
http://orcid.org/0000-0003-0319-7753
mailto:zb@radi.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03290-4&domain=pdf


2Scientific Data |          (2024) 11:453  | https://doi.org/10.1038/s41597-024-03290-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

the information of abundance, size (i.e., area and perimeter), geographical distribution, elevation, and morpho-
metric characteristics such as the shoreline development index (SDI)5. Spatial and temporal changes of inland 
WBs in China were investigate by Ma et al.2 and Zhang et al.22, respectively. Feng et al.23 used the GSWD dataset 
to report that previous studies24 underestimate the abundance and area of WBs (>1 km2) in China. Besides 
surface water bodies, dataset of large dams and reservoirs was also generated by Wang et al.25.

Although the overall global patterns of water body changes have been analysed, regional analyses are 
sorely needed, especially for small waters at regions that are sensitive to climate change. Recently, deep learn-
ing received widespread attention for water bodies recognition. Compared to the traditional machine learning 
methods, deep learning relies heavily on large-scale training data26. Transfer learning is an emerging method that 
is applicable when the training data is limited. Fine-tuning a pretrained CNN (Convolutional Neural Network) 
model may be an effective strategy for many deep learning model applications. At present, high-resolution water 
body extraction based on deep learning method is mainly implemented at local-scale27,28. One study from Fang 
et al.16 extracted man-made reservoirs from Landsat-8 images based on a CNN model, ResNet-50 globally16. 
Tibetan Plateau (Fig. 1), on where are more than 1,100 alpine lakes29 with area larger than 1 km2, receive much 
attentions because of its less effect by human activities. At present, the extraction of water bodies mainly consid-
ers lakes larger than 1 km2 on the Tibetan Plateau23. However, due to the melting of glaciers, the abundance of 
small water bodies on the Tibetan Plateau will continue to increase30, which is still unknown for us. It is better 
to obtained this information rely on very high spatial resolution remote sensing images. In addition, although 
there are several medium and high-resolution images, it is still unclear in data source selection with appropriate 
resolution for different objectives.

In this study, a 2m-resolution map of water bodies on the Tibetan Plateau is produced based on visual trans-
former model from Gaofen-1 data. Morphological and landscape indices of WBs are included in the dataset. At 
the same time, we compare the WBs extraction from different resolutions, which helps analyze the influence of 
spatial resolution on extraction of water body at different size. The dataset could be valuable for accessing the 
spatial patterns of WBs, testing the validity of controversial power scaling law for the size-abundance relation-
ship, and selecting data source for water body extraction on the Tibetan Plateau.

Methods
Data.  Gaofen-1 (GF-1) is the first of the Gaofen series satellites, which was launched on April 26, 2013. The 
GF-1 satellite is equipped with one 2-m-resolution panchromatic sensor and one 8-m-resolution multispectral 
sensor. It also has four 16-m-resolution wide-field-of-view (WFV) multispectral sensors. The GF-1 satellite is 
suitable for surface water distribution analyse. panchromatic and multi-spectral images in 2020 were used in this 
study. Before water extraction, we used the pansharp fusion method to fuse the panchromatic images and mul-
ti-spectral images to generate the images with a spatial resolution of 2 m and four bands.

Water body extraction based on deep learning.  To extract water bodies precisely over a wide range 
and multiple time periods, this study trained Swin-UNet31 network based on samples from rapid sample genera-
tion technique, combining numerous data augmentation strategies, ultimately achieving the recognition of water 
bodies over the Tibetan Plateau. The process of extraction algorithm is shown as Fig. 2.

As a data-driven algorithm, the performance of deep learning algorithms is greatly influenced by the quality 
and quantity of samples. In this study, we designed a rapid sample generation method based on semi-supervised 
principles (left part in Fig. 2). This process began with a small number of manually labelled samples to train 
a simple water body recognition network (approximately 800 samples in the size of 512 × 512, in which 100 

Fig. 1  Study area.
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samples contained water bodies). A threshold-based approach, supplemented by manual inspection and correc-
tion, was employed to quickly clean the inference results. The cleaned inference results were then reintegrated 
into the training samples as the new samples. In the process, areas with confidence scores greater than 0.8 or less 
than 0.2 were considered correctly classified, while misclassifications were inspected and corrected manually. 
After several rounds of sample generation, totally around 6000 samples in the size of 512 × 512 were obtained, 
comprising 778 samples containing water bodies and the rest being totally backgrounds. These samples were 
divided into training, validation, and test sets in a ratio of 7:1:2.

Because of large-scale variations and strong spatial continuity of water bodies, Swin-UNet network is suita-
ble in this study with large receptive field and strong spatial modelling capabilities. Additionally, multi-spectral 
information encoding was introduced to make full use of the spatial information and spectral information of 
water body. In order to make full use of deep semantic information while preserving spatial information, the 
features from the encoder and decoder interacted through skip connections32. In the bridge between the encoder 
and decoder, an Atrous Spatial Pyramid Pooling (ASPP) module33 was introduced to further extract image tex-
ture features under multiple receptive fields. In the encoding phase, the input image was encoded through Patch 
Partition and Linear Embedding. In the decoding phase, the multi-scale features were decoded through multiple 
Swin-transformer Blocks and Patch Expanding. In the Swin-transformer Block, the input features were first nor-
malized by Layer Normalization (LN). Then, shifted window-based multi-self-attention (SW-MSA) was used to 
model global features within a window. Subsequently, the outputs of SW-MSA were added to the input features 
and normalized again with LN. Finally, the normalized features were fed into a simple Multilayer Perceptron 
(MLP). In the study, all Swin-transformer Blocks were used in pairs, utilizing two stacked SW-MSA with shifted 
windows to capture the global receptive field across the entire image.

To enhance the model’s adaptability to images captured under different regions and imaging conditions in 
the inference process, several data augmentation strategies were applied during the training process. Including: 
(1) Random HSV (Hue, Saturation, Value) jittering: Randomly converting the image to the HSV color space and 
adding jittering (−30 < H < 30, −15 < S < 15, −30 < V < 30) to simulate a broader range of color variations; (2) 
Random Gaussian noise addition: Randomly adding Gaussian noise to the sample images to simulate images 
with different levels of noise (mean value = 0 and variance <50); (3) Random rotation: Randomly rotating the 
images by a certain angle (−180° to 180°) to simulate observations of objects from different directions; (4) 
Random scaling: Randomly scaling the images by a certain factor (0.9 to 1.1) to simulate variations in image 
quality and sharpness under different shooting conditions; (5) Random flipping: Randomly performing hori-
zontal (left-right) mirror flips on the sample data to simulate image data with different spatial arrangements of 
objects. All the data augmentation algorithms used in this study were implemented based on the open-source 
library “albumentations”34. All data augmentation functions have a probability of 50% to be applied.

Indices to evaluate spatial variation of water bodies.  Besides water abundance and water area, mor-
phometric indices including the shoreline perimeters (SP), and shoreline development index (SDI) were calcu-
lated based on high-resolution water body map. The SDI reflects the degree of shoreline irregularity. The more 
irregular of shoreline, the more habitat diversity the lake can provide for the coastal zone (SDI = 1 when the water 
body is circle). In addition, Water bodies are important landscape. Here we obtained the landscape pattern indices 
to understand the geographical significance of water bodies morphological characteristics and distribution rules. 
Overall, 9 indices were considered in this study (Table 1).

Data Records
The map and statistic indices data of inland water bodies across Tibetan Plateau in 2020 is archived and openly 
accessible at Figshare35 via the link: https://doi.org/10.6084/m9.figshare.24616491.v2. Table 2 shows the details 
of dataset. 2675 tiles (GeoTIFF format, 16784 × 16784 pixels) are compressed into the Tibet_water_2020_2m.
rar file, which is the water bodies distribution with 2-m spatial resolution across Tibetan Plateau in 2020. The 
value is 11 for pixels classified as water. The file name of the tiles referred to the Google zoom level. Description 
about these tiles is shown in the TIFFlist.csv, including the longitude and latitude of top-left corner of each tile. 

Sample Generation

Network Architecture

Data Augmentation
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Fig. 2  The flowchart of water body extraction algorithm.

https://doi.org/10.1038/s41597-024-03290-4
https://doi.org/10.6084/m9.figshare.24616491.v2


4Scientific Data |          (2024) 11:453  | https://doi.org/10.1038/s41597-024-03290-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

The statistic results of water abundance, water area, and morphometric indices are shown in Indices.csv file, 
while four landscape indices (patch density, largest patch index, landscape shape index, and splitting index) are 
given in Landscape.csv file.

Technical Validation
Quality control.  The dataset was produced with strict quality control. To ensure the quality of samples, we 
inspected the misclassification water bodies manually in the rapid sample generation process. The Swin-UNet 
model is good performance which is evaluated by 5 indices (Table 3). OA, P and R could assess the precise of 
water extraction; F1 score is a comprehensive evaluation of the performance of water detection model; IOU is 
used to reflect the overlap of the truth and prediction region. TP (True positives) indicates pixel number that 
correctly detect water, FP (False positives) is the pixel number that incorrectly identified as water, TN (True nega-
tives) indicates the pixel number correctly identified as non-water, while FN (false negatives) is the pixel number 
that incorrectly identified as non-water. Results (Table 3) show that the water extraction algorithm is an accurate 
method to detect water bodies in high-resolution remote sensing images with overall accuracy at 98%. The IOU is 
relatively low with 68%, which may result from the small covering proportion of water bodies in an image.

Then the extracted water bodies have been manually corrected based on visual interpretation. Before indices 
calculation, morphological opening-and-closing operation was employed. We first filled the small holes inside 
the water using closing operation to ensure the integrity of the target area, and then remove isolated small pixels 
using opening operation to ensure the minimal noise of the image. Ellipsoidal area and perimeter instead of 
Projection one should be used in QGIS software to ensure the correct statistic results. Due to the large study area 
and limited satellite passing time, a lot of winter images were used in the study, resulting in the extracted water 
area and abundance being smaller than that from wet season. The water distribution dataset has been compared 
also with other dataset with lower spatial resolution as described in detail below.

Comparison of morphometric indices of WBs.  There is little in-situ observation of number or area of 
WBs in large scale. Conventionally, WBs over large areas are characterized using 1 or a few snapshots of remotely 
sensed images. We herein compare our morphometric indices dataset with existing research. In our estimation, 
the abundance of water bodies (>0.01 km2) in the Tibetan Plateau is 96369, and the total area of these water 
bodies is 56354.6 km2(Table S1 in Supplementary). The total area of the WBs larger than 1 km2 is 51034.6 km2. 
According to Zhang et al.36, until 2018, there are 1424 lakes larger than 1 km2 in the Tibetan Plateau with total area 
of 5 × 104 ± 791.4 km2. In addition, our estimation of the WBs larger than 1 km2 in the Tibetan Plateau is much 

Indices Full name Description Equation

Morphometric indices

Abundance Number of water bodies

Area Area of water body

Shoreline perimeters Shoreline perimeter of water body

Shoreline development index Reflects the degree of shoreline irregularity SDI SP
A2

=
π

Landscape indices

Patch density Number of patches per unit area PD (1000000) (100)ni
A=

Largest patch index The percent of the total landscape that is made up by 
the largest patch LPI 100

aij
A

max( )
= ×

Landscape shape index The complexity of the shape LSI j
n Pij

A

0 25 1=
. ∗ ∑ =

Splitting index The number of patches if all patches the landscape 
would be divided into equally sized patches =

∑ =
SPLIT A

j
n aij

2

1
2

Table 1.  Indices metrics.

File name Description

Tibet_water_2020_2m.rar Map of water bodies across Tibetan Plateau in 2020 with 2-m resolution, including 2675 tiles (GeoTIFF, 
16784×16784 pixels). Pixel value: 11-water, 0-others

TIFFlist.csv Longitude and latitude of top-left corner for each tile

Indices.csv

Abundance Water abundance of different size of water bodies

Water area Water area of different size of water bodies

Shoreline perimeter Perimeter of different size of water bodies

Shoreline development index (SDI) Reflects the degree of shoreline irregularity of different size of water 
bodies

Landscape.csv

PD Patch density

LPI Largest patch index

LSI Landscape shape index

SPLIT Splitting index

Table 2.  Files and formats of the dataset.
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higher than Mao et al. (46,264.5 km2)37 or Wan et al. (41,831 km2)38. This differences also demonstrate the results 
from previous studies36,39 that the WBs is expanding in the Tibetan Plateau.

Morphometric and landscape indices are included in our dataset. The statistic results are shown in Table S1, 
Table S2 and Figure S1 in Supplementary suggesting that small WBs (<1 km2) account for a large proportion 
of WBs in the Tibetan Plateau and are more separated. However, due to the limitation of water extraction algo-
rithms and spatial resolution of remote sensing data, previous research is still lack in understanding the mor-
phometric and landscape characteristics of small WBs. The size-abundance relationships were used to estimate 
the amount of WBs in large scale10,40,41. The size-abundance relationships conform to the power law10 based on 
the Pareto distribution probability density function.

N c A (1)b= × −

where N is the number of water bodies greater than or equal to the area A, c is a constant.b D/2= , where D is 
the fractal dimension of the shorelines surrounding the water body area and is constrained between D = 1 (a 
population of perfectly smooth shorelines) and D = 2 (a population of shorelines so irregular they are space 
filling). The fractal dimension of size-abundance is supposed to be similar to the shoreline fractal dimension 
derived from dimensional analysis23. For WBs on the Tibetan Plateau, D is 1.263 (with R2 = 0.966), and Fig. 3 
suggests that distribution deviates slightly from a true power law at WBs with larger area.

Comparison of Water body extraction in different spatial-resolution.  We further compared the 
dataset against two existing datasets with spatial resolution at 30 m and 10 m, respectively. The comparison anal-
ysis aims not only at the validation for our dataset, but to analyze the influence of spatial resolution and select 
applicable data source for water body extraction on the Tibetan Plateau. The European Space Agency (ESA) 
WorldCover is a land cover map that provides a new baseline global land cover product at 10 m resolution based 
on Sentinel-1 and 2 data that was developed and validated in almost near-real time and at the same time maxi-
mizes the impact and uptake for the end users. The Global Surface Water Explorer (GSWE) dataset was developed 
by the European Commission’s Joint Research Centre based on Landsat satellite images at 30-metre resolution21. 
The dataset maps the location and temporal distribution of water surfaces at the global scale during 1984 to 2022 
at monthly and yearly, and provides statistics on the extent and change of those water surfaces.

Figure 4 shows the comparison of morphological indices extracted at different resolutions. For water bod-
ies larger than 1000 km2, the estimated number and area of WBs from data at different resolutions are similar. 

Index Formula Value

Overall Accuracy (OA) = ×+
+ + +

OA 100%TP TN
TP TN FP FN

98%

Precision (P) P 100%TP
TP FP= ×

+
82%

Recall (R) R 100%TP
TP FN= ×

+
79%

F1 score F score1 2 100%P R
P R

( )
( )= × ××

+
81%

Intersection over Union (IOU) IOU 100%TP
TP FP FN= ×

+ +
68%

Table 3.  Precision of SwinUNet model.
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Fig. 3  Log-abundance log-size plot of Water body size distribution.
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However, there is a significant inconsistency in perimeter estimation for large water bodies, which may result 
from the influence of coarse resolution of 30-m data. There are limitations to estimate the distribution of small 
water bodies for 30 m dataset, especially WBs smaller than 0.01 km2. The number and area of WBs larger than 
0.01 km2 from 10m-resolution data is in agreement with that from 2m-resolution dataset. The influence of reso-
lution on perimeter estimation is greater than that on area estimation, thus affecting the estimation of shoreline 
shape. Thus, the shoreline development index (SDI) increases with the increase of size of WBs. The results 
showed the estimation of morphological characters based on different spatial-resolution are more consistent 
for water bodies range from 10 to 100 km2. Then, the D of WBs in different spatial-resolution was calculated. D 
of WBs from 10 m images is 1.24 with R2 = 0.949, while the D of WBs from 30 m images is 1.36 with R2 = 0.919. 
The results indicates that the size-abundance relationships are more conform to the power law distribution when 
the resolution is higher. In addition, the D of WBs from 10-m data is close to that from 2-m data. Thus, the 10-m 
images could obtain approximative results with the 2-m data when only abundance estimation needed.

In the Tibetan Plateau, although small WBs are not dominant in surface, it does not preclude small WBs 
from significance in regional biogeochemical cycles42. Small WBs typically have higher fluxes and faster reac-
tion rates than large lakes and consequently may still contribute disproportionately to biogeochemical cycles of 
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Fig. 4  Water bodies distribution and morphometric characters based on different spatial-resolution.
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lake-rich regions43. Our dataset could be valuable to fill the gap of existing water bodies map and analyze the 
spatial variation of water abundance and shapes, especially for small WBs.

Code availability
Codes for the dataset pre-processing are written using python, including TIFF read, morphological opening-
and-closing operation, TIFF write and mosaic process. The codes are available at: https://github.com/Siyu1993/
WaterPreprocessing. Then the image could be visualized in QGIS software (V3.16).
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