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Drinking water quality sensor technology has rapidly advanced, facilitating the collection of rich 
datasets and real-time analytics. However, sensors have not yet been widely applied to monitor 
drinking water quality in premise plumbing. Richer quality of data in premise plumbing offers an 
improved understanding of the quality of drinking water present at the point-of-use. In this paper, 
online drinking water quality sensor nodes were temporarily installed in twenty-four homes in Detroit, 
Michigan. The water quality sensor nodes took measurements of five drinking water quality parameters 
every five minutes for four weeks. Additionally, free chlorine and lead were sampled periodically within 
each home. together, these data make up a dataset that captures drinking water quality over time in a 
legacy city with an oversized drinking water system. This dataset offers more frequent measurements 
amongst more sample homes than are typically available in premise plumbing or at the tap. the data 
can be used to investigate temporal trends in drinking water quality, including diurnal patterns and 
anomaly detection. additionally, this dataset could be utilized to evaluate water quality in comparison 
with other cities.

Background & Summary
Regulatory monitoring for drinking water quality primarily occurs at the drinking water treatment plant or 
within the water distribution system, the network of pipes that conveys drinking water from the treatment plant 
to the service line. Beyond the service line, drinking water is conveyed to the point-of-use, e.g., the tap, in build-
ings or homes through a series of pipes called premise plumbing. While there are some exceptions, for example, 
the Lead and Copper Rule, which requires collecting drinking water samples from taps within homes, drinking 
water quality is not extensively monitored beyond the service line1. However, a variety of physicochemical and 
biological changes can occur as drinking water travels from the service line into premise plumbing and to the 
point-of-use. For example, premise plumbing pipes have a small diameter, which can lead to higher residence 
times as well as higher rates of chlorine decay and microbiological growth2–4. Thus, there is a growing interest in 
understanding water quality in premise plumbing motivated by the desire to improve the management of drink-
ing water in homes and buildings5,6. As developments of automated technology, such as online water quality 
sensors, continue to advance, there is more opportunity for real-time monitoring in premise plumbing to close 
the knowledge gaps about urban drinking water quality management2,7. More resolved data in premise plumb-
ing provides the opportunity for water service providers, water users, and policymakers to better understand the 
dynamics of water quality and water user exposure at the point-of-use. For example, a better understanding of 
premise plumbing water quality can help inform guidance around how frequently, and with what density, mon-
itoring in premise plumbing should occur to capture significant trends or changes to water quality or exposure 
to contaminants at the point-of-use. Further, premise plumbing water quality data can be used to make more 
informed decisions about upstream water treatment. For example, water distribution systems in legacy cities 
such as Detroit may experience challenges in maintaining adequate chlorine residual. If chlorine residual is very 
low in monitored premise plumbing locations, additional actions, such as boosting chlorine upstream, could 
be taken. Moreover, resolved data about water quality in premise plumbing opens the opportunity to provide 
more actionable information to water users. Actionable information is information that is substantial, relevant, 

1University of Michigan, Department of civil and environmental engineering, Ann Arbor, USA. 2Detroit community 
Researcher, Detroit, USA. 3Wayne State University, Department of civil and environmental engineering, Detroit, 
USA. ✉e-mail: nglove@umich.edu

Data DEScrIPtor

oPEN

https://doi.org/10.1038/s41597-024-03298-w
http://orcid.org/0000-0001-9884-2289
mailto:nglove@umich.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-03298-w&domain=pdf


2Scientific Data |          (2024) 11:443  | https://doi.org/10.1038/s41597-024-03298-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

and supports one’s self-efficacy and decision-making8–10. Furthermore, individualized water data also provides 
information that can hold utilities accountable. While public drinking water systems are required to release an 
annual Consumer Confidence Report (CCR), the data in CCRs are highly summarized and hard to understand 
for water users11–13. Data collected in premise plumbing may be more actionable to water users than data sum-
marized at the system-scale2,7.

This dataset was generated as the result of a study designed to monitor drinking water quality in Detroit, 
Michigan homes, using twelve online, autonomous water quality sensor nodes. The data were used to examine 
the effect of individualized drinking water quality data on water user perceptions of drinking water quality and 
the water service provider14. At the time of submission, a related paper utilizing the data to model drinking water 
quality in premise plumbing was also under development. The following parameters were monitored using the 
drinking water quality sensor node: electrical conductivity (EC, μs/cm), oxidation-reduction potential (ORP, 
mV), pH, temperature (°C), and pressure (PSI). Electrical conductivity is an indicator of the total dissolved 
solids (TDS) and salinity of drinking water. High TDS can affect the taste, sight, and smell of drinking water, 
and can influence one’s willingness to use the water. ORP is a measure of the oxidizing or reducing conditions 
of an environment and is often used as an indicator for the presence of disinfectant in an aqueous system. ORP 
measurements also provide information about the appropriateness of the environment for microbial growth and 
offer an indication of the likelihood of pipe corrosion15,16. Data from pH measurements offer information about 
the acidity of the aquatic environment, including the effective range of a disinfectant and the potential for cor-
rosion to occur. For instance, decreasing pH can increase metal solubility, which is of interest for understanding 
the likelihood of lead exposure in drinking water17. Water temperature fluctuates seasonally and can serve as an 
indicator of microbiological stability. For example, rates of microbiological growth and chemical reactions, such 
as chlorine decay, are influenced by water temperature18. Higher water temperatures have been documented to 
increase the growth of certain opportunistic pathogens19,20 or indicator organisms, such as coliforms19. Further, 
water temperature can affect how willing water users are to drink the water. Lastly, water pressure can provide 
information about the infrastructure status. For example, low or intermittent water pressure can indicate the 
presence of a leak.

In addition to the parameters measured by the sensor nodes, free chlorine and lead were measured via sup-
plemental grab samples. Free chlorine is the disinfectant used in the Detroit water system. Free chlorine resid-
ual is monitored in drinking water systems to ensure there is enough disinfectant to inhibit microbiological 
regrowth or recontamination as water is conveyed from the treatment plant to the point-of-use. Lead is a heavy 
metal that is primarily present in drinking water via corrosion from lead-containing plumbing materials and can 
cause negative health effects when ingested as stated by the Centers for Disease Control and Prevention (https://
www.cdc.gov/nceh/lead/prevention/sources/water.htm). In this study, the first- and fifth-liters of drinking water 
from the tap after a period of stagnation (>8 hours) were sampled. The first-liter can be assumed to be more 
representative of the water in household fixtures, whereas the fifth-liter can be assumed to be more represent-
ative of the water in the service line, which conveys drinking water from the water main to the home, and may 
contain lead21.

The data presented in this paper provide a snapshot of high-resolution drinking water quality from within 
twenty-four homes in a legacy city with an oversized water distribution system. The sensor node data can be 
used to explore temporal relationships with drinking water quality, including diurnal trends and anomaly detec-
tion. Further, the additional grab sample data may be used to better understand the behaviors of free chlorine 
and lead at the point-of-use.

Methods
Twelve online water quality sensor nodes were deployed in premise plumbing in twenty-four participant homes 
for approximately one month each in a Detroit, Michigan community. Prior to beginning recruitment for par-
ticipants, a study protocol was developed and reviewed by the Institutional Review Board at the University of 
Michigan (HUM 00199905) and Wayne State University (IRB 21-07-3786). Both IRBs were declared ‘exempt.’ 
Recruitment for participants began in summer 2021 at a local farmers market. In early 2022, two community 
members were hired to serve as community researchers and team liaisons. The community researchers con-
tinued recruitment at local events and through word-of-mouth. All interested participants reviewed a written 
informed consent during an initial visit to their home, which reviewed the benefits and risks of the study and 
emphasized that participants could leave the study at any time. Signatures were not required because the study 
was considered exempt. More detailed information about participant recruitment, involvement, demographic 
information, and compensation is available in Schubert et al.14. Deployments spanned from March to December 
2022. The sensor nodes required a nearby outlet for power and used a Particle Photon or Boron to convey data 
to an online cloud server, using either a WI-FI connection or a cellular network, respectively. The sensor nodes 
were placed in the home depending on the location of the nearby outlet and the preference of the resident, 
which could include the following locations: the kitchen sink, the bathroom sink, the toilet, the utility sink, 
or the laundry machine. The water quality sensor nodes contained a pressure probe, temperature probe, ORP 
probe, EC probe, and pH probe. A solenoid valve was used to control the flow through the sensor node cell. 
The blueprints for building and operating the sensor nodes are open source and can be found in more detail in 
Martinez-Paz et al.7.

Three measurement schemes were adopted across the sensor nodes (Fig. 1). In the first scheme, the sensor 
node took a pressure, temperature, pH, EC, and ORP reading every 5 minutes. Every twelfth measurement 
period, or one hour, the solenoid valve opened and allowed new water to flow through the cell for five sec-
onds. Therefore, only the measurements taken every hour were representative of water that had just been drawn 
in from the sensor node inlet port. Five sensor nodes, identified with “S” as the prefix, (S58, S74, S21, S85, 
and S46) were programmed with this scheme. The second scheme is the same as the first with the addition of 

https://doi.org/10.1038/s41597-024-03298-w
https://www.cdc.gov/nceh/lead/prevention/sources/water.htm
https://www.cdc.gov/nceh/lead/prevention/sources/water.htm


3Scientific Data |          (2024) 11:443  | https://doi.org/10.1038/s41597-024-03298-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

two programmed five-minute flushes, during which the valve opened for five minutes, at 4:00AM and 4:00PM 
(n = 10, S15, S59, S88, S90, S35, S75, S84, S12, S74, S95). The flush times were chosen to capture the effects of 
flushing after extended periods of stagnation: overnight after sleeping (4:00AM) and during the day before res-
idents came home from work (4:00PM). In the third scheme, the solenoid valve opened every five minutes for 
five seconds, allowing new water to enter the flow cell every five minutes. Additionally, there was a five-minute 
flush at 4:00PM and 4:00AM (n = 9, S14, S93, S31, S7, S69, S16, S53, S48, S10).

Two types of grab samples, ‘first draw’ and ‘flushed,’ were taken in participant homes to validate or supple-
ment the sensor node data. First draw samples were taken from the tap immediately after it was turned on by 
a study team member. Flushed samples were taken from the tap after allowing water to run for five minutes. 
To validate the sensor node data, measurements of ORP, EC, pH, and temperature were taken using a YSI 
Professional Plus Multiparameter instrument (Yellow Springs, Ohio, USA). The YSI instrument was calibrated 
every morning before use. To supplement the sensor node data, free chlorine measurements were taken using a 
Hach DR900 (Loveland, Colorado, USA) at the same time as the validation measurements. The validation and 
free chlorine first draw and flushed measurements were taken three times for each participant. The samplings 
occurred when the sensor node was installed, at a mid-study check in, and when the sensor was un-installed. 
Lastly, for all study participants that elected to participate, lead measurements were taken. Participants were 
instructed not to use any water in the home for at least eight hours prior to the sample collection. In accord-
ance with the revised Lead and Copper Rule for Michigan (The Michigan Safe Drinking Water Act, 1976 PA 
399), participants used sterile sample bottles to collect the first- and fifth-liter of water from their kitchen fau-
cet after the stagnation period21. The lead samples were delivered to a certified laboratory for analysis within 
twenty-four hours of sample collection. Samples were preserved with nitric acid until analyzed. Results were 
returned within one week of sample collection. Figure 2 shows a summary of the data collected and the method 
of measurement.

Fig. 1 Schematic displaying the different measurement schemes that were utilized to collect the water quality 
sensor node data.

Fig. 2 Data collection methods and types. Data were collected using drinking water quality sensor nodes (left 
box), grab samples to validate and supplement the sensor node data (middle box), and 1st- and 5th-liter samples 
for lead analysis (right box).
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Data records
All data records are available in Figshare22. The Excel spreadsheet titled “Lead, chlorine, and home data” con-
tains the lead, chlorine, and self-reported home age data for each study participant in separate sheets. There 
are twenty-four Excel spreadsheets, one per participant, containing raw, uncorrected sensor node data. These 
spreadsheets have a “S” prefix. The Excel spreadsheet titled “YSI data” contains the validation grab samples taken 
at each home.

Figures 3 and 4 provide an overview of the free chlorine data. The solid vertical line on both figures denotes a 
free chlorine concentration of 0.2 mg/L; concentrations less than this are associated with higher microbiological 
growth23. The dashed vertical line marks a free chlorine concentration of 0.5 mg/L, which is a common operat-
ing minimum24. The average, minimum, and maximum free chlorine residual concentrations measured across 
all homes for first draw samples were 0.20 mg/L, non-detect, and 0.69 mg/L, respectively (Fig. 3). For flushed 
samples, the average, minimum, and maximum were 0.37 mg/L, 0.03 mg/L, and 0.86 mg/L. Note that the Hach 
DR900 has a detection limit of 0.02 mg/L according to the manufacturer. In almost all sampling cases across all 
study homes, free chlorine residual increased after a five-minute flush, as evidenced by the shift seen in box-
plot spreads in Figs 3 and 4. This increase was anticipated under the assumption that the five-minute flush was 
drawing fresher drinking water from the distribution system with a higher chlorine residual into the premise 
plumbing.

Figure 5 provides an overview of the lead data. Out of the 24 study participants, 22 elected to participate 
in lead sampling. Within the study homes, the range of samples was between 0 (not detected, <0.5 μg/L) and 
15 μg/L. The 90th percentile observed in homes during this study was 5.7 μg/L. Figure 5a provides boxplots for 
the first- and fifth-liter lead concentrations from the study samples. The median lead concentrations in the first- 
and fifth-liter were 1 μg/L and 2 μg/L, respectively. In eight of the sampled study homes, the fifth-liter lead con-
centration was greater than the first-liter, suggesting that there may be a lead service line present in these homes. 
Seven of the homes had a greater concentration of lead in the first-liter than the fifth-liter. Figure 5b provides 
the counts of samples that are not detected, between 1 and 5 μg/L, 6 and 10 ug/L, and 11 to 15 μg/L. Most homes 
had lead concentrations ranging from 1 to 14 μg/L. One reason for the high counts of detected lead may be the 
age of the homes or pipes. The use of lead pipes, solder, and flux was not banned until 198625. While we did not 
determine pipe age in each participant home, we did collect information on the home age. The home ages most 
frequently reported by participants were between 1900 to 1930 (54%). No homes participating in the study were 
built later than 1980.

Fig. 3 Boxplots of flushed (blue) and first draw (red) free chlorine samples for the twenty-four homes included 
in the study. Means are denoted by a black X.

Fig. 4 Boxplots of flushed (blue) and first draw (red) free chlorine samples per ID, or participant home.
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technical Validation
The drinking water quality sensor probes were regularly examined and recalibrated after every deployment. If 
calibration measurements were not as expected or unstable, the probe underwent a troubleshooting process, 
beginning with checking probe connections and escalating up to probe replacement. Uncertainties in the water 
quality sensor probe data may arise from measurement errors such as drift. In particular, ORP probes have been 
shown to drift or provide inconsistent measurements from instrument to instrument15. The usage notes contain 
suggested approaches for cleaning the sensor node data to address this uncertainty.

Usage Notes
In sensor placement optimization literature, sensors may be assumed to be ‘perfect’ for model simplicity26,27. 
However, in reality, sensors are prone to errors, including drift, which causes the reported parameter measure-
ments to gradually move farther away from the true values2,28,29. Consequently, we suggest two downstream 
data cleaning steps that may be applied to the sensor node data to ensure that the data are accurate and reliable. 
Accuracy and reliability of the data are important for both utilities that may use the data to make decisions about 
drinking water management, and for water users or researchers who may have access to a subset of the water 
quality data. Users of this dataset should be aware that there are some instances of missing data in the sensor 
node datasets. Occasionally, we experienced the sensor nodes requiring a ‘warm up period,’ during which the 
probes were online for a few minutes before taking measurements. Further, there are missing data from events 
that when a probe was disconnected or malfunctioned. These incidents were infrequent.

The two suggested downstream data cleaning steps include correction and clamping. First, sensor node data 
can be corrected based on the YSI validation measurements, which are considered to be more accurate than 
the sensor node data because the YSI probe is more frequently calibrated. In one out of the 24 participants, a 
validation measurement was not recorded for a participant while in the field due to user error; otherwise, all 
participants have at least three validation measurements on which to correct the sensor node data. A number of 
methods can be used to develop a correction coefficient for the sensor node data. As a test case, we developed 
a linear relationship between the sensor node data and YSI validation measurements for each home. Second, 
to address outliers and minimize the effect of any drifting that may have occurred, the sensor node data can be 
clamped. Clamping is a useful method for data cleaning that replaces extreme values with an upper and lower 
limit value, or a clamping bound. Clamping allows outliers to be addressed while retaining all rows of data and 
can be a helpful approach for minimizing the presence of extreme values in the maximums and minimums 
of the corrected, but unclamped, data. Two clamping bounds, a minimum and maximum, for each measured 
parameter can be developed based on the YSI validation measurements. We suggest using the maximum and 
minimum parameter value measured by the YSI validation measurements, minus or plus ten percent of those 
values, respectively. Figure 6 demonstrates an example whereby this approach was applied to the ORP data, 
which had a wide range of values that were not physically expected in drinking water systems including negative 
and extreme positive values. Notably, the range of measured values for the clamped data (Fig. 6a) is smaller com-
pared to the unclamped data (Fig. 6b). For example, unclamped ORP values range from −695 mV to 3,125 mV, 
which is unreasonable in drinking water environments23. The clamped data range from 96.3 mV to 794 mV. 
These bounds were determined as a conservative minimum and maximum based on the YSI validation sample 
measurements.

The data presented in this paper demonstrate the variability in chlorine residual and lead concentrations, 
among other drinking water quality parameters, across homes in an urban legacy drinking water distribution 
system. Future work using this dataset can explore the significance of temporal and spatial trends in the water 
quality data collected by the sensor nodes within and across homes to better understand the dynamics of water 
quality in premise plumbing. For example, this dataset spans across seasons and can be used to investigate the 
impact of seasonal effects on the measured water quality parameters. Further, while the dataset described in 
this study does not include the spatial coordinates of the homes monitored in order to anonymize study partic-
ipants, this dataset could be used at the city-scale to compare drinking water quality between cities with similar 
or dissimilar demographics, water distribution sizing, or water chemistry. Future research in this area should 
help identify how many sensor nodes should be placed, and in which premise plumbing locations, for optimal 

Fig. 5 (a) shows boxplots of first-liter (green) and fifth-liter (orange) samples. Means are denoted by a black X. 
(b) shows the counts of samples that were non-detect, between 1 and 5 ug/L, 6 and 10 ug/L, and 11 and 15 ug/L.
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cost/benefit trade-offs. The data collected by future research around premise plumbing water quality can be 
used to develop guidelines for water quality management in buildings and homes, including best practices for 
building residents, such as flushing, and actions that can be taken by the water service provider, such as chlo-
rine boosting. Finally, future research should further explore the spatiotemporal relationship of water quality at 
the point-of-use in the context of household-scale water insecurity, housing affordability, and socioeconomic 
factors.

code availability
Chlorine and lead data were processed in Excel. The test case for the suggested data correction approach was 
completed in Excel. The code for the suggested data clamping approach was written in R and is available in the 
Figshare repository.
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