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How accurate are existing land 
cover maps for agriculture in  
Sub-Saharan africa?
Hannah Kerner  1 ✉, Catherine Nakalembe  2, adam Yang3, Ivan Zvonkov2, Ryan McWeeny2, 
Gabriel tseng4 & Inbal Becker-Reshef  2

Satellite Earth observations (EO) can provide affordable and timely information for assessing crop 
conditions and food production. Such monitoring systems are essential in africa, where food insecurity 
is high and agricultural statistics are sparse. EO-based monitoring systems require accurate cropland 
maps to provide information about croplands, but there is a lack of data to determine which of the many 
available land cover maps most accurately identify cropland in african countries. this study provides 
a quantitative evaluation and intercomparison of 11 publicly available land cover maps to assess their 
suitability for cropland classification and EO-based agriculture monitoring in Africa using statistically 
rigorous reference datasets from 8 countries. We hope the results of this study will help users determine 
the most suitable map for their needs and encourage future work to focus on resolving inconsistencies 
between maps and improving accuracy in low-accuracy regions.

Introduction
Africa is a critical area for research on food security. Half of the low-income and food-deficient countries (43 
out of 86) are on the continent1 and Africa has the highest prevalence of undernourished people (20.2% of the 
population in 2021)2. Efforts to assess, monitor, and mitigate food insecurity in Africa are hindered by a lack 
of information to inform such efforts, such as agricultural production statistics or crop conditions assessments. 
Satellite Earth observations (EO) provide an affordable, reliable, and timely source of information for assessing 
crop conditions and food production, but EO-based monitoring systems require accurate cropland masks that 
focus observations on locations where crops are likely being grown in a given year3–5.

Cropland masks are typically derived from land cover maps, which can be agriculture-specific maps indi-
cating cropland areas or more generic maps capturing multiple land cover and land use classes. Map products 
are becoming the go-to source for informing agricultural policies, development investments, food and nutrition 
security monitoring, and climate modeling6. While EO-based map assessments are more scalable and afforda-
ble than traditional survey-based estimates, they must be used cautiously when they inform policy or other 
high-stakes decisions7. Crop maps are directly used in EO-based monitoring systems such as the GEOGLAM 
Crop Monitors8,9, Global Agricultural Monitoring (GLAM) System10, ASAP11, and others5. Inaccurate crop 
masks increase the risk of over- or under-estimation of crop conditions or impacts of disasters or climate shocks 
on food production and may result in dubious statistics informing aid and development efforts.

Production of global land cover maps continues to accelerate due to advancements in satellite sensors, 
machine learning, and cloud computing, as well as increased availability of open data and growing interest in 
environmental monitoring and management. Users now have an overwhelming array of options for land cover 
maps but lack independent quantitative information to evaluate these maps and assess their relative advan-
tages or disadvantages, particularly in the context of agricultural monitoring in Africa. As more researchers and 
decision-makers look to Earth observations as a solution for agriculture and food security monitoring in Africa, 
there is a need for a comprehensive evaluation and inter-comparison of available maps to help users identify 
suitable data products and guide future work efforts to develop improved maps.
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Previous work showed that available land cover maps had low accuracy in Africa and substantial incon-
sistencies between maps12–20. For example, Nabil et al. (2019) found that cropland accuracies for four maps 
were below 65% in Africa12. Pérez-Hoyos et al. (2017) found full agreement between seven land cover maps 
in just 2.15% of Africa13. Venter et al.14 compared three global land cover maps released since 2021 (Google’s 
Dynamic World21, ESA’s WorldCover22, and Esri’s Land Use Land Cover23) and found substantial inaccura-
cies14. The discrepancies between cropland classifications by different maps have been attributed to several 
factors including heterogeneous land cover, cloud cover affecting data availability in remote sensing model 
inputs, and the small and fragmented nature of crop fields in Africa12. Some work has sought to resolve these 
inconsistencies and create improved regional maps by combining the classifications from several individual 
maps24–26. Researchers have hypothesized that higher-resolution satellite datasets (e.g., 10 m/px Sentinel-2) 
would enable the development of models that can capture small-scale and heterogeneous fields not captured 
by earlier models based on coarser datasets, but this hypothesis has not been tested as higher-resolution map 
products have been published. Most studies comparing land cover maps were published before several recent 
maps became available, focused on a small subset of maps, focused on broad land cover classes and not specifi-
cally agriculture, or used reference datasets sampled from large areas or lacking statistically rigorous sampling, 
and thus did not provide country-scale evaluations useful for assessing the suitability of maps for national 
crop monitoring.

This study provides a quantitative evaluation and intercomparison of 11 publicly available land cover maps 
to assess their suitability for cropland classification and EO-based agriculture monitoring in Africa. We selected 
these maps to encompass a range of temporal availability (2009 to 2020), spatial resolutions (10 m/px to 1000 m/
px), and classification approaches (tree-based to deep learning methods). We prioritized maps that were not 
included in previous studies comparing publicly available land cover maps. We summarize important metadata 
and cropland definitions for each map in Table 3. In order from finest to coarsest spatial resolution, the maps are 
Digital Earth Africa Cropland Extent27, Dynamic World21, Esri LULC23, ESA WorldCover22, CCI Land Cover 
Africa28, GFSAD Global Cropland Extent29, Nabil et al.24, GLAD30, Copernicus Land Cover31, ESA GlobCover32, 
and ASAP Crop Mask11. The significant contributions of this study are as follows:

•	 We assessed the accuracy of 11 publicly available land cover maps using statistically rigorous reference data-
sets in eight Sub-Saharan African countries.

•	 We quantified and visualized cropland classification consensus across all maps as well as the pairwise agree-
ment between individual maps.

•	 We assessed the correlation between map accuracy and spatial resolution as well as temporal relevance.
•	 We demonstrated how the choice of a map can affect downstream interpretations of agricultural conditions.

We evaluated the accuracy of each map using reference datasets for 8 countries selected to span the diverse 
agriculture of Sub-Saharan Africa (Kenya, Malawi, Mali, Rwanda, Tanzania, Togo, Uganda, and Zambia) and 
evaluation protocols based on best practices33. We quantified the consensus between maps using all pixels within 
each country boundary (after resampling all maps to a common resolution of 10 meters per pixel). In addition 
to our analysis, we make the following contributions:

 1. A high quality reference dataset of 3,386 samples from 8 countries in Sub-Saharan Africa, which can be 
used as a common benchmark for assessing cropland accuracy in future land cover maps

 2. A Google Earth Engine App to enable users to visualize and compare the maps in this study
 3. A publicly-accessible code repository to facilitate evaluation for new countries or datasets not included in 

this study

We found very low consensus across the 11 compared maps when predicting cropland—all maps unani-
mously agree on a cropland prediction in fewer than 0.5% of pixels in each of the 8 countries studied, which 
is much smaller than the estimated percentage of land used for agriculture in each country34. There is a large 
disparity in the magnitude of the performance metrics between countries for all maps, with average F1 scores 
across all maps ranging from as low as 0.21 ± 0.22 for Mali to 0.71 ± 0.16 for Rwanda; the average F1 score is less 
than 0.7 for seven out of eight countries. We show that a majority vote ensemble that combines the predictions 
of all of the maps performs better than most, but not all, individual maps. We show that performance is overall 
weakly correlated with spatial resolution and temporal mismatch, especially for maps with resolution ≤100 m/
px or within 5 years of the reference data year. We hope this analysis will help users determine the most suitable 
map for their needs and encourage future work to focus on resolving inconsistencies between maps and improv-
ing accuracy in poorly classified regions.

Results
accuracy assessment. Table 1 reports the overall accuracy, F1 score, precision (user’s accuracy), and recall 
(producer’s accuracy) with associated standard errors from evaluating each of the maps using the reference data-
sets summarized in Table 4. Refer to the Methods section for definitions of each metric and derivation of standard 
errors. We also present the results from the majority vote ensemble of all maps. Figure 1 shows a visual illustration 
of the results in Table 1.

Given results from four different metrics and 8 different countries, how can we conclude which map is 
“best” overall? The map that most frequently has the highest score across all metrics and countries is Digital 
Earth Africa (9 bold blue values in Table 1, not including the Mean), followed by WorldCover (6 bold blue val-
ues). The map that most frequently has the highest or second-highest score across all metrics and countries is 
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WorldCover (15 bold blue or bold black values in Table 1, not including the Mean). However, summarizing the 
results in this way does not account for the disparities between metrics that can indicate poor overall perfor-
mance. For example, Digital Earth Africa has the highest recall in Zambia and Uganda, but low precision scores 
in those countries. Esri has the highest accuracy in Mali, but all other metrics are 0 for the same dataset. Since 
only about 2% of the points have a true label of crop in the Mali dataset, accuracy poorly describes the overall 
performance, evidenced by the Esri map achieving 0.98 accuracy even though it classified all of the reference 
points as non-crop.

F1 score is often considered a better metric than overall accuracy to describe the overall performance because 
it combines two more descriptive metrics, precision and recall. The Majority Vote ensemble, WorldCover, 
and GLAD achieved the highest mean F1 score over all countries, closely followed by Digital Earth Africa. 
WorldCover achieved the highest mean precision (user’s accuracy) score, followed by GLAD. Digital Earth 
Africa achieved the highest mean recall (producer’s accuracy) score, followed by GFSAD and Nabil et al.24.

Considering the number of mean metrics for which a map scores highest or second highest, WorldCover 
comes in first (highest metric for 3 of 4 metrics) and GLAD comes in second (highest or second-highest metric 
for 3 of 4 metrics), Digital Earth Africa and the Majority Vote come in third (highest or second-highest met-
ric for 2 out of 4 metrics). The lowest-performing maps were Copernicus, GlobCover, ASAP, ESA-CCI, and 
Dynamic World.

There is a large disparity in the magnitude of the performance metrics between countries. The last column 
of Table 1 reports each metric averaged across all maps for each country evaluated. The average F1 score ranges 
from as low as 0.21 ± 0.22 for Mali to 0.71 ± 0.16 for Rwanda. The average F1 score is below 0.7 for all coun-
tries except Rwanda. The precision score is also very low for some countries, particularly Mali, with an average 
precision of 0.15 ± 0.06. This illustrates that even though some maps may perform better than others, accurate 
cropland classification in these countries remains challenging.

Map agreement. We quantified the consensus between cropland classifications across all of the compared 
maps as well as the agreement between all pairs of maps. We characterized map agreement in three ways: (1) 
quantified as a percentage of total pixels with agreement across all maps, (2) illustrated visually as a map to show 
spatial patterns of agreement and disagreement, and (3) quantified as a percentage of total pixels that agree for 
pairwise maps as an agreement matrix.

Consensus across all maps. Table 2 quantifies the agreement between crop and non-crop predictions made 
by all maps as a percentage of the total pixels in the 10 m/pixel resolution consensus map. The highest overall con-
sensus, i.e., the highest percentage of all locations in which all maps predict the same class, was in Mali (69.9%) 
and Kenya (60.6%). The lowest overall consensus was in Rwanda (15.8%) and Malawi (21.8%). The crop consensus, 
i.e., the percentage of locations in which all maps predict cropland, was very low—less than 0.5% for all countries; 
the highest crop consensus was in Kenya (0.4%) and Uganda (0.4%). The non-crop consensus, i.e., the percentage 
of locations in which all maps predict non-crop, was approximately equivalent to the overall consensus because 
non-crop predictions constituted the majority of consensus pixels. This shows there is greater disagreement 

Table 1. Performance metrics and associated standard errors for each map and reference dataset compared in 
this study, including a majority vote ensemble of all 11 maps. The highest value in each row is in bold blue and 
the second-highest in bold black.
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among maps in predicting where cropland is compared to where cropland is not. The “split prediction” column in 
Table 2 gives the percentage of pixel locations where the consensus between all maps is split; i.e., 5 or 6 maps pre-
dict crop while the remaining 6 or 5 maps predict non-crop. These are the regions of the lowest consensus across 
all maps. The split prediction percentage was highest in Rwanda (24.0%) and lowest in Mali (2.9%).

Fig. 1 Visual depiction of results in Table 1. Some error bars are not visible due to small errors.

Country
All predict 
same class

All predict 
crop

Split 
prediction

None predict crop 
(all non-crop)

Kenya 60.6 0.4 5.0 60.2

Malawi 21.8 0.0 17.5 21.8

Mali 69.9 0.0 2.9 69.9

Rwanda 15.8 0.1 24.0 15.8

Tanzania 44.4 0.0 9.0 44.4

Togo 23.8 0.2 17.0 23.6

Uganda 29.1 0.4 11.6 28.8

Zambia 49.5 0.0 4.4 49.5

Table 2. Agreement between 11 compared maps as percent of total pixels. “Split prediction” describes pixels 
where the prediction across all maps is approximately evenly split (5 predict crop but 6 predict non-crop, or 6 
predict crop but 5 predict non-crop).
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Spatial visualization of map agreement. Figure 2 visualizes the spatial distribution of agreement 
between the 11 maps, where colors indicate the number of maps that predict the crop class in each 10 m pixel loca-
tion. Blue pixels (where the map value is 11) indicate locations where all maps unanimously or near-unanimously 
predict cropland (which constitutes less than 0.5% of pixels in each country, as described in the previous section). 
Red pixels (where the map value is 0) indicate locations where all maps unanimously or near-unanimously pre-
dict the non-crop class. The fraction of unanimous non-crop pixels is especially high in Kenya, Zambia, Mali, 
and Tanzania, where the majority of the country’s land area is not used for agriculture34. Yellow pixels indicate 
locations of high disagreement between maps where approximately half of the maps predict crop and half predict 
non-crop. While some regions in each map appear primarily yellow, yellow-orange, or yellow-green (indicating 
homogeneous areas of disagreement), most of the disagreement regions are on the edges surrounding high agree-
ment pixels of either class. This suggests that most zones of high disagreement lie on the boundaries between 
crop and non-crop regions, where transitions between land cover types might make discrete classification chal-
lenging. These zones are also likely locations of cropland expansion and are important to accurately identify for 
efficient resource allocation, crop rotation, pest management, environmental conservation, land use planning, 
and monitoring.

Pairwise map agreement. Figure 3 quantifies the pairwise agreement between each map compared in 
this study, and the majority vote ensemble map, using a symmetric agreement matrix for each country. Each 
cell reports the fraction of pixels that agree (predict the same class) for each pair of compared maps, ordered by 
spatial resolution (high to low). Since maps are ordered by spatial resolution (highest to coarsest, i.e., increasing 
ground sampling distance), blocky patterns about the diagonal indicate that maps with the same or similar res-
olution have the highest pairwise agreement. Diagonal cells are set to zero. Figure 4 shows the mean agreement 
matrix (average agreement matrices for each country). All matrices use the same color bar ranging from 0 to 1, so 
relative agreement fractions can be compared across all countries. The pairwise agreement between maps is low 
for Rwanda, Togo, and Malawi and relatively high for Zambia and Mali. Overall, the maps that share the highest 
agreement are Nabil et al. and GFSAD, Nabil et al. and majority vote, and Dynamic World and Esri. The Nabil 
et al. map has high agreement with the majority vote map with GFSAD because it combines the predictions of 
GFSAD and two other maps used in the study.

Figure 4 shows the order of pairwise maps ranked from lowest to the highest mean pairwise agreement 
within each row. There is high agreement between Nabil et al.24 and the ESA-CCI, Copernicus, and GFSAD crop 
masks, which is expected since the Nabil et al. mask is a combination of these maps. ASAP has the overall lowest 
pairwise agreement with other maps, and ESA-CCI has particularly low agreement with all other maps in Mali. 
Surprisingly, GlobCover agrees most with Dynamic World and Esri. Digital Earth Africa, WorldCover, GLAD, 

Fig. 2 Map showing the number of maps that predict cropland in each 10 m/pixel location. Panel A shows 
the maps in the context of the African continent while Panel B gives larger views of the maps (countries not to 
scale). Blue and red indicate regions of high or unanimous agreement between maps for the crop and non-crop 
classes, respectively. Yellow indicates regions of high disagreement between maps.
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Fig. 3 Fraction of pixels that agree (predict same class) for each pair of compared maps, ordered by spatial 
resolution (high to low). Diagonal entries are set to 0. See online version for high resolution.

Fig. 4 Left matrix shows the average fraction of pixels that agree (predict same class) for each pair of compared 
maps, averaged over all countries (mean of matrices in Fig. 3). Right matrix shows the ranking of lowest (1) to 
highest (11) pairwise agreement between maps within each row. Diagonal entries are set to 0.

and Copernicus all agree most with the majority vote map, meaning they are most consistent with the majority 
prediction across all the maps. Excluding the majority vote, GLAD agrees most with WorldCover, and vice versa, 
and Digital Earth Africa agrees most with GLAD.

accuracy vs. spatial resolution. Previous work hypothesized that land cover products based on higher res-
olution satellite observations (e.g., 10 m/pixel Sentinel-2) should have improved cropland mapping performance 
in Sub-Saharan Africa as a result of small and fragmented field sizes being more clear in the higher-resolution 
images13. However, other work found that small field sizes were not the primary influencing factor on the disa-
greement between maps12. Figure 5 shows a scatter plot of the performance metric for each map, averaged across 
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all countries, vs. spatial resolution (in m/px). The title of each plot reports the Pearson product-moment correla-
tion coefficient.

Accuracy and precision (user’s accuracy) show a moderate negative correlation with spatial resolution (R2 of 
−0.41 and −0.43, respectively); i.e., accuracy and precision scores tend to be higher for higher resolution maps. 
However, we found no correlation between recall (producer’s accuracy) and spatial resolution (R2 = 0.08). We 
found a weak negative correlation between F1 score and spatial resolution (R2 = −0.18). This suggests that finer 
spatial resolution satellite data may help reduce false positives (other land cover types incorrectly classified as 
cropland) but not false negatives (cropland incorrectly classified as other land cover).

When interpreting the correlation between spatial resolution and performance metrics, it is important to 
consider the impact of the ASAP and GlobCover maps, which have substantially coarser spatial resolution than 
the other maps. ASAP has a resolution of 1000 m/px and GlobCover has a resolution of 300 m/px, while the 
remaining maps range from 10–100 m/px. After excluding ASAP and GlobCover, the correlation between spatial 
resolution and each metric was R2 of −0.26 for accuracy, 0.26 for F1, −0.43 for precision, and 0.42 for recall. 
Thus, for maps with spatial resolution of 100 m/px and below, we found a weak to moderate positive correlation 
between F1 and recall and spatial resolution, meaning coarser spatial resolution products tend to have higher F1 
and recall scores. However, we found a weak to moderate negative correlation between accuracy and precision, 
meaning finer spatial resolution products tend to have higher accuracy and precision. The intended use case of 
the map should influence which metrics should be weighted most highly in choosing the most suitable map.

accuracy vs. temporal mismatch. Previous work has stressed the importance of using a crop mask with 
the same (or as close as possible to the same) year as the downstream analysis, e.g., when assessing in-season crop 
conditions35. Figure 6 plots each metric against the temporal mismatch (number of years difference) between the 
reference data year and the map year (calculated as the absolute difference between the map year and the refer-
ence data year). We found a weak to moderate negative correlation between accuracy, F1, precision, and temporal 
mismatch (R2 of −0.42, −0.18, and −0.32, respectively), indicating that higher performance somewhat correlates 
with closer temporal matching. We found no correlation (R2 of 0.05) between recall (producer’s accuracy) and 
temporal mismatch.

As in the case of spatial resolution, it is important to consider the effect of outliers in this assessment. The 
nominal year for the GlobCover map is 2009 and is an outlier among the map years, which otherwise range 
from 2017 to 2020. When GlobCover is excluded, the R2 between temporal mismatch and each metric is −0.22 
for accuracy, 0.06 for F1, −0.22 for precision, and 0.30 for recall. In other words, for maps within 5 years of 
the reference data year, there is a weaker negative correlation between temporal mismatch and accuracy, F1, 

Fig. 5 Scatter plots showing mean performance metrics (averaged across all countries) vs. spatial resolution (in 
m/pixel).

Fig. 6 Scatter plots showing performance metrics vs. temporal mismatch between the map year and the 
reference data year (unit is the number of years).
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and precision. However, there is also a weak positive correlation between temporal mismatch and recall. These 
results suggest that using maps within a few years of the reference data or analysis year may be sufficient for most 
studies, and an exact temporal match may not be needed for all analyses. The importance of temporal matching 
between map year and reference/analysis year should depend on the intended use of the map.

Impact of map differences in downstream use. Cropland maps are commonly used as masks to select 
the cropland pixels from satellite datasets for crop conditions assessments, yield estimation, and other down-
stream analyses35. For example, in the Global Agricultural Monitoring (GLAM) System, a user can assess cur-
rent season crop conditions by comparing the normalized difference vegetation index (NDVI) time series of the 
current year (a measure of vegetation condition throughout the year) to that of a typical year or range of years 
(representing average vegetation conditions)10.

Fig. 7 Time series of 16-day MODIS MOD13A1.061 Terra Vegetation Indices averaged within (A) each 
country and (B) an administrative level 1 region, masked using each crop mask assessed in this study.

https://doi.org/10.1038/s41597-024-03306-z
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In Fig. 7, we illustrate how the choice of crop mask can affect the NDVI time series and, thus, the end-user’s 
interpretation of vegetation conditions. Each plot shows a time series of the mean NDVI from the MODIS 
MOD13A1.061 Terra Vegetation Indices 16-Day Global 500 m data product, created by masking the image 
collection using each map and computing the mean of all pixels within the country boundary (panel A) and an 
administrative level 1 (admin1) region (panel B). Admin1 refers to the largest subnational administrative unit 
within a country, e.g., states in the United States36. We chose specific admin1 regions based on areas of high disa-
greement between maps to highlight discrepancies that may arise due to map differences. These plots reveal that 
GlobCover substantially overestimates crop conditions as measured by NDVI compared to other maps, particu-
larly in Malawi, Tanzania, Rwanda, and Zambia. In some countries such as Malawi, Tanzania, and Zambia, most 
masks result in similar time series, but there is a large spread in others such as Kenya, Mali, and Togo. Notably, 
Kenya had the highest percentage of pixels in agreement across all maps of the 8 countries (Table 2), but the 
greatest differences between the maps when used as crop masks for vegetation indices.

These results highlight the importance of considering the locations and other characteristics of discrepan-
cies between maps and not just the magnitude of those discrepancies in future work. We used the MODIS data 
product since this is commonly used by current agriculture monitoring systems such as GLAM10. Since the 
MODIS NDVI data product used has 500 m/pixel resolution, the time series are aggregated using each crop 
mask resampled to 500 m/pixel resolution to match the NDVI data, thus most of the masks are downscaled to a 
much coarser resolution than their true resolution. If a higher-resolution NDVI data product (such as Landsat 
or Sentinel-2) were used, we expect the time series resulting from each mask would diverge even more substan-
tially than in the downscaled MODIS time series.

Discussion
Which map is best? No single map can be considered optimal across all evaluations, metrics, and countries, 
thereby leaving users of these maps uncertain about the most suitable choice for a given use case or application. 
The WorldCover and GLAD maps had good performance for most countries in the reference dataset evaluation, 
high agreement with the majority vote, and similar NDVI time series to the majority of maps. GlobCover had low 
performance for most countries in the reference dataset evaluation, moderate agreement with the majority vote, 
and NDVI time series that differed substantially from the majority of maps. Thus WorldCover or GLAD are likely 
to be reasonable choices for many use cases, while GlobCover should be used cautiously.

The best map for a given use case should be chosen based on the performance and relevance of that map for 
the specific use case. Users should identify the right map based on the region-specific evaluation data or their 
intended use case. This means that users should develop use case-specific evaluation datasets and experiments 
for choosing the best map for their intended use case if relevant datasets do not exist already. Users should also 
visually inspect candidate maps in their intended study area to qualitatively assess map suitability, as quantitative 
metrics may not fully capture map performance for a given use case37.

Regional vs. global models. Researchers have been shifting toward training single, global models that are 
optimized to predict land cover anywhere in the world. Global models compared in this study are Esri, Dynamic 
World, and WorldCover. Global models are appealing because they simplify computation and enable models 
to learn from more diverse data, but these benefits may come at the expense of high intra-class variance that 
makes learning to predict classes accurately across a wide range of agro-ecological conditions challenging. In 
contrast, regional models are trained to optimize classification performance for a regional sub-group, such as an 
agro-ecological zone, a global grid tile, or a country (see Table 3). Table 1 shows that models trained to optimize 
regional performance tend to outperform global models. In addition to training a global model, the Esri and 
Dynamic World maps are the only models that do not include temporal features in the input. Classification is 
based on segmentation of a single image (or composite image). Thus, spatial and spectral information is available 
to the model but not temporal. Temporal information is important for identifying cropland and could be another 
factor contributing to better performance of some maps over others.

Ensemble models. Since ensembles often perform better than individual base classifiers, it may be surpris-
ing that the Majority Vote ensemble did not give the best overall performance. However, necessary conditions 
for an ensemble of base classifiers to perform better than individual base classifiers are that the base classifiers are 
independent of each other (make independent errors) and perform better than random guessing38, which is not 
necessarily true for all of the maps in this study. The Nabil et al.24 crop mask is also an ensemble; it combines four 
data products, three of which are also compared in this study (GFSAD, ESA-CCI, and Copernicus). These maps 
are highly correlated (see Fig. 3). Nabil et al. proposed the ensemble crop mask to provide a combined product 
better than the individual maps. The Nabil et al.24 ensemble mask performs better overall than GFSAD, ESA-CCI, 
and Copernicus individually but is not among the highest-performing maps of all those compared in this study.

Future efforts. This study’s results showed low consensus between the 11 compared maps in each of the 
studied countries, particularly for the cropland class. Unanimous agreement between maps on cropland loca-
tions was rare. In addition, the average performance across all of the maps in each country was quite low. Most 
previous efforts to create more accurate global land cover maps focus on creating new methods and models that 
optimize performance over samples drawn globally. We encourage future work to focus on targeted improve-
ments that boost performance for the lowest-performing sub-groups (e.g., countries or biomes) among existing 
methods. This would help to resolve inconsistencies between existing maps and reduce the disparity in perfor-
mance across countries globally, resulting in more geographically fair land cover maps and associated machine 
learning models. The results from this study can be used to inform such future work. For example, future efforts 
to create labeled datasets could focus on low-performing countries (e.g., Mali) or collect samples from regions 
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of high disagreement between maps using random uniform sampling or stratified sampling in which consensus 
levels define strata. Future work could extend this analysis for more countries and maps using our code pro-
vided with this study. Future work could also help direct efforts to improve map accuracy and provide useful 
information to map users by identifying the types of land cover that are commonly confused with cropland in 
these maps.

We hope that this study’s reference datasets and results can provide a useful benchmark for evaluating future 
map products against a common baseline. We provide our reference datasets to enable this benchmarking and 
for transparency. However, we emphasize that future inter-comparison with these results requires researchers to 
use the reference datasets only for final, independent accuracy assessment and not use them during the model 
training or map creation process.

Methods
We designed our accuracy assessment to meet the good practice criteria described in Stehman & Foody (2019)33:

 1. Map relevant: the accuracy estimates and error matrices reflect the proportional area representation of the 
study region via uniform random sampling and we report unnormalized error matrices in terms of sample 
counts and population error matrices in terms of map area proportion in Supplementary File 1.

 2. Statistically rigorous: we implemented a probability sampling design of simple uniform or stratified ran-
dom sampling for each country. We quantified the variability of the accuracy by reporting standard errors.

 3. Quality assured: we established protocols to monitor and evaluate the quality of reference data of results in-
cluding assigning two or more interpreters to label each point while blind to the map category; only points 
with unanimous interpreter consensus were used in the analysis.

 4. Reliable: The variability among interpretations of reference sample labels is very low since we only used 
points that had unanimous labeler agreement in analysis. It is likely that different samples and different 
interpreters (with the same training) would lead to similar results.

 5. Transparent: We have provided all relevant details to inform readers about the quality of the results.
 6. Reproducible: We have provided the reference sample datasets used in the analysis in a public Google 

Earth Engine asset and Zenodo repository. We provided the code used to preprocess and evaluate all maps 
in a GitHub repository. The code for generating the samples and instructions provided to interpreters is 
available upon request.

Cropland and land cover maps. We analyzed 11 global and continent-scale land cover and land use maps 
made publicly available in recent years. Several of these maps have not been included in previous studies compar-
ing publicly available land cover maps. These maps are summarized in Table 3, which span a range of temporal 
availability, spatial resolutions, and geographic coverage. Table 3 provides the cropland definition specified by 

Dataset Year(s) Res. (m/px) Model Scale Coverage Definition of Cropland

DEA Cropland Extent 2019 10 AEZ Continent “A piece of land of minimum 0.01 ha that is sowed/planted and harvestable at least 
once within the 12 months after the sowing/planting date.”27,49

Dynamic World 2015–2024 10 Global Global “Human planted/plotted cereals, grasses, and crops”21

Esri LULC 2017–2022 10 Global Global “Human planted/plotted cereals, grasses, and crops not at tree height; examples: 
corn, wheat, soy, fallow plots of structured land.”23,50

ESA WorldCover 2020–2021 10 Global Global

“Land covered with annual cropland that is sowed/planted and harvestable 
at least once within the 12 months after the sowing/planting date. The annual 
cropland produces an herbaceous cover and is sometimes combined with some 
tree or woody vegetation. Note that perennial woody crops will be classified as the 
appropriate tree cover or shrub land cover type. Greenhouses are considered as 
built-up.”22,43,51

ESA CCI Africa 2016 20 Continent Continent No explicit definition provided28,52

GFSAD 2015 30 AEZ Global
“Cropland that is cultivated and harvested for food, feed, and (or) fiber, one or 
more times during a 12-month period; Cropland that is left fallow, even when 
equipped for agriculture; and Cropland that is permanently cropped with 
plantations (for example, orchards, vineyards, coffee, tea, and rubber).”29,53

Nabil et al. 2016 30 Mixed Continent “all agricultural annual standing croplands, cropland fallows, and permanent 
plantation crops”24,54

GLAD 2003, 2007,2011, 
2015, 2019 30 1° × 1° Global

“[…] land used for annual and perennial herbaceous crops for human 
consumption, forage (including hay) and biofuel. Perennial woody crops, 
permanent pastures and shifting cultivation are excluded from the definition.”30,55

Copernicus Land 
Cover 2015–2019 100 Biome Global

“Cultivated and managed vegetation/agriculture. Lands covered with temporary 
crops followed by harvest and a bare soil period (e.g., single and multiple cropping 
systems). Note that perennial woody crops will be classified as the appropriate 
forest or shrub land cover type.”31,56

ESA GlobCover 2005, 2009 300 Strata Global
“Post-flooding or irrigated croplands,” “rainfed croplands,” “Mosaic Cropland (50–
70%)/Vegetation (grassland, shrubland, forest) (20–50%),” and “Mosaic Vegetation 
(grassland, shrubland, forest) (50–70%)/Cropland (20–50%)”32,57

ASAP Crop Mask 2017 1000 Mixed Global
“arable land and permanent crops…independently of their life forms (e.g., tree 
forms), production systems (i.e., both rainfed and irrigated), and density of 
cover”11,13,58

Table 3. Description of map data products evaluated in this study.
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each data product. Each map was created by making dense, contiguous predictions over a geographic area using 
a trained machine learning classifier (though the classifier used for each differs).

The following subsection headings categorize these map products as being produced using regional or global 
models. In the regional model category, separate machine learning models are optimized for a specific region 
(e.g., a country, continent, or agroecological zone) that generates a predicted map for that region. These regional 
maps may then be combined to cover a larger geographic area, such as a global map product. In the global model 
category, a single machine learning model is optimized for making predictions in all regions of the world, where 
data used for training may be aggregated from many different regions. A single global model is then used to 
make predictions everywhere to form one predicted global map.

The values of each map at the reference sample locations were obtained using the reduceRegions() function 
in Google Earth Engine sampled at the native resolution of each map. This value extraction is fully reproducible 
using the code provided in the Code Availability section. We clipped all maps to the border of each country and 
converted them to a binary crop/non-crop map. We performed consensus and agreement analyses after resa-
mpling all maps to a common spatial resolution of 10 m/px. In the subsequent sections, we summarize how we 
created and used each map in this study.

Regional models. Digital Earth Africa. The Digital Earth Africa (DEA) Cropland Extent map27 estimates crop 
extent at 10 m/pixel resolution for the year 2019 in Africa. The continent-scale map was created by combining 
maps predicted for eight different agro-ecological zones (AEZ) within the African continent covering Eastern, 
Western, Northern, Sahel, Southern, Southeast, Central, and Indian Ocean regions of Africa. A separate random 
forest model was trained using data sampled from each AEZ and used to predict a complete map for that AEZ. 
The input feature vector contains hand-crafted features (temporal statistics and geomedian composites) from a 
12-month time series of Sentinel-2 multispectral observations and ancillary datasets (topography and climatol-
ogy). All maps and associated training and validation datasets are for 2019 with 10 m/pixel spatial resolution. 
Digital Earth Africa reported an overall accuracy of 90.3% in Eastern Africa (includes Kenya), 83.6% in Western 
Africa (includes Togo), and 87.3% in Southeast Africa (includes Malawi). We accessed the DEA Cropland Extent 
map using the following GEE asset: ee.ImageCollection("projects/sat-io/open-datasets/
DEAF/CROPLAND-EXTENT/mask").

ESA CCI land cover Africa. This 20 m/pixel land cover map of Africa for the year 2016 was produced by UC 
Louvain as part of the European Space Agency (ESA) Climate Change Initiative (CCI). The classification into 
10 land cover classes (including “cropland”) is based on input features extracted from one year (December 
2015-December 2016) of Sentinel-2A multispectral observations. The product documentation states that clas-
sification was performed using “two classification algorithms, the Random Forest (RF) and Machine Learning 
(ML)” but does not specify which machine learning technique was used in the second algorithm28. Independent 
evaluations of the map accuracy reported overall accuracy of 56% in Kenya39 and around 65% over the con-
tinent, noting that the map should be improved before being used for research or practical purposes40. We 
binarized the dataset by converting pixels labeled with the cropland class to labels of 1, and 0 otherwise. We 
accessed the CCI Land Cover Africa map using the following GEE asset: ee.Image("projects/sat-io/
open-datasets/ESA/ESACCI-LC-L4-LC10-Map-20m-P1Y-2016-v10").

GFSAD global cropland maps. The goal of the Global Food Security Support Analysis Data (GFSAD) pro-
ject was to create a global map of cropland extent at 30 m/pixel resolution based on Landsat satellite Earth 
observation data29. The GFSAD Global Cropland Extent Product (GCEP) was created by combining maps pre-
dicted for 74 AEZs defined globally. A predicted map was created for each AEZ by combining the outputs of 
four machine learning models—random forest, support vector machine (SVM), an object-based classifier, and 
recursive hierarchical segmentation—trained for binary cropland classification. The input features were derived 
from Landsat-8 multispectral time series observations in addition to elevation and slope attributes derived 
from the SRTM DEM for years 2013–2016, with outputs intended to represent the nominal year 2015. The 
study reported overall accuracy of 93.7% in Africa and, more specifically, 91.3% in AEZ 36 (includes Kenya and 
Malawi) and 90.8% in AEZ 34 (includes Togo). We accessed the GFSAD map using the following GEE asset: 
ee.ImageCollection("projects/sat-io/open-datasets/GFSAD/GCEP30").

GLAD. The GLAD Global Cropland Maps provide binary cropland classifications at 30 m/pixel for 2003, 2007, 
2011, 2015, and 2019. Classification is performed using bagged decision trees with features extracted from time 
series of Landsat Analysis Ready Data (ARD)30. A separate model is trained for each 1° × 1° ARD tile, and the 
predictions from each tile are merged to form a global map. The regional accuracy reported for Africa for 2016–
2019 was 96.5 ± 0.8, and the global map was noted to underestimate the cropland area in Africa due to the spatial 
resolution limitations. We binarized the 2019 dataset by converting pixels with values > 0.5 to a 1 and otherwise 
0 label. We accessed the GLAD map using the following GEE asset: ee.ImageCollection("users/
potapovpeter/Global_cropland_2019").

ESA GlobCover. The ESA GlobCover project aimed to provide global land cover maps based on obser-
vations from the 300 m/pixel MERIS satellite sensor. The project produced global land cover maps for 2009 
(v2.3, based on observations from January-December 2009) and 2005 (v2.2, based on observations from 
December 2004-June 2006); we used v2.3 in this study. A separate classifier was trained for each of the 22 global 
strata designed to reduce land surface reflectance variability in the data processed by each regional classifier. 
Classification into 22 land cover classes is achieved through a four-stage process of (1a) supervised classifica-
tion of under-represented classes, (1b) unsupervised clustering of pixels not classified in step 1a, (2) temporal 

https://doi.org/10.1038/s41597-024-03306-z


1 2Scientific Data |          (2024) 11:486  | https://doi.org/10.1038/s41597-024-03306-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

characterization of spectral clusters from step 1b, (3) aggregation of spectral clusters into fewer spectro-temporal 
clusters based on similar temporal patterns, and (4) rule-based classification of spectro-temporal clusters32. 
Defourny et al.41 reported an overall accuracy of 73% but did not report Africa-specific metrics41. We bina-
rized the dataset by converting pixels labeled with the “post-flooding or irrigated croplands”, “rainfed crop-
lands”, and “mosaic cropland (50–70%)/vegetation (grassland, shrubland, forest) (20–50%)” classes as 1, and all 
other classes as 0. We accessed the ESA GlobCover map using the following GEE asset: ee.Image("ESA/
GLOBCOVER_L4_200901_200912_V2_3").

Copernicus land cover. The Copernicus Global Land Service Land Cover (CGLS-LC) map provides global 
land cover maps annually from 2015–2019 based on observations from the 100 m/pixel PROBA-V satellite 
sensor31. The land cover classification includes 23 classes based on the United Nations Food and Agriculture 
Organization (UN-FAO) Land Cover Classification System and surface area statistics for 10 land cover types. 
More than 100 input features, including vegetation indices and time series statistics, were extracted from the 
PROBA-V multispectral satellite observations for 141,000 training sample locations. These samples were used 
to train a random forest classifier separately for each biome, where biomes were clusters of pixels determined 
from multiple global ecological datasets. Tsendbazar et al. (2020) reported a precision score (user’s accuracy) 
of 62.4 ± 3.7% and a recall score (producer’s accuracy) of 57.3 ± 3.6% for the cropland class in Africa and 
80.1 ± 2.0% overall accuracy in Africa42. We used the discrete classification in the 2019 map and created a binary 
cropland map by converting pixels labeled with the “Cultivated and managed vegetation/agriculture” class to 
1 and all other classes to 0. We accessed the Copernicus Land Cover map using the following GEE asset: ee.
ImageCollection("COPERNICUS/Landcover/100 m/Proba-V-C3/Global").

Global models. Esri land use/land cover. The Esri Land Use and Land Cover (LULC) map, created by Esri, 
Impact Observatory, and Microsoft, provides a global classification of 9 land cover and land use classes (includ-
ing crops) at 10 m/pixel resolution for the years 2017–202123. Classification was performed using a U-Net deep 
convolutional neural network model for semantic segmentation. The U-Net was trained using an extremely 
large dataset of over 5 billion human-labeled pixels paired with Sentinel-2 multispectral image composites. To 
create a LULC map for a given year, the least cloudy scenes over the year are selected and predictions are made 
for every Sentinel-2 tile, then combined by taking a class-weighted mode of all predictions. Karra et al. (2021) 
reported an overall accuracy of 85% but did not provide more granular metrics for countries in Africa. We bina-
rized the dataset by converting pixels labeled with the crop class to a label of 1, and otherwise 0. We accessed 
the Esri LULC map using the following GEE asset: ee.ImageCollection("projects/sat-io/
open-datasets/landcover/ESRI_Global-LULC_10m_TS").

ESA WorldCover. The ESA WorldCover global land cover product was designed to build on the lessons learned 
from the ESA GlobCover and ESA CCI Land Cover products described in the previous section. WorldCover 
provides a global land cover classification map at 10 m/pixel resolution for 11 classes (including cropland)43. 
A large number of input features were extracted from Sentinel-2 multispectral, Sentinel-1 synthetic aperture 
radar, and several other Earth observations datasets (similar to the features extracted for the Copernicus Land 
Cover map described previously), in addition to localizing features such as the latitude/longitude position. These 
features were then used to train a CatBoost decision tree classifier, the outputs from which are post-processed 
using expert rules designed to reduce classification errors. The product validation report reported a precision 
score (user’s accuracy) of 71.4 ± 0.7% and recall score (producer’s accuracy) of 50.8 ± 0.7% for the cropland 
class in Africa and an overall accuracy of 73.6 ± 0.2% in Africa44. WorldCover provides a v100 map for the year 
2020 and a v200 map for the year 2021; we used v100 for year 2020, which most closely matches our reference 
data. We accessed the ESA WorldCover map using the following GEE asset: ee.ImageCollection("ESA/
WorldCover/v100").

Dynamic world. Unlike the previous cropland and land cover maps that represent the land cover status of map 
locations based on satellite observations collected over a year or multiple years, Dynamic World represents the 
land cover status at a particular date. Dynamic World provides a new global land cover classification at 10 m/
pixel for every new cloud-free Sentinel-2 observation, which is nominally acquired every 5 days everywhere on 
Earth21. Dynamic World uses a fully-convolutional neural network (FCNN) to segment (i.e., classify all pixels in 
an input image) the land cover classes in a given Sentinel-2 multispectral image, trained on globally-distributed 
samples. Dynamic World provides land cover class probabilities and class labels (the class with the highest 
probability in each pixel) for nine land cover classes, including cropland. While Dynamic World is meant to 
capture near real-time land cover, it can represent a longer time period by computing a mode composite over 
that time period (e.g., one year as in the other maps in this study). We used a mode composite of Dynamic World 
land cover classes corresponding to the reference data year of each test region (e.g., 01/01/2019-12/31/2020 for 
Kenya) and then binarized the map so that the crop class had a label of 1 and all other classes had a label of 0 
(representing non-crop classes). Brown et al. (2022) reported an accuracy of 88.9% for the crop class, noting that 
Dynamic World tended to identify crops more poorly than other classes21. We accessed the Dynamic World map 
using the following GEE asset: ee.ImageCollection("GOOGLE/DYNAMICWORLD/V1").

Ensemble maps. ASAP crop mask. The Anomaly hot Spots of Agricultural Production (ASAP) crop mask 
was created to provide a mask that could be applied to various Earth observation datasets to provide timely 
information about potential crop production anomalies using metrics computed from earth observations 
in crop areas11. The ASAP global crop mask combines land cover and land use maps from multiple sources. 
For Africa, ASAP used the 250 m/pixel land cover map from Vancutsem et al. (2013), which combined ten 
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different regional and global land cover maps based on expert judgment to create a “best available” crop mask 
for Africa. In certain countries for which a national crop mask was available (Afghanistan, Argentina, Australia, 
Europe, Mexico, and USA), that map was used in ASAP. In all other countries, the GlobCover32 classifica-
tion was used. All datasets were resampled to 1 km/pixel resolution with pixel values interpreted as the crop 
area fraction in each pixel (ranging from 0 to 100%). We re-classified pixels with crop area fraction ranging 
from 5–95% to 1, and all other pixels to 0, following the procedure described in user documentation (https://
glam1.gsfc.nasa.gov/api/doc/cropmask/v1/EC-JRC-ASAP-LC_v02_crops). We accessed the ASAP Crop Mask 
using the following GEE asset: ee.Image("projects/sat-io/open-datasets/landcover/
AF_Cropland_mask_30m_2016_v3").

Nabil et al. Similar to the ASAP crop mask, the combined crop mask published by Nabil et al.24 com-
bines the best of four compared land cover maps within each of 41 AEZs to create a more accurate crop-
land map for the African continent than each of the individual maps24. The authors compared the accuracy 
in each AEZ of four maps—ESA-S2-LC2028, GFSAD Global Cropland Extent29, CGLS-LC100-201631, and 
FROM-GLC30-201745 (the first three of which we included in this study)—using a combination of labeled val-
idation datasets. For each AEZ, the compared map that had the highest accuracy was used in the final map. 
The majority of the map uses classifications from GFSAD GCEP followed by CGLS-LC100-2016, as these were 
found to have the highest accuracy in the majority of AEZs in Africa. Using an independent random refer-
ence set to evaluate the combined map, Nabil et al.24 reported a precision score (user’s accuracy) of 93.73%, 
recall score (producer’s accuracy) of 61.93%, and overall accuracy of 91.64%. We accessed the Nabil et al. map 
using the following GEE asset: ee.Image("projects/sat-io/open-datasets/landcover/
AF_Cropland_mask_30m_2016_v3").

Majority Vote. We created a majority vote ensemble to evaluate whether a combination of all of the maps 
compared in this study would achieve better performance than individual maps. If 6 or more of the 11 compared 
maps classified a pixel as crop, the pixel is classified as crop in the Majority Vote map. If 5 or fewer maps classi-
fied a pixel as crop (i.e., 6 or more classified as non-crop), then the pixel is classified as non-crop.

Reference datasets. Sample design. We created reference datasets for evaluating the accuracy of all 
maps in Togo, Kenya, Malawi, Mali, Rwanda, Tanzania, Uganda, and Zambia. As recommended by Stehman 
and Foody33, we used a probability sampling design to ensure the representativeness of the sample and produce 
an unbiased estimate. For all countries except Mali, we sampled reference points by drawing a random uniform 
sample of point locations within each country’s boundaries. Cropland constitutes a very small percentage of the 
total land area in Mali, thus a uniform random sample would result in a very small sample size for the cropland 
class. To try to increase the sample size for cropland in Mali, we sampled points using a stratified random sample 
with strata defined by four NDVI intervals using the mean annual NDVI from Sentinel-2: (−1, 0.13], (0.13, 0.2], 
(0.2, 0.3], (0.3, 1]. We assigned an equal number of points to each stratum. Table 4 summarizes the characteristics 
of each dataset. Figure 8 shows a map of the spatial distribution of the reference samples.

Response design. For each country sample, trained individuals manually analyzed high-resolution satel-
lite images of PlanetScope (3 m/pixel resolution) monthly composites and other auxiliary sources (10 m/
pixel Sentinel-2 and sub-meter resolution images in Google Earth Pro) in the Collect Earth Online platform. 
For each point, annotators were instructed to inspect images from each month spanning the country’s growing 
season and determine whether the point contained active cropland. We defined active cropland as points where 
patterns of sowing, growing, and/or harvesting in an agricultural field could be observed during the relevant 
agricultural season within a 12-month period. Interpreters were blind to the class predicted by any maps during 
labeling. At least two annotators labeled every point to maximize label confidence; the number of labelers that 
annotated each point in each dataset is indicated in the “Num. labels per sample” column in Table 4. We dis-
carded points that did not have unanimous agreement between labelers to ensure high-confidence labels in the 
final reference dataset.

Metrics and evaluation. We used the following metrics to evaluate the accuracy of each map in this study 
using the reference datasets, which are commonly used for accuracy assessment in both machine learning and 
remote sensing: overall accuracy and F1 score, precision (also called user’s accuracy or UA), and recall (also 
called producer’s accuracy or PA). These metrics are reported in Table 1. The recall for the positive (crop) class 
is also known as sensitivity. We used the equations from Stehman and Foody33 and Olofsson et al.46 to compute 
estimates and standard errors for precision (UA), recall (PA), and overall accuracy. We computed the metrics 
from the population error matrix as recommended by Stehman and Foody33 to ensure the accuracy estimates 
are map relevant33. We describe in detail the procedure for computing the population error matrix and sub-
sequent metrics. In the case of a binary map classification as in our study, the population error matrix is a 
2 × 2 matrix in which rows represent the map classification and columns represent the reference classification 
expressed in terms of area proportion computed from the map. The population error matrix is computed from 
the sample error matrix, also called the confusion matrix. The confusion matrix C is defined as follows in terms 
of the number of samples representing true negatives (TN), false negatives (FN), false positives (FP), and true 
positives (TP):
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The area matrix A contains the total mapped area in each class expressed in terms of the number of pixels:
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The total number of pixels in the map is n n nneg pos= + . The weight matrix W gives the proportion of area 
mapped as each class, computed by dividing each element in the area matrix by the total mapped area:
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The population error matrix E can then be computed as follows, where C•j is the sum of each column in the 
confusion matrix C:

= ∗

∙
E W C

C (4)j

Overall accuracy, precision, and recall can be computed using the elements pij of the population error matrix 
E. Overall accuracy is computed by summing the diagonal elements of the population error matrix:
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where c is the number of classes. The precision (user’s accuracy) for each class can be computed as:
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where pi• is the sum of each column in E. The recall (producer’s accuracy) for each class can be computed as:

Fig. 8 Map showing the distribution of reference samples. Panel A shows the maps in the context of the African 
continent while Panel B gives larger views of the maps (countries not to scale).
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where p•j is the sum of each row in E.
The variance estimators for each metric are given by Eq. 16–18 in Stehman and Foody33, which we re-write 

using the terminology of the previous equations as follows:
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where �N j∙  is the estimated total number of pixels of reference class j. In our results, we reported the standard 
deviation σ calculated from each variance estimate v: vσ = . We computed the F1 score using the estimates of 
precision and recall and computed the standard error using error propagation47 as follows:
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2 , which can be simplified to
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Since the uncertainty of X and Y are not independent, they do not add in quadrature. Instead, their relative 
errors are added:
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Since F1 = XY, we multiply both sides by X/Y to get:
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The error in X and Y are:
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We substitute Eqs. 8 and 9 into Eq. 7 to get the final expression for the error of F1:
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Country

Number of samples

Label validity period Num. labels per sampleTotal Crop Non-crop Crop %

Kenya 573 36 537 6.3 Feb 2019-Jan 2020 2

Malawi 154 31 123 25.2 Sep 2020-Aug 2021 2

Mali 447 10 437 2.2 Feb 2019-Jan 2020 2

Rwanda 107 43 64 40.2 Jan 2019-Dec 2019 3

Tanzania 1201 431 770 35.9 Jan 2019-Dec 2019 2

Togo 182 51 131 39.0 Jan 2019-Dec 2019 4

Uganda 233 26 207 11.2 Jan 2019-Dec 2019 2

Zambia 489 20 469 4.1 Jan 2019-Dec 2019 2

Total 3386 740 2646 21.9 — —

Table 4. Reference sample datasets used for independent evaluation of cropland maps.
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Data availability
The datasets used in this analysis are available from Zenodo48. The Zenodo repository includes the following 
specific datasets:

1. Labeled reference datasets for each country used for evaluation and summarized in Table 4, in shapefile 
format

2. CSV file of the evaluation metrics computed for each map using the reference dataset from each country
3. Consensus maps for each country indicating in each pixel the number of maps that predict cropland (used 

to create Fig. 2), in GeoTIFF format with 10 m/pixel resolution

The reference datasets are also available as public feature collection assets via Google Earth Engine (note that 
you must be signed in with a Google Earth Engine account to view/access these links):

1. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
kenya-2019-reference-points

2. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
malawi-2020-reference-points

3. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
mali-2019-reference-points

4. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
rwanda-2019-reference-points

5. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
tanzania-2019-reference-points

6. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
togo-2019-reference-points

7. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
uganda-2019-reference-points

8. https://code.earthengine.google.com/?asset=projects/bsos-geog-harvest1/assets/harvest-reference-datasets/
zambia-2019-reference-points

The maps and other datasets used in this study can be visualized and compared in a Google Earth Engine app at 
https://hkerner-umd.users.earthengine.app/view/intercomparison-of-public-crop-maps-in-sub-saharan-africa.

Code availability
The code used for processing and evaluating each of the maps in this study is publicly accessible at https://github.
com/nasaharvest/crop-mask/blob/master/src/compare_covermaps.py.
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