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Multifractal analysis of maize 
and soybean DNA
J. P. Correia 

This paper investigates the complexity of DNA sequences in maize and soybean using the multifractal 
detrended fluctuation analysis (MF-DFA) method, chaos game representation (CGR), and the 
complexity-entropy plane approach. The study aims to understand the patterns and structures of 
these DNA sequences, which can provide insights into their genetic makeup and improve crop yield 
and quality. The results show that maize and soybean DNA sequences exhibit fractal properties, 
indicating a complex and self-organizing structure. We observe the persistence trend between 
sequences of base pairs, which indicates long-range correlations between base pairs. We also 
identified the stochastic nature of the DNA sequences of both species.

Maize, commonly known as corn and soybean, are two of the most significant crops in global agriculture, each 
playing a vital role in food production, animal feed, and various industries. They are vital sources of calories, 
proteins, and essential nutrients, contributing to balanced diets and sustainable agricultural  practices1–5. Addi-
tionally, these crops have significant economic importance, supporting livelihoods and driving agricultural 
industries such as food processing, animal husbandry, and biofuel  production6,7.

Maize is one of the oldest and most significant cereal crops in the world, and maize has a lengthy and rich 
history. Native Americans have been cultivating it in the Americas for a very long time, and it was a staple food 
for ancient civilizations like the Maya and the Aztecs. Maize arose in Europe for the first time in the late 15th 
century, and it quickly spread to other parts of the world, such as Asia and  Africa8–10. Similarly, soybean is a 
highly significant crop with a fascinating history and widespread cultivation. Native to East Asia, soybeans have 
been cultivated for centuries and have become a global commodity. Initially grown as a staple crop in East Asian 
civilizations, soybeans gradually made their way to the Americas and Europe through trade and  exploration11,12.

Today, these commodities are one of the most widely grown crops in the world. The maize has global produc-
tion reaching a record high of 1.2 billion tonnes in 2020, according to the Food and Agriculture Organization 
of the United  Nations13,14. The United States is the largest producer of maize, followed by China, Brazil, and 
Argentina. These countries account for over 60% of the world’s maize production. Likewise, the world soybean 
production in 2020 was 353.5 million tonnes, with Brazil being the largest producer at 135.0 million  tonnes15, 
followed by the United States at 96.2 million metric tonnes. Other top producers include Argentina, China, and 
 India14,16.

On the other hand, understanding the complexity of these DNA sequences in these plants is crucial for 
improving crop yield and  quality17,18. One of the ways to analyze the sequences is to determine the fractal 
 properties19. Recently, multifractal analysis has emerged as a powerful tool for characterizing the non-linear 
dynamics of biological systems, including plant genomes. The multifractal analysis provides a quantitative meas-
ure of the scale-invariant properties of a system, which can reveal hidden patterns and correlations in the  data20,21. 
Of the various statistical tools available for fractal analysis, we can cite the MF-DFA (Multifractal Detrended 
Fluctuation Analysis) method, proposed by  Kantelhardt20, which describes different statistical characteristics of 
time series on different time scales.

Another essential tool is the CGR (Chaos Game Representation). The CGR is a visualization technique that 
can be used to represent DNA and protein sequences. It was first proposed by Jeffrey and Sander in  199222. The 
method is based on the idea of iterative plotting points on a two-dimensional grid, where the position of each 
point is determined by the sequence of nucleotides or amino acids in the input sequence. The resulting image 
can reveal patterns and features of the sequence that may not be obvious from the raw  data23,24.

An interesting tool to analyze data in this work is permutation  entropy25,26. It is a measure of complexity 
that quantifies the amount of regularity or predictability in a time series. They have been successfully applied 
in various fields, including physics, biology, finance, and  economics27–30. It is based on mapping the time series 
into a sequence of patterns or ranks, which can be analyzed using metrics such as permutation entropy and 
complexity-entropy plane. The complexity-entropy plane plots the relationship between the permutation entropy 
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and the complexity of the time series, providing insights into the structure and dynamics of the system under 
 investigation31.

Due to the importance of maize and soybean not only for the world economy but also for the planet’s food 
security, in this study, we investigate the properties of sequences DNA of these commodities, using a multifractal 
detrended fluctuation analysis (MF-DFA) method, Chaos Game Representation, and plane complexity-entropy 
to analyze the behaviour scale and determine the fractality of nucleotide sequences. For this, we use the database 
available on the NCBI  website32. We define a function to transform the sequence of base pairs {A,C,G,T} into 
a time series. Our results indicate that both species exhibit fractal behaviour along DNA sequences and power 
law correlations between base pairs. The time series generated by DNA sequences present high persistence and 
stochastic behaviour, with implies that it has a long-term memory and a tendency to remain close to its past 
values, while its short-term fluctuations are random.

Theoretical background
Chaos game representation
The chaos game representation technique is a generalized Markov chain and allows a unique representation of a 
nucleotide sequence. A mapping rule that transforms a sequence into a two-dimensional picture can reveal fractal 
structures and has shown promise in recognizing underlying local and global patterns or nucleotide selection 
bias in gene  sequences23,24. Mathematically chaos game representation, is described by an iterative system func-
tion, where for each new base pair we obtain a set of coordinates (p, q). The algorithm of this approach follows 
the following  steps22–24,33: 

1. The nucleotides “A”, “T/U”, “G” and “C” are positioned at the vertices of a square centered at the origin, with 
coordinates (0, 0). We denote the location of the vertices VA = (−1, 1) , VC = (−1,−1) , VG = (1, 1) and 
VT = (1,−1) corresponding to the bases A, C, G and T, respectively.

2. Given a sequence of base pairs, the first point of the representation is placed at the midpoint between the 
center of the square and the vertex indicated by the monomer of the first nucleotide.

3. The position of the second point in the representation is obtained by placing it at the midpoint between 
the position of the first nucleotide and the square of the vertex indicated by the same letter as the second 
nucleotide.

4. The positions of each subsequent nucleotide are obtained as the midpoint between the position of the previ-
ous nucleotide and the vertex corresponding to the current nucleotide. Mathematically, the positions (p, q)i+1 
are obtained by the recurrence relation: 

 where j ∈ {A,C,T ,G} and we start from the center of the square (p, q)0 = (0, 0).
In this representation, each point in the CGR corresponds precisely to a subsequence (starting from the first 
base), and the entire original subsequence of nucleotides up to the current nucleotide can be reconstructed just 
by knowing the corresponding point in the CGR 34.

An essential application of the CGR is to assess the abundance of k-mers in a series of  nucleotides34. A 
k-mers corresponds to a subsequence of k bases. This approach takes advantage of the uneven distribution of 
subsequences of length k (k = 1, 2, 3, . . . ) along the nucleotide chain. For example, if we have the DNA sequence 
“ATC GAT CGA” and set k = 3, then the 3-mers would be: ATC, TCG, CGA, GAT, ATC, TCG,CGA. The CGR 
algorithm generates a square with subquadrants divided by grids where it is possible to represent the frequency 
of these 3-mers in an image. In Fig. 1 we represent the two-dimensional image generated by the FCGR algorithm. 
The image is a square with subquadrants where each subquadrant represents a pixel to a given k-mer. For each 
subquadrant, we associate a gray level that corresponds to the frequency of occurrence of k-mers in the sequence.

Let us consider, for example, the artificial sequence “ACGT”. In this case, each k-mer of length k = 1 must 
belong to one of these four quadrants in Fig. 1 middle column on the left. We get one point in each quadrant 
because we have precisely four different letters in “ACGT”. FCGR counts the occurrence of monomers in each 
quadrant and assigns a relative grayscale value. Generally, the greater the number of occurrences (the frequency), 
the darker the quadrant, and vice versa. Therefore, for the string “ACGT”, each corresponding quadrant is rep-
resented by the same gray level. For a different sequence, like “TTCA”, we have two points in the T quadrant, 
one point in the C quadrant, one point in the A quadrant, and no points in the G quadrant. Thus, the gray level 
of quadrant T is twice as high as that of quadrants C and G, while quadrant A is white, as shown in Fig. 1 lower 
left line.

The representation k = 3 , in the right column of Fig. 1, corresponds to: For subsequence “ACGT”: ACG, CGT. 
For subsequence “TTCA”: TTC and TCA. All have the same degree of gray, as they occur with the same frequency 
in the sequence, and the other representations are blank, as they do not happen in the sequence.

In the same way, we count the frequency of 2-mers in the chains. In the middle row of Fig. 1, we represent 
the occurrence of the 2-mers for the sequences “ACGT” and “TTCA”. The 2-mers in these sequences have the 
same shade of gray since they appear with the same frequency, and the other quadrants appear in white since 
the 2-mers that it represents do not appear. The lower lines on the right of Fig. 1 show the 3-mers representation 
of the “ACGT” and “TTCA” sequences.

(1)(p, q)i+1 =
1

2
((p, q)i + Vj),
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Global distance
The Ref.23 proposes using the FCGR to determine the dissimilarity between DNA sequences through global 
distances between sequences on a given scale. For this, we calculate the global distance d between two FCGRs 
based on Pearson’s Weighted Correlation Coefficient, rwp,q , using the following equations

where p and q are the coordinates of the quadrants in FCGR, each containing the occurrence of the same k 
oligomeric sequences.

The modification of Pearson’s standard definition consists of weighting the variance with the frequency nw to 
determine the correlation between the two sets of quadrants. The advantage of using this coefficient definition is 

(2)
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Figure 1.  Quadrants in FCGR at different pixelation levels k. In the first line, each quadrant uniquely 
corresponds to a specific string of length k: k = 1 (Left column), k = 2 (Middle column) and k = 3 (Right 
column) k = 3 (Top row). In the middle line, we have FCGR of the “ACGT” sequence, with different scales k. On 
the bottom line, FCGR representation of the “TTCA” sequence.
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that the importance of each quadrant is proportional to the frequency of the oligomer it represents. The distance 
d between two DNA sequences is defined by

and has a value between 0 and 2. Values close to zero correspond to exact similarity between sequences and 
values greater than one would correspond to negative transformation coefficients between sequences. The value 
of d is specific to the resolution of frequency decompositions (FCGR) being detected.

Time series
The four nitrogenous bases that comprise DNA are represented by the letters {A,C,G,T} (adenine, cytosine, 
guanine, and thymine, respectively). We create a function f that maps the four nitrogenous bases that make up 
the DNA sequence into four distinct values.

In writing, we use the following notation: f (A) → 2 , f (C) → −2 , f (G) → 1 and f (T) → −1 . Consequently, 
we have a sequence of valeus {xk : k = 1, 2, . . . ,N} with xk ∈ {±1.± 2} . To build our time series x(t), we perform 
a cumulative sum of the values of xk . Each value of the cumulative sum will result in a value that corresponds 
to a temporal measurement t.

A similar definition was used  in34,35 and aimed to distinguish purines (A and G) from pyrimidines (C, T, U).

Ordinal patterns
Ordinal pattern methods involve mapping a time series to a sequence of patterns or ranks, where each pattern 
reflects the order of values in a given window. This mapping enables the study of complex systems by comput-
ing various metrics, including permutation entropy and complexity-entropy  plane25,36–38. In 2002, Bandt and 
Pompe introduced these methods as a simple, robust, and computationally efficient way to measure complexity 
in time series  data31. This measure is defined as the Shannon entropy of a probability distribution associated with 
ordinal patterns evaluated from partitions of a time series - a process known as the Bandt-Pompe symbolization 
approach.

Let be {x(t) : t = 1, 2, . . . ,N} a time series with N observations. We divide the series into nx = N − (dx − 1)τx 
non-overlapping partitions, composed of dx > 1 elements and separated by time τx ≥ 1 . For a given dx and τx , 
we obtain partitions set wp = (xp, xp+τx , . . . , xp+(dx−1)τx ) where p is the index of the partition.

Next, we sort the elements of each partition in ascending order, i.e., for each partition wp , we evaluate the per-
mutation πp = (r0, r1, . . . , rdx+1) of the index numbers (0, 1, . . . , dx − 1) that sorts the elements of wp in ascending 
order. The permutation of the index numbers defined by the inequality xp+r0 ≤ xp+r1 ≤ · · · ≤ xp+rdx−1

 e in case 
of equal values, we maintain the occurrence order of the partition elements. After evaluating the permutation 
symbols associated with all data partitions, we obtain a symbolic sequence {πp}p=1,...,nx . For more details about 
this method, we recommend the Refs.25,38,39

The Ordinal Probability Distribution {ρi(�i)}i=1,...,nπ is the relative frequency of all possible permutations 
within the symbolic sequence, given by

where �i represents each of nπ = dx ! different ordinal patterns.
With the ordinal probability distribution, we can calculate the Shannon entropy of permutation

Entropy, in this context, refers to the degree of disorder or randomness in a time series. Specifically, permutation 
entropy is a measure of the unpredictability of the order of patterns in a time series such that S ≈ log nπ indicates 
randomness and S ≈ 0 indicates more regular dynamics. Because the maximum value of S is Smax = log nπ , we 
can further define the normalized permutation entropy as

where the value of H is restricted to the interval [0, 1].
Another essential measure to characterize a series is complexity. In addition to Bandt and Pompe’s symboliza-

tion approach, the complexity-entropy plane is a well-known technique for analyzing time series  data31. It offers 
a two-dimensional representation space based on permutation entropy H and an intensive statistical complexity 
measure C. This approach, initially created to distinguish between chaotic and stochastic time series, has proven 
helpful in various situations, including pattern recognition and  classification27,28.

The statistical complexity measure used in this method was inspired by Lopez Ruiz’s  work40 and is defined by 
Jensen-Shannon divergence between the ordinal distribution P = ρi(�i)i=1,...,nπ and the uniform distribution 
U = {1/nπ }i=1,...,nπ . Mathematically, we can write this complexity as

where

(3)d = 1− rwp,q,

ρi(�i) =
number of partitions of type�i in {πp}

nx
,

(4)S(P) = −
nπ
∑

i=1

ρi(�i) log ρi(�i).

(5)H(P) =
S(P)

log nπ

(6)C(P) =
D(P,U)H(P)

Dmax
,
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is the Jensen-Shannon divergence and Dmax is the normalization constant given by

The existence of nontrivial structures is quantified by complexity. The statistical complexity C = 0 in both the 
extremes of order (when only one permutation symbol happens) and disorder (when all permutations are equally 
likely to occur), in contrast to the permutation entropy, which is non-zero. The value of C measures structural 
complexity and conveys extra details that the value of H does not. Furthermore, there are a variety of alterna-
tive values for C for a given value of H, making C a nontrivial function of H. A more detailed discussion of the 
meaning of C complexity can be found in Ref.40.

Multifractal dentendred flutuation analysis
Assume that {x(t) : t = 1, 2, . . .N} is a time series with N data points. The Multifractal detrended fluctuations 
analysis procedure consists of the following  steps20: 

1. We determine the profile 

 where 〈x(t)〉 is the average of the time series.
2. The profile Y(i) is divided into Ns = int(N/s) non-overlapping segments of equal length s. Since N will not 

always be a multiple of s, a final part of the profile may be left over. To avoid discarding this part of the series, 
the same procedure is repeated starting from the end. So we will get 2Ns segments.

3. Calculate the local variance for each of the 2Ns segments by least squares fit 

 for each segment v, v = 1, 2, . . . ,Ns , and 

 for each segment v = Ns + 1,Ns + 2, . . . , 2Ns . Here yv(i) is the fit polynomial in the i segment and is chosen 
based on the time series trend. We can use polynomials of different orders in the fitting process so that we 
will have polynomials of linear (DFA1), quadratic (DFA2), cubic (DFA3), and higher orders.

4. So far, we have obtained F(v, s) which is the variance of each segment v of size s with an arbitrary polynomial. 
We define the q− th order of the fluctuation function by averaging all 2Ns segments 

 When q = 2 , we return the default DFA technique. For different values of q, we are interested in how the 
fluctuation function Fq(s) varies on each length scale s. We repeat steps 2 through 4, varying s,

5. If there is a long-range power law correlation in the series xk , Fq(s) increases for large values of s, mimicking 
a power law 

 where h(q) is the generalized Hurst exponent.
A time series is monofractal if the Hurst exponent H remains constant regardless of the value of q. On the other 
hand, if h(q) varies with q, the time series is multifractal. The spectrum of h(q) is determined by the slopes of 
the Fq(s) vs. s graph for different q  values20,21. The variations in h(q) are examined to assess the impact of scale 
fluctuations. The difference between the asymptotic values of h(q), denoted as �h(q) = hqmin − hqmax , is com-
puted to measure the departure from monofractal behavior. The parameter �h(q) = 0 in monofractal series. The 
magnitude of �h(q) indicates the multifractality and dynamics complexity level in the time series. See References 
for a more detailed explanation and calculation of the generalized Hurst  exponent41.

The MF-DFA technique is unsuitable for strongly anti-correlated series where h(q) approaches zero, as it only 
calculates positive generalized Hurst exponents. In order to address this issue, a modified MF-DFA approach 
has been recommended. This modification, represented by a double sum substitution in Eq. (7), provides a more 
appropriate method for analyzing such  data20
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Following the MF-DFA procedure as described above, we obtain generalized fluctuation functions F̃q(s) described 
by a scaling law as in Eq. (11), but with higher exponents h̃(q) = h(q)+ 1

Thus, the scaling behavior can be accurately determined even if h(q) is less than zero for some values of q. The 
multifractal scale exponent τ(q) of the form can be used to understand the dependency on q in the multifractal 
situation

which depends on the generalized Hurst exponent h(q). The properties of multifractality are more robust as the 
nonlinear relationship between τ and h(q) is more potent.

The multifractal spectrum (α, f (α)) , which is related to the multifractal scale spectrum τ(q) through a first-
order Legendre  transformation42,43, is another approach to represent the multifractal of a time series. If τ(q) is 
sufficiently smooth, the singularity’s strength, α , is given by

from which the singularity spectrum f (α) can be constructed

The graph of f (α) vs α , also known as the multifractal spectrum or spectrum of singularities, reflects the prop-
erties of the profile of h(q). The exponent α reveals the differences in scale exponents, and the magnitude of 
the singularity force α is higher for time series with stronger multifractality centered on the prominent scale h. 
The function f (α) reaches its maximum value when q = 0 , with max f (α) = 1 . In a monofractal series, where 
α = τ ′(q) = H , the sets representing f (α) collapse to a single point.

We also define the symmetry parameter B given by

The spectrum is symmetric if B = 1 . Subsets exhibiting minor fluctuations generally have a more pronounced 
impact on the multifractal spectrum when B > 1 , suggesting a directly symmetric spectrum. Conversely, if 
B < 1 , the multifractal spectrum skews toward the left, with the larger fluctuations tending to exert a greater 
influence on it. See References for a thorough evaluation of the generalized Hurst coefficients’ significance and 
 interpretation20,41,44.

Results and discutions
Maize and soybean nucleotide sequences are available from the National Center for Biotechnology Information-
NCBI32. We used the complete sequences of the 10 chromosomes that make up maize and 20 chromosomes that 
make up soybean to apply the analysis tools.

Chaos game representation
We obtained chaos game representations for all 30 chromosomes with different scales k. We use the code available 
 in33. This representation allows the visualization of repetition patterns in nucleotide sequences. This approach 
allows us to visualize geometric patterns like parallel lines, squares, rectangles, and triangles. The abundance 
of nucleotide sequences in the image is reflected through the degree of gray so that the more abundant the k, 
the darker the quadrant that represents it. The CGR image can reveal the overall base composition of the DNA 
sequence. Different regions of the image correspond to different nucleotide frequencies.

In Fig. 2, we present the frequency of 3−mers, 5−mers, and 6− mers for the randomly chosen chromosomes 
2 and 5 for maize. These results correspond to the degree of pixelation k = 3, 5 and 6 , respectively. At these 
degrees of pixelation, all possible combinations of nucleotide sequences are displayed. In Fig. 3, we present the 
results with the same scales k = 3, 5 and 6 for the soybean chromosomes 2 and 5. The other chromosomes present 
patterns similar to those presented. Visually, the images generated by the soybean sequences appear to have a 
more explicit fractal behavior, with better-defined geometric patterns.

By generating CGR for all 30 chromosomes using various scales, we identified a range of fractal shapes, 
including parallel lines, squares, rectangles, and intricate fractal structures. This discovery highlights the underly-
ing principles that govern the arrangement of nucleotides and opens up new ways for understanding the func-
tional and evolutionary aspects of the genome. We can see that the distribution of degrees of gray has a behavior 
that is not random for both species.

When a Chaos Game Representation (CGR) image displays global patterns of squares and parallel lines, it 
suggests the presence of specific structural elements or motifs within the DNA sequence. The squares observed 
in the CGR image indicate regions of the sequence that exhibit repetitive patterns. These squares represent areas 
where specific nucleotide sequences or structural elements occur repeatedly. Moreover, the presence of parallel 

(12)Ỹ =
i

∑

k=1

[Y(k)− �Y�].

(13)F̃q(s) ∼ sh̃(q) = sh(q)+1

(14)τ(q) = qh(q)− 1,

(15)α =
dτ(q)

dq
= h(q)+ qh′(q),

(16)f (α) = qα − τ(q).

(17)B =
αmax − α0

α0 − αmin
.
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lines in the CGR image indicates the presence of periodic or alternating patterns within the DNA sequence. These 
lines can signify regions where the DNA sequence exhibits a periodicity or a repeated pattern of nucleotides or 
base compositions.

Figure 2.  FCGR for randomly chosen maize chromosomes. The first column indicates the results for 
chromosome 2 and the second for chromosome 5. Each row shows different scales for various k scales. Top: 
k = 3 , middle: k = 5 and bottom: k = 6 . All maize chromosomes exhibit similar FCGR behavior.
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We calculated the similarity between the chromosomes using Eq. (3) for pixelation level k = 3 . See Table 1. 
All chromosomes are highly similar, with 0.120 < d < 0.190 . It means that all chromosomes are similar, and 

Figure 3.  FCGR for soybean chromosomes. The first column indicates the results for chromosome 2 and the 
second for chromosome 5. Each row shows different scales for various k scales. Top: k = 3 , middle: k = 5 and 
bottom: k = 6 . All soybean chromosomes exhibit similar FCGR behavior.
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the distribution of trimers in chromosome sequences is related. In this sense, the species of maize and soybean 
are very similar.

Time series and ordinal patterns
This construction step of time series from chromosome sequences is essential for applying the MF-DFA and 
ordinal patterns methods. We use the f mapping rule defined in the “Time series” section. We reinforce that, as 
different mapping rules can be made to transform a sequence of symbols (DNA sequence) into a time series, 
we can obtain different fractal parameters that characterize the data. However, as we apply the same rule to 
both species, we can obtain important information by comparing the obtained fractal parameters. The main 
statistical characteristics of the resulting time series are shown in Table 2 and the time series representations, for 
some chromosomes chosen randomly, are shown in Fig. 4 for both species. We can observe in the graphs of the 
walks that positive values tend to appear, indicating the concentration of A and G in the nucleotide sequences, 
as defined by our mapping rule.

We calculated entropy H and complexity C time series generated for all maize and soybean chromosomes. 
We divide the time series into nx partitions of sizes dx = 3 and τx = 1 . We use the Ordpy library introduced  by38 
and available  in45.

We plot the values obtained in the complexity-entropy plane for each chromosome; see Fig. 5. Entropy values 
for soybean are around H ≈ 0.855 and complexity C ≈ 0.145 . For maize, H ≈ 0.906 and C ≈ 0.091 . Both series 
have high entropy and low complexity, indicating stochastic process characteristics. As the entropy H for maize 
is more significant than for the soybean, there is more genetic information for maize when we compare it with 
the soybean. Moreover, we also can say that the time series generated by corn has unpredictable patterns; that 
is, it has more random patterns for soybeans. It can be translated into a more blurred fractal pattern in the CGR 
of Fig. 2. On the other hand, soybean is more complex than maize, i.e., with higher complexity C. The statistical 
complexity quantifies the existence of non-trivial structures. In the cases of perfect order and total random-
ness, C = 0 means the data possesses no structure. Between these two extreme instances, an extensive range of 
possible values quantifies the level of structure in the data. The statistical complexity can detect subtle details 
of the dynamical processes that generate the data. In this sense, we can say that soybeans have a more complex 
structure than maize. This same result is corroborated by the CGR, where soybean has a more evident fractal 
structure than maize.

In the context of maize and soybean DNA sequences, it is critical to consider the C-value paradox, especially 
given the significant disparity in genome sizes between the two species. The “C-value paradox” is a term used 
in biology to describe the apparent disconnect between genome size and organism  complexity46,47. Although 
maize has a much larger number of base pairs, this quantity does not translate into a more organized genomic 
structure and greater complexity of the organism.

One possible explanation is that the soybean genome may have a relatively lower proportion of repeated 
sequences and mobile genetic elements compared to corn, which contributes to a clearer organization and more 
uniform genomic structure. Furthermore, soybeans may have undergone processes that favored genome com-
paction and the elimination of unnecessary or redundant sequences, resulting in a more efficient and cohesive 
organization of DNA.

MF-DFA analysis
We also applied the MF-DFA analysis to all 30 chromosomes. We use a Python library for MF-DFA introduced 
in Ref.48 and available on  Github49. We determine the generalized exponents and the multifractal spectra. We 
use the second-order polynomial fit (DFA2) over a segment interval s (100, 4, 000, 000) with step 1000 to obtain 
these results.

For comparison, we show two other artificial sequences: a periodic sequence constructed from the repetition 
of the letters “ATGC” 7, 500 times and another sequence with 30, 000 base pairs constituted of the letters “A”, 
“T”, “G”, and “C” randomly distributed. We made this comparison because these artificial time series present 
interesting behavior: The periodic series does not present a fractal pattern, and therefore, its fluctuation function 
is independent of q, while the random series presents a weak correlation between the nucleotides.

For the random sequence, one gets H � 0.5 and reveals a weakly correlated nucleotide sequence, as expected 
for a random sequence. For the periodic sequence, h(q) = 0 for all values of q (grey), and it reveals a non-fractal 
behavior. As seen in Fig. 6, for some chromosomal sequences, one obtains 0.97 � H , indicating that fluctuations 
in base pair sequences exhibit a highly persistent nature. The other chromosomes present the same behavior, and 
the Hurst exponents’ values for each one are shown in the Table reftab:estatistica. Persistence is characterized by 
the tendency of the time series to be followed by positive values (long-range correlation) when presenting posi-
tive values in the sequence. It means that when one of the base pairs Adenine and Guanine occurs, and there is 
a tendency for these nitrogenous bases to continue appearing over a long period, the same behavior is valid for 
the non-occurrence of these bases.

The h(q) spectra for all chromosomal sequences show relatively small variation with q; see �h in Table 2. The 
width of the h(q) plot can give insights into the degree of multifractality in a time series. If the width is narrow, 
it suggests a weak correlation between different scales of the time series. It is a simple fractal structure that a 
small number of scaling factors can describe. On the other hand, a broad width indicates a strong correlation 
between different scales. On average, we got ��h�maize = 0.369 for maize and ��h�soybean = 0.2915 for soybean, 
indicating that maize has a more heterogeneous sequence than soybean, characterized by a well-defined multi-
fractal structure with a long-range power-law correlation between nucleotides and a relatively more significant 
number of scale factors.
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The multifractal spectra obtained from Eq. (16) for all the curves show concave behavior with maxima at 
scaling indices α = h(2) . See Fig. 7 and Table 2. In the periodic sequence, the spectrum degenerates to a single 
point. The width of f (α) is a measure of the degree of multifractality: the greater the width, the more heteroge-
neous the fractal, i.e., the greater the complexity of the generating process of the analyzed series and the greater 
the difficulty in making predictions. On average we got ��α�maize = 0.495 for maize and ��α�soybean = 0.397 
for soybean. In this sense, maize has a greater mean variation, indicating that it has a more complex generator 
complex and is more difficult to make predictions about the time series.

Parameter B is more significant than 1 for most maize and soybean chromosomes. In this sense, we noticed 
that the soybean chromosomes present significant asymmetry. The left asymmetry indicates that the time series 
has higher complexity and variability at more minor scales, with fluctuations becoming less significant as the scale 
increases. On the other hand, chromosomes 4, 5 and 6, for maize, show right asymmetry and indicate that more 
significant fluctuations in chromosome sequences contribute more significantly to the multifractal spectrum.

The MF-DFA method is a powerful multifractal analysis tool and is a robust, well-known, widely used and 
easily applicable method. In addition to this, we can highlight other different analysis approaches that can be 
used to study vegetable sequences, such as multifractal detrended cross-correlation analysis, WTMM and its 

Figure 4.  Time series representation of chromosomes maize (top) and soybean (bottom), as described in “Time 
series” section. Note that all walks tend to go to higher values, meaning a high concentration of bases A and G.
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 variants50,51. Different approaches can be used to address this problem and offer distinct and complementary 
perspectives on the (multi)fractal characteristics of plant genetic sequences. Combining and comparing these 
methods provides a more complete and robust understanding of the temporal dynamics of the systems studied, 
allowing deeper insights into their complexity and emergent behavior over time.

Conclusion
We apply the Chaos game representation, ordinal patterns, and MF-DFA approach to study the characteristics 
of maize and soybean sequences. We investigated structural proprieties across multiple scales using these meth-
ods. The information obtained from this analysis helps classify and characterize genomic data. Through these 
approaches, it was demonstrated that:

Figure 5.  Plane complexity-entropy for maize and soybean chromosomes. Continuous lines represent 
minimum Cmin and maximum Cmax complexities. We zoomed in the region to better visualize the points.

Table 1.  Distance matrix d between maize chromosomes (horizontal) and soybean chromosomes (vertical), 
with scale k = 3.

Soybean

Maize

01 02 03 04 05 06 07 08 09 10

01 0.143 0.134 0.139 0.117 0.136 0.131 0.123 0.138 0.136 0.137

02 0.162 0.152 0.159 0.145 0.156 0.149 0.141 0.157 0.155 0.156

03 0.160 0.150 0.156 0.133 0.153 0.147 0.139 0.155 0.153 0.154

04 0.145 0.136 0.141 0.119 0.138 0.133 0.125 0.141 0.139 0.140

05 0.165 0.146 0.152 0.129 0.148 0.142 0.134 0.150 0.148 0.149

06 0.165 0.155 0.191 0.138 0.157 0.151 0.143 0.159 0.158 0.158

07 0.163 0.152 0.158 0.135 0.155 0.149 0.141 0.158 0.155 0.156

08 0.172 0.161 0.168 0.144 0.165 0.158 0.150 0.166 0.165 0.166

09 0.161 0.150 0.157 0.134 0.153 0.148 0.139 0.156 0.153 0.154

10 0.159 0.149 0.155 0.132 0.152 0.146 0.138 0.154 0.152 0.153

11 0.168 0.157 0.164 0.140 0.160 0.154 0.146 0.162 0.160 0.161

12 0.159 0.149 0.155 0.132 0.152 0.146 0.138 0.154 0.152 0.153

13 0.186 0.175 0.182 0.158 0.179 0.172 0.164 0.181 0.178 0.179

14 0.148 0.138 0.144 0.122 0.141 0.135 0.127 0.143 0.141 0.142

15 0.156 0.146 0.152 0.129 0.149 0.143 0.135 0.151 0.149 0.150

16 0.161 0.151 0.157 0.134 0.154 0.148 0.140 0.156 0.154 0.155

17 0.168 0.158 0.164 0.141 0.161 0.155 0.147 0.163 0.161 0.162

18 0.156 0.147 0.153 0.130 0.149 0.143 0.136 0.152 0.149 0.150

19 0.149 0.140 0.146 0.123 0.142 0.136 0.129 0.145 0.142 0.143

20 0.148 0.139 0.145 0.123 0.141 0.136 0.128 0.144 0.142 0.143
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• Through the Chaos Game Representation (CGR) method, we analyzed a set of DNA and protein sequences 
and generated fractal-like images that revealed unique patterns and features of the input sequences. The 
results from this method indicate that soybean sequences have a fractal structure more defined than maize 
sequences.

• This complexity in the soybean structure is also detected through the complexity measure C.
• CGR reveals the presence of power-law correlations at different scales for sequence DNA sequence. This 

result is corroborated by the Hurst exponent H values, in addition to indicating the persistent nature of the 
time series.

• Calculating the distance parameter d between all chromosomes, we conclude that the base pair sequences 
between the two species show high similarity.

• The mapping of base pairs of the sequences into numerical values informed us of the presence, in greater 
concentration, of the Adenine and Guanine bases in both species.

• The permutation entropy indicates that maize sequence is more random than soybean.
• Through the MF-DFA approach, we observe that, in the mean, the chromosomes from maize have a more 

complex multifractal structure than chromosomes from soybean; that is, more scaling factors are needed to 
characterize the sequence from maize than from soybean.

• The maize sequence presents a high degree of heterogeneity, characterized by the greater complexity of the 
time series’ generating process and complex prediction than the time series generated from soybean.

• The high left symmetry of the soybean sequences indicates that the time series has greater complexity and 
variability on small scales than the series generated by maize.

Table 2.  We show the main statistical characteristics of the time series generated by the sequences of base 
pairs of maize and soybean chromosomes. The first, second, third, fourth, fifth, and sixth columns indicate 
the chromosome, size of each sample, maximum and minimum values, and the samples’ mean and variance, 
respectively. We also present the main fractal measures: The seventh column contains the Hurst exponent H. 
The eighth, ninth, and tenth columns are, respectively, variations of �h = hmax − hmin , �α = αmax − αmin and 
symmetry parameter B.

Maize

CHR N Min Max Mean Variance H �h �α B

01 308, 009, 078 −702 9, 392, 918 4, 638, 136 7, 953, 513, 754, 802 0.99 0.17 0.26 1.60

02 242, 968, 907 −189 7, 433, 507 3, 734, 564 5, 240, 958, 583, 626 0.99 0.66 0.77 8.62

03 237, 196, 652 −528 7, 447, 127 3, 914, 916 5, 173, 791, 919, 150 0.99 0.30 0.43 4.37

04 249, 980, 224 −49, 644 8, 819, 644 4, 492, 570 6, 253, 898, 379, 091 0.99 0.28 0.44 0.47

05 226, 171, 974 −53, 003 7, 192, 730 3, 591, 582 4, 929, 352, 632, 979 0.98 0.27 0.40 0.48

06 180, 854, 649 −265 5, 191, 944 2, 613, 884 2, 483, 349, 000, 349 0.90 0.68 0.86 0.79

07 185, 614, 793 −461 6, 017, 835 3, 153, 221 3, 318, 905, 967, 141 0.98 0.43 0.55 5.11

08 182, 214, 470 −191 5, 781, 262 3, 033, 165 2, 904, 746, 990, 333 0.98 0.39 0.50 1.77

09 162, 713, 747 −509 5, 145, 068 2, 733, 723 2, 404, 245, 834, 613 0.99 0.24 0.36 2.60

10 152, 314, 425 −2, 317 4, 668, 762 2, 491, 098 2, 001, 048, 999, 103 0.98 0.27 0.38 2.17

Soybean

 01 56, 828, 858 −4 8, 305, 962 4, 040, 059 5, 119, 905, 865, 689 0.99 0.63 0.75 36.5

 02 49, 417, 934 −222 7, 746, 402 3, 898, 106 4, 412, 384, 626, 525 0.99 0.10 0.17 7.5

 03 45, 918, 609 −76 7, 136, 847 3, 462, 785 3, 843, 596, 419, 558 0.99 0.15 0.23 6.67

 04 50, 654, 792 −55 7, 357, 721 3, 712, 575 3, 869, 275, 038, 805 0.99 0.16 0.26 12

 05 41, 376, 929 −129 6, 233, 101 3, 028, 737 2, 826, 337, 391, 010 0.99 0.47 0.59 58

 06 49, 072, 608 −66 7, 646, 716 3, 937, 325 4, 364, 651, 515, 765 0.99 0.72 0.83 26.6

 07 44, 263, 258 −61 6, 928, 747 3, 588, 473 3, 593, 563, 463, 972 0.99 0.24 0.35 17

 08 46, 810, 571 −228 7, 511, 690 3, 869, 876 4, 259, 301, 645, 439 0.99 0.12 0.19 85

 09 47, 989, 247 −327 7, 330, 542 3, 609, 412 3, 936, 218, 669, 843 0.99 0.87 0.98 31.7

 10 50, 795, 466 −68 7, 769, 173 3, 794, 438 4, 448, 152, 110, 356 0.99 0.22 0.32 15

 11 38, 938, 890 −323 6, 065, 233 3, 140, 219 2, 896, 363, 324, 786 0.95 0.10 0.12 13

 12 40, 805, 084 −282 6, 105, 447 3, 137, 356 2, 737, 977, 759, 860 0.99 0.39 0.52 25

 13 44, 628, 233 −8, 622 7, 375, 225 3, 414, 071 4, 849, 537, 217, 069 0.99 0.15 0.20 9

 14 48, 925, 937 −10 7, 373, 518 3, 776, 555 4, 024, 438, 759, 515 0.99 0.09 0.15 13

 15 50, 694, 678 −178 7, 741, 446 4, 049, 917 4, 474, 764, 527, 700 0.99 0.55 0.66 21

 16 37, 472, 724 −273 5, 868, 029 2, 880, 534 2, 499, 544, 854, 176 0.99 0.14 0.21 4.25

 17 41, 228, 219 −225 6, 432, 032 3, 308, 281 3, 123, 754, 836, 447 0.99 0.27 0.37 36

 18 56, 808, 287 −71 8, 690, 214 4, 344, 757 5, 472, 052, 989, 922 0.99 0.33 0.41 19.5

 19 50, 139, 364 −1 7, 403, 584 3, 536, 675 3, 992, 740, 357, 008 0.99 0.35 0.46 14.3

 20 47, 358, 722 −187 6, 994, 429 3, 305, 208 3, 674, 593, 366, 604 0.99 0.13 0.17 7.5
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• The plane complexity-entropy reveals that both time series have stochastic process characteristics.
• In summary, maize sequences have a more complex and less random structure than maize. This complexity 

is translated through a better-defined fractal structure. Maize, on the other hand, has a more random and 
less complex structure.

Despite these important and promising results, we emphasize the need to connect these findings with biological 
meaning. The frequencies of k-mers may have implications for the occurrence of proteins in these vegetables. 
Furthermore, the MF-DFA analysis can have a lot to say about the mutations that these vegetables undergo over 
time. Therefore, a deeper approach that connects these results could be a promising next step.

Additionally, we stress the significance of conducting further research with more closely related species 
regarding phylogeny and genome size, as this is essential for extending and verifying the findings found thus far. 
These supplementary investigations will enable a deeper comprehension of the connections between genomic 
structures and provide context for the present findings. We aim to enhance our understanding of the fractal 
and complexity characteristics of the genomic sequences in these plants by integrating these supplementary 
investigations.

Data availability
The datasets analysed during the current study are available in the NCBI repository, https:// www. ncbi. nlm. nih. 
gov/. All data analysed during this study are included in this published article and its supplementary informa-
tion files.

Figure 6.  The Generalized Hurst exponents h(q) for maize (left) and soybean (right) chromosomes were 
chosen randomly. The vertical black line at q = 2 helps to visualize the values h(2). This same behavior is 
observed in the other chromosomes.

Figure 7.  MF-DFA analysis of RNA sequences. The f (α) spectra vs scaling indices α for sequences of maize 
(left) and soybean (right) DNA.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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