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Markerless 3D kinematics and force 
estimation in cheetahs
Zico da Silva 1*, Stacey Shield 1, Penny E.  Hudson 2, Alan M.  Wilson 3, Fred  Nicolls 1 & 
Amir Patel 1

The complex dynamics of animal manoeuvrability in the wild is extremely challenging to study. 
The cheetah (Acinonyx jubatus) is a perfect example: despite great interest in its unmatched speed 
and manoeuvrability, obtaining complete whole-body motion data from these animals remains an 
unsolved problem. This is especially difficult in wild cheetahs, where it is essential that the methods 
used are remote and do not constrain the animal’s motion. In this work, we use data obtained from 
cheetahs in the wild to present a trajectory optimisation approach for estimating the 3D kinematics 
and joint torques of subjects remotely. We call this approach kinetic full trajectory estimation (K-FTE). 
We validate the method on a dataset comprising synchronised video and force plate data. We are able 
to reconstruct the 3D kinematics with an average reprojection error of 17.69 pixels (62.94% PCK using 
the nose-to-eye(s) length segment as a threshold), while the estimates produce an average root-
mean-square error of 171.3N ( ≈ 17.16% of peak force during stride) for the estimated ground reaction 
force when compared against the force plate data. While the joint torques cannot be directly validated 
against ground truth data, as no such data is available for cheetahs, the estimated torques agree with 
previous studies of quadrupeds in controlled settings. These results will enable deeper insight into the 
study of animal locomotion in a more natural environment for both biologists and roboticists.
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High-speed manoeuvrability is the “final frontier” in the study of legged locomotion. While constant-speed 
gait has been studied extensively, the dynamics and control of these transient movements are still sparsely 
investigated. This could be attributed to the complex dynamics manoeuvring entails, which require whole-
body motion and force data to quantify. This data can be gathered in a lab  setting1 but does not reflect the 
natural locomotor conditions or animal motivations experienced in the field. Rapid manoeuvres are important 
to understand, however. From a biomechanics perspective, they push animals to perform at their mechanical 
limits, revealing what they are capable of in the most extreme circumstances. They are also interesting to the 
robotics field, as understanding this category of motion will be crucial for the development of more agile robotic 
systems that better match the capabilities of animals 2.

The cheetah (Acinonyx jubatus) is the perfect model for studying quadruped dynamics as it is not only the 
fastest terrestrial animal, but also one of the most manoeuvrable. In fact, a study which used GPS-IMU collars to 
investigate the behaviour of wild cheetahs revealed that it is the ability to rapidly accelerate that is most critical 
to their hunting  success3. Tracking collars are, however, only able to treat the animal as one lumped rigid body 
and are thus unable to provide information about leg, spine or tail kinematics or joint loading.

By contrast, vision-based pose estimation methods provide a means for non-invasive full-body kinematic 
and kinetic estimation (“dynamic” estimation). In human research, this technique has been adopted to obtain 
3D pose estimates from a single camera, i.e. monocular 3D pose  estimation4,5, focusing on full-body kinematics. 
While data-driven models or purely kinematic formulations are widely applied in research of human locomotion, 
there have been efforts to incorporate a more complete physics-based  model6,7, which often is formulated as a 
non-linear program (NLP) to solve for both the kinematic and kinetic parameters.

These models provide a strong prior on the motion, making it a popular choice for potentially ambiguous 
pose detection from a single camera setup. The internal and external torques and forces are a natural byproduct 
of modelling the kinetics together with the kinematics. Some researchers have used this to explicitly analyse 
joint torques produced by humans while performing different  activities8,9. In conjunction, optimal-control-based 
approaches have been used to fit a human model to corresponding kinematic data to obtain joint torques and 
contact  forces10,11.
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For all the work done on humans, there is little to show for markerless dynamic motion estimation of animals 
in the wild. That said, animal 3D pose estimation (without explicit modelling of physics), for both multi-view 
camera and monocular systems, have been well established in recent years. The multi-view camera techniques 
often resort to triangulation-based  methods12–14, while the monocular systems have used the skinned multi-
animal linear model (SMAL)15,16 and pose “lifting”17 to disambiguate 3D pose estimates from a single view. These 
methods have been successful at 3D pose estimation of animals in the wild, but they lack the joint torques and 
ground reaction forces (GRFs) that are important for biomechanic analysis and robotic design.

Researchers have estimated animal torques and GRFs using invasive methods in controlled experiments. In 
one study, researchers placed reflective markers on racing greyhounds and, together with a six-camera setup 
and force plates, were able to determine joint torque and power profiles of the hind  limbs18. Similar work was 
done on the sit-to-stand dynamics of  greyhounds19. In the same line of work, a study was done on the forelimb 
muscle activity of  horses20.

While there are examples of dynamic motion estimation being applied to animals, work has mostly been 
limited to a laboratory setting, or involved invasive markers (or trackers) being placed on the subjects in the wild. 
In contrast, the proposed method performs markerless full-body kinetic and kinematic estimation of animals 
(in this case, cheetahs) with a multi-camera setup. To the best of our knowledge, this is a novel approach to the 
dynamic estimation of wildlife locomotion in the wild.

In our previous work, AcinoSet 14,21, we were able to reconstruct the 3D kinematics of free-running cheetahs 
from multiple cameras. Here, we extend this work to include kinetic modelling for the cheetah using a complete 
physics-based model to describe the motion. In particular, we are interested in the joint torques during a gallop. 
To achieve this, we created a new dataset (denoted “kinetic dataset” in this work) that contains synchronised 
video and force plate data. As with AcinoSet, a trajectory optimisation problem (henceforth referred to as the 
kinetic full trajectory estimation (K-FTE) method is formulated and solved for the dynamic motion estimate, 
and then evaluated against the kinetic dataset. This differs from the purely kinematic full trajectory estimation 
(FTE) method developed for AcinoSet. Once the K-FTE method has been validated with the kinetic dataset, we 
can use this method to perform motion and torque estimation on a test set of AcinoSet. This provides valuable 
information about the joint loading of the limbs of the cheetah during locomotion.

Even though this work focuses on the cheetah, the proposed method can easily be generalised to work with 
any wild animal. This will enable biologists to understand animal locomotion in much more detail and can 
provide data for the design of new robotic controllers.

Results
We first present the quantitative and qualitative results of the motion and torque estimation on both datasets, 
and then we motivate its use using the kinetic dataset to compare estimated GRFs with the ground truth 
measurements from the force plates.

Motion and torque estimation
The cheetah was represented using a model consisting of 17 rigid bodies, shown in Fig. 1. The 3D pose estimation 
results are shown in Table 1. The mean position error (MPE) provides a relative measure of how well the 
reconstruction matches the baseline FTE result using our previous kinematic  methods14,21. The MPE is minimal, 
suggesting that the K-FTE method produces similar 3D kinematics to the baseline FTE.

Note that we calculated an average reprojection error of 17.69 pixels, or 62.94 % percentage of keypoints 
(PCK) using the nose-to-eye(s) length threshold), using a subset of 540 frames of 2D hand-labelled data as 
ground truth from two different trials, T4 and T5. This result compliments the MPE shown in Table 1, while 
also providing an absolute measure of the accuracy of the 3D reconstruction.

Figure 2 shows a single pose viewed from all six camera angles. Visually, the pose estimate is reasonably 
accurate given the estimate is well-matched to the cheetah’s skeleton in each view.

The estimated joint angles and torques for the fore and hind limbs, while in contact with the ground (stance 
phase of the gait), are shown in Figs. 3 and 4 for the kinetic dataset and AcinoSet respectively. The torque 
estimates produced for the kinetic dataset serve as a reference for what is expected given that we know the 
corresponding GRF. There is a good correlation between the torque estimates during the stance for both datasets.

Figure 1.  Multibody model of the cheetah consisting of 17 rigid links and 23 points of interest.
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Based on the kinetic dataset (see Fig. 3), both the fore and hind limbs exhibit similar torque trajectories. For 
the front and back ankle joints, the torque profile during the stance follows a half sine wave, where the peak 
torque on average is around 50%. The hindlimb produces a slightly higher peak torque on average than the 
forelimb.

The hip torques do not conform to as consistent a profile as the ankle torques do, but they are consistently 
bounded between 100 and −50 N m. The trailing shoulder joint torques produce peaks at around 20 % of the 
stance, and quickly returns to zero thereafter. A similar pattern is found in the trailing shoulder joint, however 
the torque peaks on average around two points in the stance: a negative peak at 20 % and a positive peak at 40 %.

There is consistency in the joint angles for the duration of the stance. The shoulder and hip joints increase 
linearly from start to finish, while the front and back ankle joints display a parabola-like change during the stance.

Table 1.  Error analysis of the resultant 3D reconstruction on AcinoSet that includes a physics-based model for 
dynamic data estimation.

Test MPE (mm) % of deviation

T1 17.6 1.3

T2 34.0 1.4

T3 19.2 0.8

T4 20.7 2.5

T5 23.5 1.3

Figure 2.  An visual example of a single pose viewed from all six camera angles for T1 of AcinoSet. This 
illustrates good 3D pose estimates of the cheetah.

(a) (b)

Figure 3.  Joint angle and torque estimates of the forelimb (a) and hindlimb (b) hip and hock joints during 
stance phase of gait for the kinetic subset of the evaluation dataset. The top rows are the joint angles and bottom 
rows the joint torques. The joint angles and torques are consistent during the stance phase.
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Method validation
It must be stressed that the force and torque values obtained using this method are estimates at best—not remote 
measurements. If multiple feet are on the ground, the inverse dynamics problem does not have a unique solution, 
so the results are merely one possible combination of forces out of many that could produce the observed motion 
in the 3D model. Still, these estimates should give a reliable indication of the magnitudes of the forces and torques 
involved, even if the precise profiles cannot be confirmed.

Without ground truth joint torques, we set up an alternative evaluation procedure to determine whether 
the observed joint torques are plausible. We make use of the measurements from the force plate as a proxy for a 
“ground truth” to validate motion and torque estimates. Two K-FTE methods for estimating the ground reaction 
forces were compared: sinusoidal GRF and freeform GRF. The sinusoidal approach assumes a “sinusoidal” GRF 
profile, while the freeform approach does not make any assumptions about the GRF profile. The idea of using 
a sinusoidal profile for the GRF was taken from a previous study that examined the GRFs on horses during 
steady-state  galloping22. In addition, the force plate obtained GRF profiles found in the kinetic dataset exhibited 
the familiar sinusoidal shape, and therefore, it made sense to develop a method that uses this inherent structure.

Table 2 provides the GRF estimation error for both methods, and Fig. 5 provides a visual example of the GRFs.

(a) (b)

Figure 4.  Joint angle and torque estimates of the forelimb (a) and hindlimb (b) hip and hock joints during 
stance phase of gait for AcinoSet subset of the evaluation dataset. The top rows are the joint angles and bottom 
rows the joint torques. The joint angles and torques are consistent during the stance phase.

Table 2.  GRF estimation comparison between the estimated and the force plate measured GRF magnitudes 
from the kinetic dataset.

Method Mean error (N) % of peak

sinusoidal GRF 171.3 17.16

freeform GRF 471.3 47.23

(a) (b)

Figure 5.  A representative example comparing the resultant GRF magnitudes produced by both methods: 
(a) sinusoidal GRF, and (b) freeform GRF. This is a result from T4 of the kinetic dataset. The force has been 
normalised by the body weight of the subject.
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The sinusoidal K-FTE makes a drastic improvement on the GRF error that is evident in both Table 2 and 
Fig. 5. From the example in the figure, the sinusoidal K-FTE provides good tracking of the GRF trajectory, 
whereas the freeform K-FTE fails to produce a valid GRF trajectory.

Discussion
The kinetic dataset facilitated the development of a whole-body dynamic state estimator using the K-FTE 
method. From Table 2, it is clear that the sinusoidal K-FTE produces more accurate GRF estimates. The GRF 
estimate resembles that of the force measurements from the force plates (see Fig. 5a). Many of the state-of-the-
art physics-based methods have validated GRF estimate errors in a similar fashion, by using existing studies on 
predetermined locomotion  styles7,23. However, one study validated its GRF estimates using a parkour  dataset6, 
which quotes similar mean errors to our work (see Table 2).

Furthermore, this result confirms the use of the assumed sinusoidal GRF profile for steady-state galloping 
of quadrupeds. This was previously applied to horses, where it was also found to be a good fit for the  data22. 
Limiting the GRF to a sinusoidal profile allowed for an easier optimisation problem to solve, and reduced the 
problem of non-unique solutions by restricting the space of possible GRFs to those matching a widely-observed 
form from previous quadruped studies.

Note that although the GRF error is vastly different between the two methods reported in Table 2, the resultant 
3D reconstructions are similar (calculated average MPE of 13.0). Therefore, the freeform K-FTE does yield 
forces with plausible magnitudes even if the profile does not match the observed truth data. We compared the 
ground truth impulse to the estimated impulse for both methods for the same trial (T4 of the kinetic dataset). 
The ground truth impulse was calculated as 119.4 kg ms−1  and the sinusoidal K-FTE produced an impulse of 
122.32 kgms−1  whereas the an impulse of 97.50 kg ms−1 was obtained for the freeform K-FTE. Furthermore, 
this is confirmed by the GRF trajectory in Fig. 5a, where the area under the curve (i.e. the impulse) is similar to 
the ground truth ( < 20% error).

The estimated joint torques produced a consistent torque profile on both datasets (see Figs. 3 and 4). This 
result is in line with the results on the hindlimbs of racing greyhounds (similar to the cheetah in that they are 
very fast quadrupeds)18. However, the quoted torques are of different magnitudes, with the greyhound’s back 
ankle average peak roughly calculated as 40 N m, while the cheetah’s average peak was calculated to be around 
100 N m. This is roughly twice the torque generated during the stance when compared to the greyhound. It is 
known that the cheetah generates larger joint torques to resist larger GRFs than the  greyhound24. However, it 
would not be advisable to place too much emphasis on this particular result given the simplified kinematic model 
used (in addition to inverse dynamics) to generate these quantities in this work.

The 3D pose estimation is adequate and has not drastically changed from the previous AcinoSet  baseline21, 
as shown in Table 1 and Fig. 2. The MPE is very low and suggests that adding a more complete physics model 
has not diminished the resultant kinematics. Therefore, without compromising our pose estimation accuracy, we 
have gained kinetic information, and with it, a more complete picture of the dynamics of the cheetah.

That said, an average PCK of 62.94 % suggests that there is room for improvement in our 2D pose estimation. 
This result could be attributed to the shortcomings of using a simplified rigid body model for the cheetah. The 
rigid body model, together with fixed joint centres, are not representative of the flexibility within the cheetah’s 
skeleton. In addition, modelling the muscles as torque-driven actuators is clearly not characteristic of a cheetah’s 
muscle system. Lastly, point contacts are used to model the dynamics between the foot and the ground, which 
completely overlooks the complexity of the cheetah’s foot/paw. As highlighted in Fig. 6, there are times when 
a rigid body model cannot accommodate the forelimbs and neck body parts because of a lack of extension/
contraction.

Nevertheless, the developed method provides a stepping stone to accurate dynamic analysis of wild 
quadrupeds using a non-invasive multi-camera system. Ultimately, the accuracy of the estimated 3D kinematics 
were adequate for our purposes.

Looking to the future, we have identified two aspects of the current implementation that we could improve: 
removing the explicit assumption on the GRF profile, and the rigid body model. First, we would like to investigate 
the incorporation of a learned prior model of the GRF profile in the cost function as a possible improvement 
to the existing freeform GRF method. The probability model can use examples from existing force data on 
quadrupeds. This would enable the study of more dynamic movements (turns and rapid acceleration or 
deceleration).

Figure 6.  Visual examples of bad skeleton fits when projected onto the image plane after dynamic estimation. 
The red circles show clear pose estimation issues, the main contributor being the rigid body model failing to 
adapt to the extension/contraction of the forelimbs during locomotion.
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Second, even though the overall 3D kinematic estimate was sufficient for this work, we can potentially obtain 
more accurate predictions by remodelling the shoulder and neck links as variable  length25 which should address 
the problem highlighted in Fig. 2.

Methods
We first provide background theory to multi-body dynamics and the K-FTE method used in this work. Then, 
we provide more details on the the kinetic and AcinoSet datasets. Lastly, we present the evaluation metrics used 
in this work.

Multi-body dynamics
The dynamics of the cheetah was modelled as a rigid multi-body system using absolute angle coordinates q(t)
26, often expressed as

where M(q) represents the inertia matrix, C(q, q̇) captures Coriolis and centrifugal terms, G(q) is the gravity 
vector, B maps u inputs to generalised forces, �g are the ground constraint forces, and �c are the constraint torques 
that enforce the geometry of the model. These constraint forces are mapped to the generalised coordinates of 
the model through the Jacobians, JTg (q) and JTc (q) . For brevity, we will combine these contact forces into a single 
constraint force vector � , mapped by a single Jacobian J . In this work, Bu represents the joint torques produced 
by the cheetah during locomotion, henceforth denoted by τ.

The 17-link rigid multi-body model of the cheetah results in a state vector q of size 54  (3 angles for each link 
and an additional 3 for the position of the base link in the inertia frame).

Each link was modelled as a cylinder described by three parameters, length, mass, and radius. These 
parameters were determined per subject, using the dimensions and masses quoted in multiple resources produced 
Hudson et al.24,27,28. Note that the length parameters were fine-tuned by projecting the cheetah skeleton into one 
of the cameras and validating that the links match the limb lengths of the cheetah.

Trajectory optimisation
In general, the trajectory optimisation problem can be described as a non-linear program (NLP). Here, we 
formulate a NLP with the following constraints:

subject to

where f (·) denotes the multi-body dynamics (Equation (1)) and C(·) are the path and contact constraints. The 
cost function to optimise is g(·) . The index k indicates the discrete instant in time (or node) within the trajectory. 
The state variables at each node are related to those at the previous node by numerical integration constraints

where h is the timestep between nodes.
An equality constraint is used to enforce the dynamics of the system (i.e. f (qk , τ k , �k) , see Equation (1)):

The function notation has been omitted for brevity (e.g. M(q) is simply stated as M ). The additional variable wk 
added to this equation accounts for unknown disturbances to the model, as might be introduced by factors such 
as variation in the animal subjects and ground conditions.

In addition to the motion constraint above, two constraints to incorporate the measurement data from the 
cameras are specified: 

1. A constraint that relates the current pose q to a set of 3D marker positions.
2. A constraint that relates reprojection of the 3D marker positions to the 2D pixel coordinates for each camera.

Constraint 1 can be determined using the pose equations that relate the generalised coordinates to positions. This 
is defined as a general function g(qk) = xk made into an equality constraint, g(qk)− xk = 0 , at finite time k. 
Constraint 2 uses a camera projection matrix, P , to transform a 3D marker from world coordinates to 2D image 
space. The aim is to minimise the error between the ground truth and reprojected pixel locations; therefore, 

(1)M(q)q̈ + C(q, q̇)q̇ = G(q)+ Bu + JTg (q)�g + JTc (q)�c ,

(2)min
q,τ ,�,Tc

N
∑

k=0

g(qk , τ k)

(3)q̇k = f (qk , τ k , �k) ∀k ∈ [0,N],

(4)C(qk , �k) = 0 ∀k ∈ [0,N],

(5)qk = qk−1 + hq̇k ∀k ∈ [1,N],

(6)q̇k = q̇k−1 + hq̈k ∀k ∈ [1,N],

(7)Mkq̈k + Ckq̇k − (Gk + τ k + JTk �k)− wk = 0 ∀k ∈ [1,N]
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v is used to capture this error so that it can be added to the cost function. The resultant equality constraint is 
defined as

where c selects a specific camera to project to, m selects a specific marker on the cheetah, and k is the finite time 
that this operation is performed at.

The constraints used in the optimisation include not only the measurement data but also two additional types 
of constraints: contact constraints to enforce the correct GRF at nodes where a foot has been determined to be 
grounded, represented by �g ,k , and joint constraints to ensure that constraint torques, �c,k , to prevent motion in 
forbidden directions (which is necessary when using absolute angle coordinates).

The ground contact constraints are enforced only at those nodes where a foot has been determined to be 
grounded. We will refer to this subset of nodes as D, and use the notation �̂g to refer to the contact force vector 
acting on the grounded foot. A no-slip model of contact is developed using the foot velocity vf  and contact force 
�g to construct the following constraints,

The first constraint enables the generation of a GRF vector, while the second constraint ensures the foot is 
approximately fixed ( ǫ ≤ 1 ) to the ground during the contact phase. The contact constraints are relaxed to 
within a small penalty variable, ǫ , which is minimised in the cost function. This penalty approach makes the 
optimisation problem easier to solve.

Since sliding contact is not considered, the contact force �g vector has to satisfy friction cone  constraints29 to 
estimate valid forces. To obtain a simpler model of contact, linearised friction cone constraints are formulated 
(resulting in a friction pyramid):

where �̂x and �̂y are the tangential components of the contact force, �̂z is the vertical component ( ̂�z > 0 ), 
and µs is the friction coefficient (and was set to 1.3 for all  experiments3). The tangential components of the 
contact force are decomposed into two positive variables in implementation, i.e. �̂x = �̂

+
x − �̂

−
x  where �̂+x , �̂−x ≥ 0 . 

This facilitates the optimisation by replacing the non-linear absolute value function with a linear version (e.g. 
|�̂x| ≡ �̂

+
x + �̂

−
x  ) in the above friction cone constraints. (Note that this is only true if either �̂+x  or �̂−x  is zero. IPOPT 

ensured that this condition was true.)
There is a requirement for explicit modelling of joints to remove redundant degrees of freedom introduced 

by the absolute angle coordinates. Two different types of joints are supported: revolute and universal. The former 
is created by the constraints

where the vector ri i, y is aligned with the y axis of the first link, and ri i + 1, x and ri i + 1, y are aligned with the 
x and z axes of the subsequent link. We have left out the index k for clarity, as these constraints are applied at 
all nodes. When these constraints are met, the joint is restricted to rotate about the y-axis of the first link only, 
removing two degrees of freedom. This type of joint is applied at the cheetah’s elbows and knees. Note that ri,y is 
the column vector from the rotation matrix R that associates rotations about the y-axis.

A universal joint is represented by the constraint

preventing a rotation about the z-axis and removing a single degree of freedom. This type of joint is used in the 
middle of the model’s spine.

Finally, the cost function to be minimised is defined as

where α1 = 1 , α2 = 10000 , and α3 = 1 . The emeas term is defined as

where C(·) is the redescending robust cost  function30 and σi is used to normalise the measurement error. This 
uncertainty parameter is derived from the predicted 2D keypoint error distribution. The uncertainty parameters 
were obtained in a similar fashion to our previous  work14. In addition, emodel now represents the error in the 
dynamic equation of motion instead of the assumed constant acceleration motion:

(8)yk,c,m − Pcxk,m − vk,c,m = 0,

(9)�̂g ,k > 0 k ∈ D

(10)|vf ,k| ≤ ǫ k ∈ D,

(11)|�̂x,k| ≤ µs�̂z,k k ∈ D,

(12)|�̂y,k| ≤ µs�̂z,k k ∈ D

(13)ri,y · ri+1,x = 0,

(14)ri,y · ri+1,z = 0,

(15)ri,y · ri+1,x = 0,

(16)g(q, τ ) = α1emeas + α2emodel + α3e smooth,

(17)emeas =

N
∑

k=1

c
∑

j=1

m
∑

i=1

2
∑

l=1

C

(

vk,j,i,l

σi

)

,
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Note that the above error did not require normalisation.
Lastly, the e smooth term is defined as:

where h is the frame rate. The first term penalises the joint torques to ensure a minimum energy solution. The 
literature suggests that it is a common assumption that humans and animals conserve energy during  movement31. 
The 10 weight is used to increase its contribution during minimisation.

During experiments, it was noted that the optimal solutions would produce jittery motion. For this reason, 
the second term in Equation (19) was added to the cost function. This term penalises the acceleration of the 3D 
markers, favouring solutions that have smooth trajectories for all 3D markers. The h2 weighting term performs 
normalisation, and the 0.1 weight is used to decrease its contribution during minimisation. Note that through 
normalisation, each term is assumed to be equally weighted in Equation (16). However, the goal is for the 
resultant motion estimate to be as physically plausible as possible, and therefore an enormous weight is placed 
on the emodel to direct the optimiser to find solutions that essentially force the model noise to be zero, i.e. w = 0 . 
Note that  IPOPT32 was used and configured with the MA97 linear  solver33 to implement the optimisation.

K‑FTE
Trajectory optimsiation was used to investigate two K-FTE methods: sinusoidal GRF and freeform GRF. The 
sinusoidal K-FTE assumes a “sinusoidal” GRF profile that essentially reduces the optimisation problem to solely 
estimate the joint torques (we allow for 20 % variation from this assumption). While the freeform K-FTE does 
not make any assumptions about the GRF profile, it instead performs a complete joint estimation of the torques 
and GRFs. Both methods set up the same optimisation problem (as outlined above), but the sinusoidal K-FTE 
has an extra pre-processing step that generates the initial GRF profile. An example of the expected profile is 
shown in Fig. 7. We assume contact timing is known and therefore did not require an automatic contact detection 
algorithm.

In Fig. 7, the Fz component is created using a half sine wave with an amplitude that is determined through 
a linear model for each limb. The linear model relates the running speed of the cheetah with the peak vertical 
 force27. The Fx component is approximated by a spline using 5 control points: zero points for the start, midpoint, 
and end of the stance, Fz2  for the deceleration peak, and Fz4  for the acceleration peak. We assume that there is no 
Fy component present in the straight-line steady-state gallops that are included in the datasets (in every trial, 
the cheetah runs along the x-axis).

Datasets
Two cheetah locomotion datasets were used to develop and evaluate the proposed approach. Neither was a perfect 
test case – one (AcinoSet) lacked force plate data, while the other used a non-standard camera calibration that 
resulted in slightly higher uncertainty in the animal’s pose – however, the combination of the two with these 
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Figure 7.  An example of the synthesis of the sinusoidal GRF profile.
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complimentary deficiencies was sufficient to prove the concept. The availability of more complete and accurate 
locomotion data will likely improve this method in future.

AcinoSet
AcinoSet 14 is a cheetah-running dataset that is used for the evaluation of the motion and torque estimation. 
The dataset contains 90 running videos with six different views from low-cost GoPro cameras (2704 x 1520 
resolution filmed at 120 frames per second (FPS) and 1920 x 1080 resolution, filmed at 90 FPS). There are 
7588 human-annotated frames and the average video length is approximately 2 s. Furthermore, the dataset 
includes DeepLabCut 34 2D pose estimates for each camera view for each video set, as well as the corresponding 
3D reconstruction data, in addition to both the intrinsic and extrinsic calibration data. The intrinsic camera 
calibration data included fisheye lens distortion parameters.

Here, we use the DeepLabCut network that was developed in our previous  work21 and a subset of five trials 
from AcinoSet for evaluation (see Table 3). Each trial consists of the cheetah doing a steady-state gallop for two 
different subjects.

Kinetic dataset
This dataset was generated for this work to validate the proposed method of dynamic data estimation through 
the use of force plate measurements. The dataset was acquired from The Royal Veterinary College, and methods 
used to capture the data are described in their previous  work27.

The dataset contains grayscale videos (including calibration targets) filmed at 1000 FPS (1280 x 560 and 800 
x 600 resolutions) with synchronised force plate data sampled at 3500 Hz (see Fig. 8). From the original dataset, 
a subset of five trials of two different subjects was selected (Cheetah 1 and Cheetah 2, referred to in Table 1 of 
the paper by Hudson et al. 27)o. This included only those strides where each foot strike landed on a single force 
plate, to reduce ambiguity in the data. We denote this subset the ‘’kinetic dataset” in this work (see Table 4).

The original work gathered trials of the cheetahs chasing a mechanical lure across eight Kistler force plates 
(model 9287A and 9287B) and in front of four  cameras27. Both the video and the force plate data were resampled 
to a 200 Hz sample rate for the kinetic dataset. This allows for a more tractable K-FTE problem formulation.

As the dataset only consisted of grayscale videos and synchronised force plate measurements, 2D keypoint 
inference and a scene calibration are required to enable 3D reconstructions of the cheetah.

2D pose estimation
The DeepLabCut 34 network trained for AcinoSet (RMSE of 8.38 pixels on the test set) was first used to obtain 2D 
keypoints on the cheetah in this dataset. However, to quantify the networks ability to infer 2D keypoints on an 
entirely new dataset, we needed to produce a new test set from the kinetic dataset. A subset of 260 frames of the 
new data was hand-labelled to form a test set, and the RMSE between ground truth and inferred 2D keypoints 
was 10.85 pixels. In order to reduce the error on the test set, we decided to train a new network to improve 
inference on the kinetic dataset. An additional 95 frames were manually labelled from the kinetic dataset to 
improve the training dataset for AcinoSet. This improved performance on the kinetic test set by reducing the 
RMSE to 6.10 pixels.

Camera calibration
The calibration techniques developed for AcinoSet were used to perform intrinsic and extrinsic calibration for the 
kinetic dataset. There were some hurdles to overcome, in that the dataset did not contain a standard checkerboard 
calibration target that was compatible with OpenCV’s calibration  library35 (see Fig. 8b). This meant that the 
automatic corner finder could not be used. Instead, multiple frames of the calibration target from each camera 
were gathered and the points of interest were hand-labelled. There were nine points of interest that were chosen 
on the calibration target shown in Fig. 8b: the four inside corners of the black border, four centre points of the 
outer squares, and the single centre point of the centre square. This is a smaller number of points than typically 
used for intrinsic calibration, which could decrease the accuracy of the reconstruction of the fish-eye distortion 
model (particularly components that are orthogonal to the relatively narrow horizontal band that the calibration 
points were concentrated in), however, as these components are not likely to have a large effect on the parameters 
being estimated, we decided to proceed with this data set in spite of these deficiencies.

Table 3.  The test dataset selected from the AcinoSet. The length is presented as the number of frames in the 
trajectory divided by the video frame rate. Each trajectory length is equivalent to one stride performed by the 
cheetah.

Test Trial Length (s)

T1 2017_08_29/top/phantom/run1_1 44/90

T2 2017_08_29/top/jules/run1_1 30/90

T3 2017_09_02/top/jules/run1 30/90

T4 2019_03_07/phantom/run 57/120

T5 2017_09_02/bottom/jules/run2 33/90
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The hand labelling of the calibration target was done for roughly 16 frames across the camera’s field of view, 
and for each trial included in the dataset. Once the hand labelling was done, a standard intrinsic calibration was 
performed to obtain the camera intrinsic parameters. Note that radial distortion parameters were estimated 
during the intrinsic camera calibration process.

The extrinsic calibration of all four cameras simultaneously proved difficult due to the lack of shared scenes 
between the cameras and the calibration target. In particular, the kinetic dataset used in the calibration process 
contained videos of the calibration target that were not seen in more than two cameras at the same time, and 
the calibration target was not viewed at the same time across the force plate track. This meant that there was 
no shared scene data between the first stereo pair ( C1 and C2 ) and the second stereo pair ( C3 and C4 ) shown in 
Fig. 8b. Based on the distance from the force plate track, cameras C1 and C2 are referred to as the near side stereo 
pair, and cameras C3 and C4 are referred to as the far side stereo pair.

Figure 8.  Example data from the kinetic dataset: (a) is a diagram of the scene setup, (b) provides an example of 
the calibration target used to perform intrinsic and extrinsic calibration, with the calibration points indicated in 
red, (c) shows a frame from the captured video, and (d) shows the measurement data from the force plates.

Table 4.  The test dataset selected from the kinetic dataset. The length is presented as the number of frames in 
the trajectory divided by the video frame rate. Each trajectory length is equivalent to one stride performed by 
the cheetah.

Test Trial Length (s)

T1 2009_09_07/arabia/trial06 49/200

T2 2009_09_07/shiraz/trial04 52/200

T3 2009_09_08/shiraz/trial04 52/200

T4 2009_09_11/shiraz/trial01 55/200

T5 2009_09_11/shiraz/trial02 48/200
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To overcome this challenge, a stereo calibration was performed between cameras C1 and C2 to obtain the 
pose of camera C2 relative to camara C1 . The world frame was set to the first force plate, and the pose of camera 
C1 was determined using the perspective-n-point (PnP)  algorithm35. This algorithm uses a set of 3D-2D point 
correspondences on the force plates, viewed by camera C1 , to compute the pose of the camera relative to the 
world frame.

After this stereo calibration, the extrinsic parameters for the near side stereo pair had been estimated. 
However, it was not possible to determine the pose of the far side cameras relative to the near side due to the lack 
of shared scenes of the calibration target. To overcome this limitation, a joint optimisation process was utilised 
to obtain the pose of the cameras on the far side. By using the points on the cheetah, and assuming the cheetah 
runs in a straight line, it was possible to set up an optimisation problem that jointly estimated the cheetah’s 3D 
pose and the pose of one of the far side cameras. The stereo calibration of the near side cameras was enough to 
seed the optimisation for roughly 30 frames of an example trial. The optimisation cost function was defined to 
minimise reprojection error. This process was performed for each camera on the far side separately. The optimal 
solutions from the optimisation were found to be reasonable by comparing them with the rough measurements 
that were taken of the scene by the original  researchers27.

It is worth noting that this non-standard approach added uncertainty to the observations made by the far side 
cameras. Therefore, when using K-FTE for 3D reconstructions of the kinetic dataset, an extra 40 % (i.e. multiply 
observation errors by 0.6) of uncertainty was added to the observation errors from the far side cameras. This 
figure was found to provide good solutions during experimentation.

Evaluation
Root‑mean‑square error
The RMSE is a general error metric used to quantify the performance of a model by measuring the differences 
between estimated x̂ and ground truth x values in Rn . It is defined as

where xi is the ith element of the vector x.

2D metrics
To assess pose estimation methods in image space, two reprojection error metrics are used: ℓ2 norm in pixels 
and percentage correct keypoints (PCK)36. The ℓ2 norm of a vector x ∈ R

n is defined as

PCK is a metric that considers the percentage of estimated keypoints that are correctly located within a certain 
threshold distance of the ground truth keypoints. In this project, a matching threshold of the nose-to-eye(s) 
segment length was used, similar to what was done in a study by Mathis et al. 37. This value is a normalised error 
metric that is calculated in pixels from the ground truth keypoints. Note that the PCK metric is ‘strict’, in that 
the segment length is small relative to the body and therefore considers a small region for a correct keypoint. 
In addition, this metric is only evaluated on images where the nose and one of the eyes are clearly visible. This 
allows the threshold to be determined.

Unless stated otherwise, the ℓ2 norm is used to denote a ‘general error’ value for prediction performance.

3D metrics
To assess 3D pose estimation methods, a 3D position error metric is used: global mean position error (MPE) 
over the full trajectory. The MPE accounts for the absolute position in 3D space and is defined as

where N is the length (in frames) of the trajectory, M is the number of markers (placed on the joints of the 
cheetah), xk,j is the position of marker j in R3 at time k, and x̂k,j is an estimate of xk,j.

Conclusions
In this paper, we present kinetic full trajectory estimation: a model-based nonlinear optimisation approach 
that incorporates estimation of the ground reaction forces to improve markerless 3D pose estimation in wild 
animals. Although this cannot be regarded as a remote force measurement method, the GRF profiles obtained 
using the sinusoidal model agree with those observed in this study from force plate data obtained from running 
cheetahs, as well as other studies of running quadrupeds. The approach produced promising results when tested 
on running cheetahs. In future, we hope that access to more complete truth data, and the incorporation of more 
advanced ground reaction force and skeletal models will improve the approach sufficiently to support its use in 
the study of fast, dynamic manoeuvres.
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Data availibility
All data and code are available at https:// github. com/ Afric an- Robot ics- Unit/ torque- estim ationhttps://github.
com/African-Robotics-Unit/torque-estimation.
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