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An ensemble learning model 
for forecasting water‑pipe leakage
Ahmed Ali Mohamed Warad 1*, Khaled Wassif 2,3 & Nagy Ramadan Darwish 1,3

Based on the benefits of different ensemble methods, such as bagging and boosting, which have been 
studied and adopted extensively in research and practice, where bagging and boosting focus more 
on reducing variance and bias, this paper presented an optimization ensemble learning‑based model 
for a large pipe failure dataset of water pipe leakage forecasting, something that was not previously 
considered by others. It is known that tuning the hyperparameters of each base learned inside the 
ensemble weight optimization process can produce better‑performing ensembles, so it effectively 
improves the accuracy of water pipe leakage forecasting based on the pipeline failure rate. To evaluate 
the proposed model, the results are compared with the results of the bagging ensemble and boosting 
ensemble models using the root‑mean‑square error (RMSE), the mean square error (MSE), the mean 
absolute error (MAE), and the coefficient of determination (R2) of the bagging ensemble technique, 
the boosting ensemble technique and optimizable ensemble technique are higher than other models. 
The experimental result shows that the optimizable ensemble model has better prediction accuracy. 
The optimizable ensemble model has achieved the best prediction of water pipe failure rate at the 
14th iteration, with the least RMSE = 0.00231 and MAE = 0.00071513 when building the model that 
predicts water pipe leakage forecasting via pipeline failure rate.

In recent years, artificial intelligence (AI) and machine learning (ML) models have been suggested to be revolu-
tionary  innovations1. ML is a branch of artificial intelligence that collects methods and algorithms for building 
experience-based learning systems. On the other side, Water supply system leakage is a quiet problem that costs 
the globe billions of dollars each year. Because a large portion of the water supply pipelines are underground, leaks 
might go unnoticed and unreported for a long period of  time2. Regarding water supply networks, there is a global 
trend among service management organizations to use machine learning to forecast pipe problems and breakages. 
So, ML has been used to forecast Water pipe leakage of the water distribution network (WDN), with research 
on data validation and enhancement as well as investigations on the relationships between intervening factors 
that might explain the intricate process of pipe  failure2. In our previous work presented a systematic literature 
review (SLR) that employs ML models for water leakage  problem3.Various studies have revealed the importance 
of water pipe leakage forecasting and presented machine learning algorithms for forecasting water pipe leakage 
and its failure rate. These studies include some of the most popular statistical models, such as linear regression 
(LR), poison regression (PR), and evolutionary polynomial regression (EPR). As machine-learning techniques, 
they use gradient boost trees (GB)4–7, Bayesian belief  networks8–10, Support Vector Machines (SVMs)11–13 and 
Artificial Neural Networks (ANNs)11,14–19, These studies have consistently found that ML models can provide 
valuable insights into the condition of these pipelines and help prioritize maintenance, and repair efforts based 
on forecasting the failure of water pipes; however, ensemble approaches as a machine learning technique for 
water pipe leakage predictions have yet to be thoroughly investigated.

Several ensemble models and approaches have been devised and widely utilized for classification and regres-
sion issues over the last two decades. In data analytics, ensemble  models20 are well-motivated, but not all ensem-
bles are created equal. Specifically, different types of ensembles include bagging, and boosting. Each strategy has 
advantages and disadvantages. Bagging tends to decrease variance, not bias, to solve the over-fitting problem 
boosting aims to decrease bias, not variance by sequentially combining weak learners but is sensitive to noisy 
data and outliers and is prone to overfitting, as shown in Table 1.

Ensemble learning  methods21 have been widely used in various applications and areas, from  healthcare22, 
 finance23,24, image  recognition25, natural language  processing26–28, enabling informed decision-making and pre-
dictive  analytics29,30. To fit ensemble learning models into different problems, their hyperparameters must be 
tuned. Selecting the best hyperparameter configuration for ensemble learning models has a direct impact on the 
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model’s  performance31. On the other side, pipe failure is an essential instrument for water distribution network 
strategic restoration planning. Existing network data (physical data) and historical failure records (number of 
breaks) are used to make rehabilitation projections.32. Subsequently, the pipe failure rate is an important measure 
to water pipe leakage forecasting.

The aim of this paper is to suggest a new model, that focuses on optimization ensemble weights and hyper-
parameter ensemble methods in regression problems, which is one challenging part of constructing an optimal 
ensemble, with the purpose of forecasting water pipe leakage using the failure rate of water pipes by integrating 
the best hyperparameter tuning of ensemble learning regression methods. The proposed model involves col-
lecting a dataset for water pipe leakage. This dataset includes several features linked to pipeline failures, such as 
pipeline material, age, etc. Pre-processing, feature selection, and descriptive statistical analysis are performed 
on the dataset that was collected from Alexandria Water Company Egypt (AWCO). The proposed model used 
the Bayesian optimization method for optimizing the weights and hyperparameters of ensemble learning for the 
water pipe leakage problem. Next, compare the optimization ensemble method, boosted tree ensemble learning, 
and bagged tree ensemble learning. Each model’s performance varies based on the dataset and the model’s base 
learner, with Bayesian parameter optimization producing the most accurate predictions.

This paper is organized as follows: Section "Modelling techniques" discusses modelling techniques. In sec-
tion "Proposed methodology for model development", the proposed methodology and model development are 
discussed, along with the procedural details required for water pipe leakage forecasting. The proposed model’s 
performance is compared to bagging and boosting models, as explained in Section "Results and discussion". 
Finally, the paper’s summary and recommendation for further research are provided in Section "Conclusion".

Modelling techniques
Ensemble  Learning33,34 is, one of the hot topics, the integration of numerous learners (classification and regression 
models) to build a powerful learner (ensemble model). Unlike traditional learning methods, which attempt to 
build a single model from training data, ensemble learning methods attempt to build numerous models to tackle 
the same issue. Due to the availability of precise and diversified multiple models for integrating into a single 
solution, ensemble learning typically gives solutions with higher accuracy and/or resilience in most situations. 
Ensemble learning is often done in three phases: (1) development of base models, (2) selection of base models, 
and (3) aggregation of the selected base models utilizing certain combination methods. In the first step, a pool 
of basic models is formed, which might be homogeneous (same model types) or heterogeneous (various model 
types) (mixture of different model types). A base learning algorithm, such as decision trees, neural networks, or 
other approaches, is typically used to build base learners from training data. A selection of basic models is chosen 
in the second step. Finally, using a combination approach, the selected models are aggregated to produce a model. 
An ensemble’s generalization capacity is frequently substantially stronger than that of basic learners. To obtain 
the final model with greater generalization, it is critical that the basic models be as precise and varied as feasible.

Bagging technique
Bagging33,35 is an ensemble learning approach that is also known as Bootstrap aggregation. The same approach is 
used to train many models in parallel, each using a fraction of the training data created by bootstrap sampling. 
Bootstrap sampling is a sampling method in which a sample is formed by randomly picking items from a data 
collection and replacing them with replacement items. That is, after each selection, the item is returned to the 
data set. As a result, the same item may be picked more than once for the same sample. The metamodel is cre-
ated by collecting the outcomes of many models by either voting (classification job) or averaging (regression 
task), as seen in Fig. 1.

Bagging is dependent on the varied training sizes of training data, which are referred to as bags, obtained 
from the training dataset. Each ensemble member is built using the tagging procedure. The prediction model is 
then constructed for each subset of bags, combining the values of several outputs by voting or averaging across 
the class label. The Bagging method first chooses a random sample with replacement from the original training 
dataset, and then generates numerous learner algorithm outputs (bags).

Boosting technique
Boosting34,36 is a sequential ensemble method for converting low-accuracy models (weak learners) into strong 
ensemble models. After training a basic model with poor accuracy, the next generation of the model focuses 
on the instances in the training data set that were wrongly identified. Each succeeding model version is trained 

Table 1.  Comparation between boosting and bagging techinque.

Boosting Bagging

The aim of the model To decrease bias, not variance To decrease variance not bias, to solve the over-fitting problem

Type of combing predictions Different types The same type of prediction

The weight of layer models According to their performance Each model has the same weightage

Training data subsets Every new data subset contains the elements were misclassified by 
previous models Randomly drawn with replacement from the entire training dataset

The independent between the models New Models are influenced by the accuracy of previous Models 
(sequential) Each model is independent of each other (parallel)
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using the whole training data set to create an aggregated predictor, which reduces the likelihood of overfitting 
the data. Finally, using the weighted majority vote (classification task) or weighted sum, the predictions from 
each model are integrated into a single final forecast (regression task). Boosting, as seen in Fig. 2.

Hyperparameter optimization model
Hyperparameter  optimization20,37 is one of the major challenges in the ML industry. This stage includes identify-
ing an effective hyperparameter configuration that enhances the model’s performance for a particular dataset. 
Usually, these hyperparameters are identified before beginning the learning process that are tuned based on the 
performance of the selected hyperparameter and a validation set performance as an objective.

There are different hyperparameter optimization algorithms, such as (1) grid search is considered expensive 
from computationally side because require searching for all possible defined hyperparameter configurations to 
identify and select the optimal model, and (2) random search that try to overcome the limitations of the grid 
search by optimizing the model in a randomly selected hyperparameter configuration, however, its stochastic 
nature may result in a bad hyperparameter configuration, but (3) Bayesian optimization provide a surrogate 
solution by developing a probabilistic model and using an acquisition function that helps to identify the most 
probability hyperparameters incorporating the previous evaluations from the search space, as seen in Fig. 3.

In each iteration, Bayesian optimization seeks to gather observations with the maximum amount of informa-
tion by striking a balance between exploitation and exploration (i.e., investigating unknown hyperparameters) 
(gathering observations from hyperparameters close to the optimum).

Proposed methodology for model development
The proposed methodology is to develop a predictive model for water pipe leakage via pipeline failure rate using 
ensemble learning methods. Our method consists of the subsequent stages: (1) Dataset generation stage based 
on Alexandria Water Company (ACWA) as water supply systems in Alexandria, Egypt, and (2) the proposed 
model has developed three models including Bagging, Boosting, and optimizable ensemble methods in order 
to select the one with satisfactory performance for water leakage forecasting, and evaluated by RMSE, MSE, 
MAE, and R2. In addition, validated based on the real data collected. These stages will be explained more in the 
following sections.

Dataset generation (case study: City of Alexandria)
Data is definitely the most vital element of machine learning. If there is no data, there is no common purpose. 
So, the aim of the collected data is to define the problem. Also, the way data is stored and organized is important 
based on the type of variable.

Figure 1.  Bagging ensemble technique.
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Using data from our research collected from water supply systems in Alexandria, Egypt, the cadastral base 
investigated has 1951913 water service connections and a length of distribution network of 9373 kilometers 
(Km), consisting of different types of materials such as "high-density polyethylene", "cast iron", and "polyvinyl 
chloride". Since the 1960s, the city of Alexandria has developed its water distribution network as part of its 
infrastructure, that is shown in Fig. 4.

Real data from the water supply network of Alexandria, a city in the north of Egypt, are used to illustrate 
and evaluate the models. This dataset was extracted from the Geographic Information System (GIS) office of 
Alexandria Water Company and was included in the Excel workbooks. It consists of 63423 data points, which 
cover the city of Alexandria with a total length of 3545.206 kilometres, taking into consideration different lengths 
of water pipeline (100–2000 mm), different types of pipeline materials (thermoplastic, concrete pressure pipes, 
and ferrous), Diameter, Hazen-Williams C, Flow  (M3/H), Velocity (M/S), Head Loss Gradient (M/Km), Instal-
lation Year, Age (Years), Number of Breaks as input factors and failure rate as output, feature statistics of study 
dataset is presented in Table 2.

The researchers preprocessed the data by replacing categorical variables like pipe material are encoded into 
numerical formats and replacing all missing values of attributes with the mean of the values because the most 
values in this case from a kind of numerical class attribute, the benefit of this pre-processing is to enhance the 
results of predictions for the predictive model and facility extract desired information from the dataset, as shown 
in Table 3.

Model development
Ensemble Learning Regression (ELR) is an ML approach that combines several models to improve prediction per-
formance for nonlinear regression  problems36. In this study, the researchers investigated three ensemble learning 
models: (A) Bootstrap Bagging (Bag) with Regression Trees (RT) Learners; (B) Least Square Boosting (LS Boost) 
with RT Learners; and (C) an optimizable ensemble method using Bayesian optimization. The model aims to 
improve the prediction performance by finding optimal values of "the minimum leaf size", "learning rate", "num-
ber of learners", and "number of predictors to sample" for the ensemble models’ optimizable hyperparameters.

Figure 2.  Boosting ensemble technique.
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Figure 3.  Ensemble model with internally tuned hyperparameters.

Figure 4.  The water network of the city of Alexandria.
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Models were developed to forecast the water pipe leakage on the basis of failure rate as the target based on 
more factors, such as "material", "diameter", and "length", etc. by using MATLAB version R2020a  software38. 
The entire ensemble learning model process, which is represented using the flowchart in Fig. 5 and its stepwise 
implementation using MATLAB, is outlined as follows in the algorithm structure:

1) Load the data into the MATLAB software environment.
2) Preprocess the dataset.

a) Explore the dataset to get correlated features and types of variables.
b) Represented the correlated features.
c) Exitance: missing values and outliers.
d) Preprocess the missing values of data and categorical types of variables.

3) Modeling the dataset

a) Transform the dataset into an ensemble learning model format.
b) Identify the data set variable and the response.
c) Identify the percent of held-out using the holdout-validation process.

4) Apply the default Bagged and Boosting Ensemble tool in MATLAB for the data set.
5) Evaluate bagged and boosted ensemble methods fitting through the dataset.
6) Apply the Bayesian optimization process to identify the most relevant ensemble learning hyperparameters 

based on MSE values.
7) Build the final model by optimizing the LS-Boosted tree and bagged tree algorithm with Bayesian optimization.
8) Apply the resultant model to the entire throughout quality dataset.
9) Evaluate and report the predictive performance of the model.

Experimental procedures
The researchers used three ensemble techniques, as presented in section "Proposed methodology for model 
development". The experiment results were implemented on an Intel (R) Core (TM) i7-10510U CPU @ 1.80 

Table 2.  Feature statistics of study dataset.

Name Mean Mode Median Dispersion Min Max Missing

Length (Scaled) (m) 55.90 2 31 2.56 1 11,617 0 (0%)

Diameter (mm) 159.46 100 100 0.84 25 1500 0 (0%)

Material 3.50 5 5 0.49 1 6 0 (0%)

Hazen-Williams C 107.407 95.0 101.8 0.164 80.0 150.0 0 (0%)

Installation year 1985.57 1982 1983 0.01 1920 2019 0 (0%)

age 36.43 40 39 0.53 3 102 0 (0%)

Number of breaks 6.01 5 6 0.53 1 11 0 (0%)

Failure rate 0.238007 0.25 0.175 1.08604 0.00980392 3.66667 0 (0%)

Table 3.  Data description.

Variable Type Description

Input factors

Length Numerical The length of the pipe in meters(m)

Diameter Numerical The diameter of pipe in millimeters

Material Numerical The material of the pipe section, categorized as Numerical type

Hazen-Williams C Numerical The relationship which relates the flow of water in a pipe with the physical 
properties of the pipe and the pressure

Flow  (m3/h) Numerical The average of flow of the pipe

Velocity (m/s) Numerical The average of velocity of the pipe

Head loss Gradient (m/km) Numerical Result of head loss calculated using Hazen-William’s formula divided by total 
length of the pipe

Installation Year Numerical The Installation Year of pipe

Age (years) Numerical The age of pipes in years

Number of breaks Numerical The number of total damages recorded on the pipe

Target Failure rate Numerical The rate of water pipe failure
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GHz and 2.30 GHz and the Windows 10 operating system. MATLAB software  environment38 version R2020a 
software has been used for regression as a machine learning toolbox.

Configure using holdout-validation: 25%, because the dataset is large enough to avoid sample bias problems 
that will use previous research to focus the search space on the most promising values. Next, experiment using 
the boosting ensemble learning and bagged ensemble learning models. Configure the optimizable ensemble 
learning to use the maximum number of estimators at which the algorithm is ended ("number of learners": 8, 
and "a learning rate": 0.1). Following that, the researchers will examine what the algorithms have done, intend-
ing to determine which method is more likely to be efficient and how this efficiency varies by hyperparameter 
tuning, utilizing ensemble learning on our problem., finally, repeat the experiment in the optimizable ensemble 
to determine the optimal convergence with 30 iterations scoring: ’Mean Squared Error’, as shown in Table 4.

Evaluation measurements
The efficacy of evaluation depends on which measure metrics are used; thus, it is essential to select metrics. 
Several metrics are often used to evaluate the performance of forecasting models.: root-mean-square-error 
(RMSE) given in (1), coefficient of determination (R2) given in (2), and mean square error (MSE) given in (3), 
mean absolute error (MAE) given in (4) are four evaluation metrics used in this paper to examine and evaluate 
the performance of the used machine learning  methods39–42, shown in Table 5.

Figure 5.  Proposed framework.

Table 4.  Performance of different decision tree-based models based on validation error.

Bagged trees Boosted trees Optimizable ensemble

Minimum leaf size 8 8 29

Number of Leaners 30 30 272

Learning rate – 0.1 0.85188

Optimized options disabled Disabled Auto

validation holdout-validation: 25%
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The model with the fewest average deviations for the same data are often chosen to use the fundamental 
assessment technique known as mean absolute error (MAE) is less sensitive to outliers. However, because they 
both amplify values with significant variances, the MSE (emphasize larger errors) and RMSE (easier interpreta-
tion of errors) are susceptible to outliers. They are therefore appropriate for assessing stability.

Results and discussion
Water‑ pipe leakage forecasting
In other literature, the kilometer where the leak appears can be used to computed the failure rate. In this case 
study, that information is not found so, this option is not chosen. The same pipe may have had more than one 
failure. However, the age has been considered as the difference between the Installation Year of the pipe and the 
constant year. Finally, we have worked with a dataset of dimensions 63423 × 10, where the information consid-
ered is exposed in the Table 3. In Table 6, the used inputs variables and methodologies are compared with other 
common inputs and methodologies considered in the reviewed literature.

With regards to the Table 1, Hazen-Williams C is the relationship which relates the flow of water in a pipe 
with the physical properties of the pipe and the pressure. It is very common in WDS to divide the system in 
segments based on the kind of pipelines(material). The cities have not at the same altitude, this factor can also 
be called as Height or Depth in other papers. In this paper, that information is not found so, this option is not 
chosen. Another factor that must be explained is Number of Breaks. In this case, calculated all the breaks in a 
pipe together. It is important to explain that Number of Breaks, once the pipe failure is repaired, the pipe has a 
different resistance than before So, this study tries to give a basic pattern to define a predictive model over WDS 
depending on the initial considerations over the problem.

Ensemble learning models results
In this section more information about the tested models is exposed. The ELR was used for water pipe leakage 
forecasting via pipeline failure rate to assist in the decision-making process for the prioritization of water distri-
bution networks rehabilitation measures. The researchers configured using the holdout-validation technique for 
large datasets to avoid sample bias problems by using 25% present held out-validation. The final model is trained 
using the full data set. The researchers conducted three sets of experiments as bagging ensemble technique, the 

Table5.  Statistical performance metrics description. The mathematical expressions for these metrics can be 
 denoted42 as follows where n is the number of data simple, yi is the i th measurement, and ŷi is corresponding 
prediction.

Statistic Description Equations

RMSE Always positive and its units match the units of your response RMSE =

∑n
i=1

√(
ỹi − yi

)2 (1)

R2 Always smaller than 1 and usually larger than 0. If your model is worse than this constant model then 
R-Squared is negative

R2
= 1−

∑n
i=1 (yi−ŷi)

2

∑n
i=1 (yi−yi)

2 (2)

MSE The MSE is the square of the RMSE MSE =
1

n

∑n
i=1

(
ỹi − yi

)2 (3)

MAE Always positive and similar to the RMSE, but less sensitive to outliers MAE =
1

n

∑n
i=1

∣∣ỹi − yi
∣∣ (4)

Table 6.  Comparison between Input Parameters and used methodologies in our case study and in reviewed 
literature.

Reference Our case study

Variables (inputs) Methodology

Length, Diameter, Material, Hazen-Williams C, Flow 
 (M3/H), Velocity (M/S), Head Loss Gradient (M/Km), 
Installation Year, Age (Years), Number of Breaks

Bagging Ensemble Technique, Boosting Ensemble 
Technique and Optimizable Ensemble Technique

41 (Jafari et al. 2021) Diameter, Length, Installation Depth, Age, And Number of 
Pipe Failures

Linear Regression, Generalized Linear Regression, Support 
Vector Machine, Feed Forward Neural Network (FFNN), 
Radial-Based Function Neural Network (RBFNN), and 
Adaptive Neuro-Fuzzy Inference System (ANFIS)

43 (Giraldo-González and Rodríguez 2020)
Age, Length, Moisture content, Soil contraction and expan-
sion potential, Precipitation, Land use, Valves, Hydrants, 
Previous failures

Linear, Poisson, Evolutionary Polynomial Regressions, 
Gradient-Boosted Tree (GBT), Bayes, Support Vector 
Machines and Artificial Neuronal Networks (ANNs)

44 (Sattar et al. 2019) Pipe Length, Diameter, Material, and Previously Recorded 
Failures

Extreme Learning Machine (ELM), Artificial Neural 
Networks (ANN), Support Vector Machines (SVMs), and 
Non-Linear Regression (NNR)

45 (Motiee and Ghasemnejad 2019) Material, Age, Length, Diameter and Hydraulic Pressure Regression Models
12 (Kutyłowska 2019) Length, Number of Failures, Failure Rate and Material Support Vector Machines (SVM)

46 (Kutyłowska 2016) Length, Diameter, Year of Construction of The Distribution 
Pipes and The House Connections

Support Vector Machines (SVMs) and Artificial Neural 
Networks (ANNs)

47 Shirzad, Tabesh, and Farmani 2014) Age, Length, Diameter, Depth and Average Hydraulic 
Pressure

Artificial Neural Network (ANN) and Support Vector 
Regression (SVR)
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boosting ensemble technique, and optimizable ensemble techniques as the Bayesian optimization approach was 
employed to fine-tune the hyperparameters of these ELR models, according to Table 7.

The number of input predictors and samples is the range of optimizable hyperparameters for the ensemble 
model. The ideal hyperparameters for our study were chosen to use the Bayesian optimization technique from 
the ranges displayed in Table 7.

In this investigation, the loss function was the mean square error (MSE) between the objective values that 
were predicted and the actual values. The acquisition function used by the Bayesian optimizer is the expected 
improvement per second  plus37 to ascertain the hyperparameter set for the following iteration. Water pipe leak-
age was predicted using the appropriate model, which had its set of hyperparameters optimized to minimize the 
upper-per-confidence interval of the MSE objective function.

The tuning process patterns and optimum hyperparameter values found using Bayesian optimization search 
are shown in Fig. 6, the curves in the figure represent the minimal hold-validated mean square error that results 
from identifying the ideal hyperparameter values, and shows that the best prediction of water pipe failure rate 
can be achieved by selecting the MSE function in the optimizable ensemble model, as shown in Table 7 This table 
shows the "Learning Rate", "Minimum leaf Size", and "Number of predictors to simples". In order to develop 
the proposed method, the optimizable ensemble-based model was over the Bayesian optimization method, as 
it has the lowest MSE.

Figure 7 showed response plots for the three models: the bagged tree ensemble technique, the boosted tree 
ensemble technique, and the optimizable ensemble technique, respectively. Figure 8 presents the Residuals plot 
of each model. Figure 9 demonstrates the predicted values comparing with actual plot of failure rate: (a) bagged 
tree; (b) LS boosted tree; and (c) optimizable ensemble.

In Fig. 9, shown the predicted values versus actual response have been plotted, showing that most of the values 
match, except for a few data points where the true and expected values diverge significantly. The breadth of the 
band for residual values in the residuals plot, as shown in Fig. 8, is constant with a few exceptions. The model 
gains are stable across all regression models due to the performance of test data in the same. In Fig. 7, versus 
actual values of water pipe leakage forecasting via pipeline failure rate and demonstrates that all the developed 
models scored high R2. The results also show that there is no high variation between predicted and actual values, 
and there are no outliers.

The study used a set of mathematical validation equations to evaluate each model’s performance. The evalu-
ation matrices demonstrated that bagged trees has RMSE 0.03195, MAE 0.0041853, and R2 0.98. However, LS 

Table 7.  Configuration of constructed optimizable ensemble models.

Optimizable hyperparameters Range

Ensemble methods [Bag, LS Boost]

Optimizer Bayesian Optimizer

Acquisition function Expected improvement per second plus

Minimum leaf size [1–31711]

Number of learners [10–500]

Learning rate [0.001,1]

Number of predictors to simples [1–10]

Iterations 30

Figure 6.  Performance curve of optimizable ensemble model.
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boosted trees has RMSE 0.022654, MAE 0.014829, and R2 0.99. Optimizable Ensemble, on the other hand, has 
RMSE 0.00231, MAE 0.00071513, and R2 as 1, presented in Table 8. The results showed that all models could 
forecast the failure rate of water pipes.

Table 8 compares the RMSE, R2, MSE, and MAE of the minimum correlation bagged ensemble learning 
model, LS boosted ensemble learning model, and optimizable ensemble learning model by hyperparameters. 
Experiments show that the maximal correlation optimizable ensemble learning model can achieve the best pre-
diction effect, and RMSE, R2, MSE, and MAE are 0.00231, 1, 5.34E−06, and 0.00071513 respectively. Compared 

Figure 7.  Response plots of failure rate: (a) bagged tree; (b) LSboosted tree; and (c) optimizable ensemble.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10683  | https://doi.org/10.1038/s41598-024-60840-x

www.nature.com/scientificreports/

Figure 8.  The Residuals plot of failure rate: (a) bagged tree; (b) LSboosted tree; and (c) optimizable ensemble.
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with the bagged tree and LS boosed tree ensemble learning method and optimizable ensemble model combina-
tion, the proposed model also achieved better results. It is observed that the developed ELR models have satisfied.

The computational complexity
The computational complexity of the ensemble approach is an additional essential aspect to consider. The 
main disadvantage of the optimizable ensemble due hyperparameters tune is their complexity. They are much 

Figure 9.  Predicted vs actuall plot of failure rate: (a) bagged tree; (b) LSboosted tree; and (c) optimizable 
ensemble.
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time-consuming to training (training time) than boosted and bagged tree. They also require more computational 
resources. Also, provided the time complexity of the methods for prediction speed (Observation/Second). Pre-
diction speed measure via (obs/s) refers to number of observations processed per second. It’s inverse would be 
the time taken for one prediction in seconds.

The complexity of each algorithm is shown in Fig. 10, where the vertical axis represents the complexity on 
algorithmic scale via prediction speed and training time. The result showed that Boosted Tree provides the best 
result for prediction speed (280000 Obs/s) in relation to bagged tree (72000 Obs/s), and optimizable ensemble 
(22000 obs/s). the researchers observed that the optimizable ensemble model had the highest predictive capacity. 
However, due to its high complexity, the prediction speed of the optimizable ensemble model is highly depend-
ent on the hardware used.

According for, Table 9 and Fig. 10, that the proposed algorithm has the best prediction rate of all methods 
with an opposite order of complexity. The complexity of the hyperparameters tune optimizable ensemble, which 
achieved the highest accuracy, is number one in orders of training time complexity. Of course, the complexity 
of the ensemble learning methods increases with hyperparameter tune optimization; hence, the training time 
of the boosted and bagged tree methods is less than that of the proposed method. Thus, the prediction process 
using optimizable ensemble is time-consuming than other algorithms. This can be an issue for large datasets.

Comparison of different machine learning models
According for Table 6 found that SVM, ANN, LR more used methods to compare and apply for our problem 
in the reviewed literature. Further evaluation for the developed ELR models has been performed with results 
presented in Table 4. While the ELR model is considered a good, it compared to some of ML methods to improve 
the applicability of the model and confirm they have good prediction ability.

Model setup for machine learning models
Concerning the SVMs, the capacity (C), gamma (γ), and epsilon (ε) is the parameters that must be defined, 
shown in Table 10 as SVM-L model, and Table 11 as SVM-RBF model.

Regarding the ANNs, the number of input layers, the number of hidden layers, the neurons in the hidden 
layers, the training cycles, the learning rate, and the activation function are the parameters that must be defined, 
shown in Table 12 as ANNs model parameters.

Table 8.  Comparison of the Three Intelligent Models.

Results Bagged trees Boosted trees Optimizable ensemble

RMSE 0.03195 0.022654 0.00231

R2 0.98 0.99 1

MSE 0.0010208 0.00051322 5.34E-06

MAE 0.0041853 0.014829 0.00071513

Boosted Trees Bagged Trees Op�mizable
Ensemble

Training Time 6.4773 19.687 304.35
Predic�on Speed 280.000 72.000 22.000

0
50

100
150
200
250
300
350

Figure 10.  Comparison of Training time (sec) and prediction speed (obs/sec) plot for the three algorithms.

Table 9.  Complexity comparison of the three algorithms.

Boosted trees bagged trees Optimizable ensemble

Prediction speed 280,000 obs/s 72,000 obs/s 22,000 obs/s

Training time 6.4773 s 19.687 s 304.35 s
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Comparison of different machine learning models results
Consider now the performance of the developed ELR models in comparison with other machine learning meth-
ods, namely support vector machines (SVMs), Artificial Neural Networks (ANN), and Linear Regression (LR), as 
presented in Table 13.The developed ELR models show better performance than other machine learning models 
applied on the same dataset in terms of RMSE, MSE, MAE, and R2 values, All tests different machine learning 
models were completed in Orange Data Mining with an Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz 2.30 
GHz,16 GBRAM, PC.

Conclusion
Using artificial intelligence-based techniques for solving decision support and engineering issues are common 
in today’s world. This work presents a thorough and insightful investigation of the use of ensemble models on 
real dataset in water pipe leaking. Several common ensemble models and hyperparameter tuning strategies are 
being investigated to help researchers and practitioners use ensemble learning methods for data-driven predic-
tions. Specifically, three ensemble models were studied.; optimization ensemble method, boosted tree ensemble 
learning and bagged tree ensemble learning, while evaluating the model performance using the RMSE, MSE, 
MAE, and R2 values for the failure rate as evaluating parameters.

Table 10.  SVM-L model parameters.

SVM-L model 43

Gamma –

Capacity(C) 2

Epsilon (ε) 0.1

Number of support vectors (localized) 2

Cross-validation error 0.008

Table 11.  SVM-RBF model parameters.

SVM-RBF model 48

Gamma 0.333

Capacity(C) 3

Epsilon (ε) 0.2

Number of support vectors (localized) 56 (46)

Cross-validation error 0.081

Table 12.  ANNs model parameters.

ANNs model parameters 45

Input layers 10

Hidden layers 2

Hidden layer neurons 8

Training cycles 2000

Learning rate 0.2

Activation function of hidden layers Sigmoid

Activation function of the output layer Sigmoid

Table 13.  Comparison of different machine learning models.

Results Optimizable Ensemble SVM-L SVM-RBF ANN LR

RMSE 0.00231 0.251 0.073 0.056 0.163

R2 1 0.059 0.920 0.953 0.601

MSE 5.34E-06 0.063 0.005 0.003 0.027

MAE 0.00071513 0.166 0.060 0.023 0.089



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10683  | https://doi.org/10.1038/s41598-024-60840-x

www.nature.com/scientificreports/

This paper presented a hyperparameter tuning optimization for models of Bayesian optimization-based 
ensemble learning real-world dataset is used in experiments to evaluate the effectiveness of various ensemble 
models and optimizable ensemble methods, as well as to offer useful examples of hyperparameter optimization. 
In light of the approach outlined in "dataset generation" and "ensemble learning algorithms development", the 
generated dataset is entered into various ensemble learning models, including the bagging ensemble technique, 
and the boosting ensemble technique as homogeneous ensemble, and the optimizable ensemble technique. 
Hyperparameter tuning methods are employed to enhance the learning procedures to predict water pipe leak-
age based on the failure rate. 

This study was conducted to develop an optimization-based ensemble learning model with Bayesian optimi-
zation for water pipe leakage forecasting via pipeline failure rate. The developed model applied to a real dataset 
of water pipe leakage from AWCO in Egypt and compared it to state-of-the-art ensemble learning methods. In 
light of the outcomes that were achieved, it was shown the three models had shown acceptable performances, 
the optimizable ensemble model was the most efficient, showing an RMSE of 0.00231 and an R2 of 1. These 
parameters were calculated by comparing actual and predicted cases during hold-validation. Our study demon-
strates that the proposed model has excellent accuracy and high application value and shows unique advantages.

This paper will help decision-makers in the decision-making process, through developing an optimization-
based ensemble learning method that can optimize weights and tuning hyperparameters of ensemble learning 
methods in water pipe leakage forecasting as pipeline failure rate. For future research, the researchers will inte-
grate this model that developed into an internet of things (IoT) system.

Data availability
The data that supports the findings of this study is available from Alexandria Water Company. Restrictions apply 
to the availability of these data, which were used under license for the current study and are not publicly avail-
able. However, data are available from the corresponding author upon reasonable request and with permission 
from Alexandria Water Company.
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