
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports

PermDroid a framework developed
using proposed feature selection
approach and machine learning
techniques for Android malware
detection
Arvind Mahindru 1*, Himani Arora 2, Abhinav Kumar 3, Sachin Kumar Gupta 4,5*,
Shubham Mahajan 6*, Seifedine Kadry 6,7,8,9 & Jungeun Kim 10*

The challenge of developing an Android malware detection framework that can identify malware in
real-world apps is difficult for academicians and researchers. The vulnerability lies in the permission
model of Android. Therefore, it has attracted the attention of various researchers to develop an
Android malware detection model using permission or a set of permissions. Academicians and
researchers have used all extracted features in previous studies, resulting in overburdening while
creating malware detection models. But, the effectiveness of the machine learning model depends on
the relevant features, which help in reducing the value of misclassification errors and have excellent
discriminative power. A feature selection framework is proposed in this research paper that helps in
selecting the relevant features. In the first stage of the proposed framework, t-test, and univariate
logistic regression are implemented on our collected feature data set to classify their capacity for
detecting malware. Multivariate linear regression stepwise forward selection and correlation analysis
are implemented in the second stage to evaluate the correctness of the features selected in the first
stage. Furthermore, the resulting features are used as input in the development of malware detection
models using three ensemble methods and a neural network with six different machine-learning
algorithms. The developed models’ performance is compared using two performance parameters:
F-measure and Accuracy. The experiment is performed by using half a million different Android apps.
The empirical findings reveal that malware detection model developed using features selected by
implementing proposed feature selection framework achieved higher detection rate as compared
to the model developed using all extracted features data set. Further, when compared to previously
developed frameworks or methodologies, the experimental results indicates that model developed in
this study achieved an accuracy of 98.8%.

Keywords Android apps, API calls, Neural network, Deep learning, Feature selection, Intrusion detection,
Permissions model

OPEN

1Department of Computer Science and applications, D.A.V. University, Sarmastpur, Jalandhar 144012,
India. 2Department of Mathematics, Guru Nanak Dev University, Amritsar, India. 3Department of Nuclear and
Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg,
Russia 620002. 4Department of Electronics and Communication Engineering, Central University of Jammu,
Jammu 181143, UT of J&K, India. 5School of Electronics and Communication Engineering, Shri Mata Vaishno
Devi University, Katra 182320, UT of J&K, India. 6Department of Applied Data Science, Noroff University College,
Kristiansand, Norway. 7Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab
Emirates. 8MEU Research Unit, Middle East University, Amman 11831, Jordan. 9Applied Science Research Center,
Applied Science Private University, Amman, Jordan. 10Department of Software, Department of Computer Science
and Engineering, Kongju National University, Cheonan 31080, Korea. *email: er.arvindmahindru@gmail.com;
sachin.ece@cujammu.ac.in; mahajanshubham2232579@gmail.com; jekim@kongju.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60982-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Now-a-days, smartphones can do the same work as the computer has been doing. By the end of 2023, there will
be around 6.64 billion smartphone users worldwide (https:// www. bankm ycell. com/ blog/ how- many- phones-
are- in- the- world). According to the report (https:// www. stati sta. com/ stati stics/ 272307/ market- share- forec ast-
for- smart phone- opera ting- syste ms/) at the end of 2023, Android operating systems captured 86.2% of the total
segment. The main reason for its popularity is that its code is written in open source which attracts developers
to develop Android apps on a daily basis. In addition to that it provides many valuable services such as process
management, security configuration, and many more. The free apps that are provided in its official store are the
second factor in its popularity. By the end of March 2023 data (https:// www. appbr ain. com/ stats/ number- of- andro
id- apps), Android will have 2.6 billion apps in Google play store.

Nonetheless, the fame of the Android operating system has led to enormous security challenges. On the daily
basis, cyber-criminals invent new malware apps and inject them into the Google Play store (https:// play. google.
com/ store? hl= en) and third-party app stores. By using these malware-infected apps cyber-criminals steal sensi-
tive information from the user’s phone and use that information for their own benefits. Google has developed
the Google Bouncer (https:// krebs onsec urity. com/ tag/ google- bounc er/) and Google Play Protect (https:// www.
andro id. com/ play- prote ct/) for Android to deal with this unwanted malware, but both have failed to find out
malware-infected apps1–3. According to the report published by Kaspersky Security Network, 6,463,414 mobile
malware had been detected at the end of 2022 (https:// secur elist. com/ it- threat- evolu tion- in- q1- 2022- mobile- stati
stics/ 106589/). Malware acts as a serious problem for the Android platform because it spreads through these apps.
The challenging issue from the defender’s perspective is how to detect malware and enhance its performance.
A traditional signature-based detection approach detects only the known malware whose definition is already
known to it. Signature-based detection approaches are unable to detect unknown malware due to the limited
amount of signatures present in its database. Hence, the solution is to develop a machine learning-based approach
that dynamically learns the behavior of malware and helps humans in defending against malware attacks and
enhancing mobile security.

Researchers and academicians have proposed different methods for analyzing and detecting malware from
Android. Some of them have been proposed by using static analysis, for example, ANASTASIA4, DREBIN5,
 Droiddetector6 and DroidDet7. On the other side, some researchers have proposed with the help of dynamic
analysis, for example, IntelliDroid8, DroidScribe9, StormDroid10 and MamaDroid11. But, the main constraints of
these approaches are present in its implementation and time consumption because these models are developed
with a number of features. On the other side, academicians and researchers3,12–19 also proposed malware detec-
tion frameworks that are developed by using relevant features. But, they have restrictions too. They implemented
only already proposed feature selection techniques in their work.

So, in this research paper, to overcome the hindrances a feature selection framework is proposed. This helps
in the evaluation of appropriate feature sets with the goal of removing redundant features and enhances the
effectiveness of the machine-learning trained model. Further, by selecting a significant features a framework
named PermDroid is developed. The proposed framework is based on the principle of artificial neural network
with six different machine learning techniques, i.e., Gradient descent with momentum (GDM), Gradient descent
method with adaptive learning rate (GDA), Levenberg Marquardt (LM), Quasi-Newton (NM), Gradient descent
(GD), and Deep Neural Network (DNN). These machine learning algorithms are considered on the basis of their
performance in the literature20. In addition to this, three different ensemble techniques with three dissimilar
combination rules are proposed in this research work to develop an effective malware detection framework.
F-measure and Accuracy have been considered as performance parameters to evaluate the performance. From
the literature review21–23, it is noticed that a number of authors have concentrated on bettering the functioning
of the malware detection models. However, their study had a key flaw, they only used a small amount of data to
develop and test the model. In order to address this issue, this study report takes into account 500,000 unique
Android apps from various categories.

The method for developing a reliable malware detection model is represented in Fig. 1. The initial collection
of Android application packages (.apk) comes from a variety of promised repositories (mentioned in “Creation
of experimental data set and extraction of features” section). Anti-virus software is used to identify the class of
.apk files at the next level (mentioned in “Creation of experimental data set and extraction of features” section).
Then, features (such as API calls and permissions) are retrieved from the .apk file using various techniques
described in the literature (mentioned in subsection 3.4). Additionally, a feature selection framework is applied
to evaluate the extracted features (discussed in “Proposed feature selection validation method” section). Then,
a model is developed using an artificial neural network using six different machine-learning techniques and
three different ensemble models, employing the selected feature sets as input. Finally, F-measure and Accuracy
are taken into consideration while evaluating the developed models. The following are the novel and distinctive
contributions of this paper:

Figure 1. Steps are followed in developing Android malware detection framework.

https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.statista.com/statistics/272307/market-share-forecast-for-smartphone-operating-systems/
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://play.google.com/store?hl=en
https://play.google.com/store?hl=en
https://krebsonsecurity.com/tag/google-bouncer/
https://www.android.com/play-protect/
https://www.android.com/play-protect/
https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/
https://securelist.com/it-threat-evolution-in-q1-2022-mobile-statistics/106589/

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

• In this study, to develop efficient malware detection model half a million unique apps have been collected
from different resources. Further, unique features are extracted by performing dynamic analysis in this study.

• The methodology presented in this paper, is based on feature selection methodologies, which contributes in
determining the significant features that are utilized to develop malware detection models.

• In this study, we proposed three different ensemble techniques that are based on the principle of a heteroge-
neous approach.

• Six different machine learning algorithms that are based on the principle of Artificial Neural Network (ANN)
are trained by using relevant features.

• When compared to previously developed frameworks and different anti-virus software in the market, the
proposed Android malware detection framework can detect malware-infected apps in less time.

• A cost-benefit analysis shows that the proposed Android malware detection framework is more effective in
identifying malware-infected apps from the real world.

The remaining sections of this research paper are arranged as follows: “Related work” section presents the litera-
ture survey on Android malware detection as well as the creation of research questions. “Research methodology”
section gives an overview of the research methodology used to create the Android malware detection framework.
Different machine learning and ensemble techniques are addressed in “Machine learning technique” section. The
proposed feature selection validation technique is discussed in “Proposed feature selection validation method”
section. The experimental results are presented in “Experimental setup and results” section. Threats to validity
are presented in “Threats to validity” section. Conclusion and the future scope are discussed in “Conclusion
and future work” section.

Related work
The exploitation of the vulnerability is common these days to acquire higher privilege on Android platforms.
Since 2008, cybercriminals have started targeting Android devices. An exploit app, from the perspective of
Android security, can assist cyber-criminals in bypassing security mechanisms and gaining more access to users’
devices. Cybercriminals may exploit user data by selling their personal information for monetary gain if they
took advantage of these privileges. The detection process, which has been used by researchers in the past and is
based on Artificial Neural Networks (ANN) and feature selection techniques, is addressed in this subsection.

Androguard (https:// code. google. com/ archi ve/p/ andro guard/) is a static analysis tool that detects malware on
Android devices using the signature concept. Only malware that is already known to be present and whose defini-
tion is in the Androguard database is identified. It cannot, however, identify unidentified malware. Andromaly23,
is developed on a dynamic analysis tool that uses a machine learning technique. It monitored CPU utilization,
data transfer, the number of effective processes, and battery usage in real-time. The test was carried out on a
few different types of simulated malware samples, but not on the applications that are present in the real-world.
By using the semantics of the code in the form of code graphs collected from Android apps, Badhani et al.24
developed malware detection methodology. Faruki et al.21 introduced AndroSimilar, which is based on the
principles of generated signatures that are developed from the extracted features, which are used to develop
malware detection model.

Aurasium25 takes control of an app’s execution by examining arbitrary security rules in real-time. It repackages
Android apps with security policy codes and informs users of any privacy breaches. Aurasium has the problem
of not being able to detect malicious behavior if an app’s signature changes. They performed dynamic analysis
of Android apps and considered call-centric as a feature. The authors tested their method on over 2900 Android
malware samples and found that it is effective at detecting malware activity. A web-based malware evaluation
method has been proposed by Andrubis26, it operates on the premise that users can submit apps via a web service,
and after examining their activity, it returns information on whether the app is benign or malicious. Ikram et al.27
suggested an approach named as DaDiDroid based on weighted directed graphs of API calls to detect malware-
infected apps. The experiment was carried out with 43,262 benign and 20,431 malware-infected apps, achieving
a 91% accuracy rate. Shen et al.28 developed an Android malware detection technique based on the information
flow analysis principle. They implement N-gram analysis to determine common and unique behavioral patterns
present in the complex flow. The experiment was carried out on 8,598 different Android apps with an accuracy
of 82.0 percent. Yang et al.29 proposed an approach named EnMobile that is based on the principle of entity
characterization of the behavior of the Android app. The experiment was carried out on 6,614 different Android
apps, and the empirical results show that their proposed approach outperformed four state-of-the-art approaches,
namely Drebin, Apposcopy, AppContext, and MUDFLOW, in terms of recall and precision.

CrowDroid34, which is built using a behavior-based malware detection method, comprises of two components:
a remote server and a crowdsourcing app that must both be installed on users’ mobile devices. CrowDroid uses a
crowdsourcing app to send behavioral data to a remote server in the form of a log file. Further, they implemented
2-mean clustering approach to identify that the app belongs to malicious or benign class. But, the crowDroid app
constantly depletes the device’s resources. Yuan et al.52 proposed a machine learning approach named Droid-Sec
that used 200 extracted static and dynamic features for developing the Android malware detection model. The
empirical result suggests that the model built by using the deep learning technique achieved a 96% accuracy rate.
 TaintDroid30 tracks privacy-sensitive data leakage in Android apps from third-party developers. Every time any
sensitive data leaves the smartphone, TaintDroid records the label of the data, the app that linked with the data,
as well as the data’s destination address.

Zhang et al.53 proposed a malware detection technique based on the weighted contextual API dependency
graph principle. An experiment was performed on 13500 benign samples and 2200 malware samples and achieved
an acceptable false-positive rate of 5.15% for a vetting purpose.

https://code.google.com/archive/p/androguard/

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

AndroTaint54 works on the principle of dynamic analysis. The features extracted were used to classify the
Android app as dangerous, harmful, benign, or aggressive using a novel unsupervised and supervised anomaly
detection method. Researchers have used numerous classification methods in the past, like Random forest55,
 J4855, Simple logistic55, Naïve Bayes55, Support Vector Machine56,57, K-star55, Decision tree23, Logistic regression23
and k-means23 to identify Android malware with a better percentage of accuracy. DroidDetector6, Droid-Sec52,
and Deep4MalDroid58 work on the convention of deep learning for identifying Android malware. Table 1 sum-
marizes some of the existing malware detection frameworks for Android.

The artificial neural network (ANN) technique is used to identify malware on Android devices
Nix and Zhang59 developed a deep learning algorithm by using a convolution neural network (CNN) and used
API calls as a feature. They utilized the principle of Long Short-Term Memory (LSTM) and joined knowledge
from its sequences. McLaughlin et al.60, implemented deep learning by using CNN and considered raw opcode
as a feature to identify malware from real-world Android apps. Recently, researchers6,58 used network param-
eters to identify malware-infected apps. Nauman et al.61, implemented connected, recurrent, and convolutional
neural networks, and they also implemented DBN (Deep Belief Networks) to identify malware-infected apps
from Android. Xiao et al.62, presented a technique that was based on the back-propagation of the neural net-
works on Markov chains and considered the system calls as a feature. They consider the system call sequence as
a homogenous stationary Markov chain and employed a neural network to detect malware-infected apps. Mar-
tinelli et al.63, implemented a deep learning algorithm using CNN and consider the system call as a feature. They
performed an experiment on a collection of 7100 real-world Android apps and identify that 3000 apps belong
to distinct malware families. Xiao et al.64, suggested an approach that depends on the principle of LSTM (Long
Short-Term Memory) and considers the system call sequence as a feature. They trained two LSTM models by the
system call sequences for both the benign and malware apps and then compute the similarity score. Dimjas ̈evic
et al.65, evaluate several techniques for detecting malware apps at the repository level. The techniques worked
on the tracking of system calls at the time the app is running in a sandbox environment. They performed an
experiment on 12,000 apps and able to identify 96% malware-infected apps.

Table 1. Some existing Android malware detection frameworks.

Frameworks Detection method Monitoring type Analysis type

TaintDroid (2010)30 Dynamic Program traces Expert

Paranoid Android (2010)31 Dynamic Program traces Expert

AASandbox (2010)32 Dynamic System and library calls Clustering

Schmidt et al. (2011)33 Static and dynamic System calls Clustering

Crowdroid (2011)34 Dynamic System calls Clustering

Andromaly (2012)23 Dynamic Behavioural monitoring Machine learning

Aurasium (2012)25 Dynamic Behavioural Repackaging

Woodpecker (2012)35 Static Permissions Dependency graphs

RiskRanker (2012)36 Static Instructions, permissions Dependency graphs

SmartDroid (2012)37 Static and dynamic Program traces Dependency graphs

MADAM (2012)38 Dynamic Kernel-level and Machine learning

DroidScope (2012)39 Dynamic Kernel-level and Expert

AppGuard (2012)40 Dynamic Program traces Expert

TstructDroid (2013)41 Dynamic Process control block Machine learning

AppsPlayground (2013)42 Dynamic System calls Expert

AppProfiler (2013)43 Static and dynamic Program traces and Expert

Andrubis (2014)26 Static and dynamic Dalvik and system level Expert

Androguard (2015)44 Static Disassemble and Control flow graphs

CopperDroid (2015)45 Dynamic System call Hierarchical

DroidDetector (2016)6 Static and dynamic Permissions, sensitive APIs and dynamic behaviors Machine learning

MAMADROID (2016)11 Static API calls Machine learning

DroidSieve (2017)46 Static Intents permissions, meta information and native code Machine learning

PIndroid (2017)47 Dynamic Permissions and intents Machine learning

MOCDroid (2017)48 Static and dynamic Behavior Machine learning

DroidDet (2018)7 Static Permissions, monitoring system events, Machine learning

sensitive APIs, and Permission-rate

MalDozer (2018)49 Dynamic Third-party calls Machine learning

SeqDroid (2019)50 Static Package names Machine learning

DL-Droid (2020)51 Static and dynamic Log files Machine learning

MLDroid (2020)3 Dynamic Rating of an app and, Machine learning

permissions

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Using feature selection approaches, to detect Android malware
Table 2 shows the literature review for malware detection done by implementing feature selection techniques.
Mas’ud et al.66 proposed a functional solution to detect malware from the smartphone and can address the limi-
tation of the environment of the mobile device. They implemented chi-square and information gain as feature
selection techniques to select the best features from the extracted dataset. Further, with the help of selected best
features, they employed K-Nearest Neighbour (KNN), Naïve Bayes (NB), Decision Tree (J48), Random Forest
(RF), and Multi-Layer Perceptron (MLP) techniques to identify malware-infected apps. Mahindru and Sangal3
developed a framework that works on the basis of feature selection approaches and used distinct semi-supervised,
unsupervised, supervised, and ensemble techniques parallelly and identify 98.8% malware-infected apps. Yerima
et al.67 suggested an effective technique to detect malware from smartphones. They implemented mutual infor-
mation as a feature selection approach to select the best features from the collected code and app characteristics
that indicate the malicious activities of the app. To detect malware apps, from the wild, they trained selected
features by using Bayesian classification and achieved an accuracy of 92.1%. Mahindru and Sangal15 suggested
a framework named as “PerbDroid” that is build by considering feature selection approaches and deep learning
as a machine classifier. 2,00,000 Android apps in total were subjected to tests, with a detection rate of 97.8%.
 Andromaly23 worked on the principle of the Host-based Malware Detection System that monitors features related
to memory, hardware, and power events. After selecting the best features by implementing feature selection tech-
niques, they employed distinct classification algorithms such as decision tree (J48), K-Means, Bayesian network,
Histogram or Logistic Regression, Naïve Bayes (NB) to detect malware-infected apps. Authors14 suggested a
malware detection model based on semi-supervised machine learning approaches. They examined the proposed
method on over 200,000 Android apps and found it to be 97.8% accurate. Narudin et al.68 proposed a malware
detection approach by considering network traffic as a feature. Further, they applied random forest, multi-layer
perceptron, K-Nearest Neighbor (KNN), J48, and Bayes network machine learning classifiers out of which the
K-Nearest Neighbor classifier attained an 84.57% true-positive rate for detection of the latest Android malware.
Wang et al.69 employed three different feature ranking techniques, i.e., t-test, mutual information, and correlation
coefficient on 3,10,926, benign, and 4,868 malware apps using permission and detect 74.03% unknown malware.
Previous researchers implement feature ranking approaches to select significant sets of features only. Authors13
developed a framework named as “DeepDroid” based on deep learning algorithm. They use six different feature
ranking algorithms on the extracted features dataset to select significant features. The tests involved 20,000
malware-infected apps and 100,000 benign ones. The detection rate of a framework proposed using Principal
component analysis (PCA) was 94%. Researchers and Academicians70–73 also implemented features selection
techniques in the literature in different fields to select significant features for developing the models.

Research questions
To identify malware-infected apps and considering the gaps that are present in the literature following research
questions are addressed in this research work:

• RQ1 Does the filtering approach helps to identify that whether an app is a benign or malware-infected (first
phase of the proposed feature selection framework)? To determine the statistical significance among mali-
cious and benign apps, the t-test is used. After, determining significant features, a binary ULR investigation is
applied to select more appropriate features. For analysis, all the thirty different feature data sets are assigned
(shown in Table 5) as null hypotheses.

• RQ2 Do already existing and presented work’s sets of features show an immense correlation with each other?
To answer this question, both positive and negative correlations are examined to analyze the sets of features,
which help in improving the detection rate.

• RQ3 Can the identified features assist in determining whether the app is malware-infected or not? The pri-
mary objective of this question is to use the feature selection framework validation approach to determine
the appropriate features. In this paper, four stages (i.e., ULR, t-test, Correlation analysis, and multivariate
linear regression stepwise forward selection) are implemented to identify the appropriate features, that helps
in identifying whether an app contains malicious behavior or not.

• RQ4 Which classification algorithm among the implemented machine learning algorithms is most appropriate
for identifying malware-infected apps? To answer to this question the efficiency of various machine learn-
ing approaches are evaluated. In this study, three different ensemble approaches and six different machine
learning algorithms based on neural networks are considered.

• RQ5 Is the feature collected (such as an app’s rating, API calls, permissions, and the number of people who
have downloaded the app) sufficient for identifying a malicious app or not? This question helps in determin-
ing whether or not considering features can detect malware-infected apps in the real world. To answer this
question, the performance of our suggested model is compared with previously published frameworks as
well as several anti-virus scanners in the market.

Research methodology
Based on the research questions mentioned above, the methodology that is used in this research paper is men-
tioned in the following subsections. In order to improve the detection rate for malware, the obtained data set
has been normalized, and dependent and independent variables have been selected.

Independent variables
In this study, the model is developed by applying the proposed feature selection approach, which helps in the
detection of malware-infected apps. Additionally, as shown in Fig. 2, five different strategies to select the best

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

features are used. The best features are selected from other accessible features created on intermediate explore
models at each level.

Dependent variables
The focus of this research is to find a link between Android apps and the features (such as app rating, API calls,
permission, and the number of users who have downloaded an app) retrieved from the collected data set. The
malware app characteristics are separated from the benign app features in the dependent variable of Android
apps.

Creation of experimental data set and extraction of features
In this research paper, 70,000 .apk files from Google play store (https:// play. google. com/ store? hl= en), and more
than 3 lacs .apk files from third-party app store i.e., Softonic (https:// en. softo nic. com/ andro id), Android Author-
ity (https:// www. andro idaut hority. com/ apps/), CNET (https:// downl oad. cnet. com/ andro id/) belong to

benign group and 70,000 malware-infected Android apps from79–81 and Sanddroid (http:// sandd roid. xjtu.
edu. cn: 8080/) belongs to malicious group are collected to develop an effective malware detection framework. As
seen in Table 3, the .apk files we collected fall under thirty different categories. Collected malware-infected apps
belong to ten different malware categories: AD (Adware), BA (Backdoor), HT (Hacker Tool), RA (Ransom), TR

Figure 2. Proposed framework for feature selection and its validation.

https://play.google.com/store?hl=en
https://en.softonic.com/android
https://www.androidauthority.com/apps/
https://download.cnet.com/android/
http://sanddroid.xjtu.edu.cn:8080/
http://sanddroid.xjtu.edu.cn:8080/

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

(Trojan), TB (Trojan-Banker), TC (Trojan-Clicker), TD (Trojan-Dropper), TS (Trojan-SMS) and TSY (Trojan-
Spy). Classes are identified by using two distinct scanners i.e., VirusTotal (https:// www. virus total. com/ gui/)
and Microsoft Windows Defender (https:// windo ws- defen der. en. softo nic. com/ downl oad) and on the basis of
its behavior defined in the study82.

To formulate an efficient malware detection framework, we extract 310 API calls and 1419 unique permis-
sions (https:// github. com/ Arvin dMahi ndru66/ Compu ter- and- secur ity- datas et), by implementing the procedure
mentioned in the literature3,13,15,83 . If an app requests the permission and API call during installation or runtime,
we mark it as “1”; otherwise, we mark it as “0”. The following are some of the features of a certain app that have
been extracted:

0,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,
1,
1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, and so on.
After extracting API calls and permissions from the collected data set from .apk files, it is divided into thirty

different features data sets (Mahindru, Arvind (2024), “Android Benign and Malware Dataset”, Mendeley Data,
V1, doi: 10.17632/rvjptkrc34.1). Table 4 illustrates the creation of various feature data sets as well as their explana-
tions. These extracted features are divided into different sets on the basis of its behavior to which it belongs3,13,15,83.
The main reasons to divide these extracted features into thirty different feature data sets are: to select significant
features by using the proposed feature selection framework and to remove the complexity.

Figure 3 demonstrate the sequence diagram of an Android app by showing the example of an railway reserva-
tion app. How the process is started and how it is interact with other APIs and the permissions that are running
in the background (Table 5).

Machine learning technique
ANN stands for artificial neural networks, and it is a computing system based on biological neural networks.
These are able to perform certain tasks by utilizing certain examples, without using task-specific rules. Research-
ers are implementing ANN to solve different problems in malware detection, pattern recognition, classification,
optimization, and associative memory84. In this paper, ANN is implemented to create a malware detection model.
The structure of the ANN model is shown in Fig. 4. ANN contains input nodes, hidden nodes, and output nodes.

The input layer employs a linear stimulation function, while the hidden and output layers employ squashed-S
or sigmoidal functions. ANN can be presented as:

where B is the input vector, A is the weight vector and O′ denotes the desired output vector. In order to minimize
the mean square error (MSE), the value of A is updated in each step. Mean square error can be calculated from
the equation below:

(1)O
′

= f (A,B),

Table 2. In the literature, there are feature selection methods and machine learning algorithms that have been
implemented.

Author/approach The technique for selecting features was used Machine learning algorithm used

ANASTASIA4 Randomized tree group Decision tree (J48), Support vector machine (SVM),

(i.e., Extra trees-classifier) Naïve Bayes (NB), Logistic regression,

K-Nearest neighbours, random forest(RF),

Deep learning, and Adaboost

Andromaly23 Chi-square, Fisher score and Information gain k-Means, Naïve Bayes (NB),

Bayesian network, decision tree (J48)

Histogram or logistic regression

Mas’ ud et al.66 Information gain and Chi-square test Naïve Bayes (NB), K-nearest Neighbour (KNN),

Decision Tree (J48), Multi-layer perceptron (MLP),

and random forest (RF)

Allix et al.74 Information gain Support vector machine (SVM), C4.5,

RIPPER, and Random forest

Yerima et al.67 Mutual information Bayesian classification

MKLDroid75 Chi-squared Kernel methods

Azmoodeh et al.76 Information gain Deep Eigenspace learning approach

Chen et al.77 Using manual pruning while gaining information Random forest (RF), support vector machine (SVM),)

and K-nearest neighbor (KNN)

Narudin et al.68 ClassifierSubsetEval Random forest, Multi-layer perceptron,

J48, K-Nearest neighbours, and Bayes network

Yerima et al.78 Information gain Bayesian classifier

https://www.virustotal.com/gui/
https://windows-defender.en.softonic.com/download
https://github.com/ArvindMahindru66/Computer-and-security-dataset

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Here, O is the actual output value, and O′ is the desired output value. Various methods were proposed by
 researchers20,84 to train the neural network. In this research work, six different kinds of machine learning algo-
rithms (namely, Gradient Descent approach, Quasi-Newton approach, Gradient Descent with Momentum
approach, Levenber-Marquardt approach, Gradient Descent with Adaptive learning rate approach, and Deep
neural network) are considered to develop malware detection model. These models are effective in the field of
software fault prediction20, intrusion detection and desktop malware predictions85 too.

Gradient descent with momentum approach
This approach accelerates the rate of convergence dramatically20,84. To obtain new weights, this approach com-
bines the fraction diversity20,84,86. X is the updated weighed vector defined as:

where A denotes the momentum parameter value, Xk is the current weight vector and Xk+1 is the update value
of the weight vector and (Ek) , used to identify the lower value in error space. Here, Xk+1 relys on both the weight
and the gradient. To determine the optimal value of A we implemented the cross-validation technique.

Gradient descent approach
This approach updates the weights to reduce the output error20,84,86. In Gradient descent (GD) approach, to
identify the lower value in error space (Ek) , the 1st - order derivative of the total error function is computed by
considering, the following equation:

Redundancy weight vector X is modified by employing gradient vector G20,84,86. The up-dation of X is done
through the following formula

where Gn is the gradient vector, Ox+1 is the revised weight vector and α is the gaining constant. To calculate the
optimum value of α , we implement cross-validation approach.

(2)Mean square error =
1

n

n
∑

i=1

(O
′i − Oi)

2.

(3)Xk+1 = A ∗ Xk − α
∂

∂X
(Ek),

(4)G =
∂

∂X
(Ek) =

∂

∂X

(1

2
(O

′

k − Ok)
2
)

.

(5)On+1 = −αGn = −α
∂

∂O
(En),

Figure 3. Sequence diagram showing reservation using Android app.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Gradient descent method with adaptive learning rate approach
In the GD approach, during training, the learning rate (α) remains stable. This approach is based on the concept
that is quite perceptive to the approximation value of the learning rate. At the time of training, if the value of the
learning rate is too high, the build model can be highly unstable and oscillate its value20. On the reverse of this,
if the training value is too small, the procedure may take a long way to converge. Practically, it is not easy to find
out the optimal value of α before training. Actually, during the training process, the value of α changes20. In each
iteration, if the performance decline along with the required aim, the α value is added by 1.05, and in reverse
of this, if the performance increase by more than the factor of 1.04, then the α value is incremented by 0.720.

Levenberg Marquardt (LM) approach
The foundation of LM is an iterative technique that helps in locating the multivariate function’s minimal value. At
the time of training, this value can be calculated as the sum of squares of real-valued with non-linera functions
which helps in modifying the weights20,87. This method is quite stable and fast because it combines the Gauss
Newton and the steepest descent approach. The iterative process for the same is given by

where Xk+1 is the updated weight, Xk is the current weight, I is the identity matrix, µ > 0 is named as combina-
tion coefficient and J is the Jacobian matrix. For a small value of µ, it becomes Gauss-Newton approach and for

large, µ, it acts as GD approach. Representation of Jacobian matrix is : J =

∂E1,1
∂X1

∂E1,1
∂X2

· · ·
∂E1,1
∂XN

∂E1,2
∂X1

∂E1,2
∂X2

· · ·
∂E1,2
∂XN

...
...

...
...

∂EP,M
∂X1

∂EP,M
∂X2

· · ·
∂EP,M
∂XN

 where P,

N and M is the input patterns, weights and the output patterns.

Quasi-Newton approach
In order to compute the total error function, this approach requires the evaluation of the second order deriva-
tives for each component of the gradient vector20,84. The iterative scheme for the Weight vector X is given as:

where Xk and Xk+1 are the current and updated weight vectors, accordingly. H is the Hessian matrix given by

H =

∂2E
∂X2

1

∂2E
∂X1X2

· · · ∂2E
∂X1XN

∂2E
∂X1X2

∂2E
∂X2

2
· · · ∂2E

∂X2XN

...
...

...
...

∂2E
∂X1XN

∂2E
∂X2XN

· · · ∂2E
∂X2

N

Deep learning neural network (DNN) approach
Convolutional Neural Networks (CNN) and Deep Belief Networks (DBN) are two deep architectures88 that can
be combined to create DNN. In this article, the DBN architecture to build our deep learning approach is imple-
mented. The architecture of the deep learning method is demonstrated in Fig. 5. The procedure is separated into
two stages: supervised back-propagation and unsupervised pre-training. Restricted Boltzmann Machines (RBM)
with a deep neural network is used to train the model with 100 epoches in the early stages of development. An
iterative method is implemented to construct the model with unlabeled Android apps in the training step. Pre-
trained DBN is fine-tuned with labeled Android apps in a supervised manner during the back-propagation step.
In both stages of the training process, a model developed using deep learning methods uses an Android app.

Ensembles of classification models
In this study, three different ensemble models to detect malware from Android apps is also proposed. During
development of the model, the outputs of all the classification models have been considered where the base
machine learning algorithm allocated several priority levels and output is calculated by applying some combina-
tion rules. Ensemble approaches are divided into two types:

• Homogenous ensemble approach: In this approach, all classification models, are of the same kinds, but the
difference is in generating the training set.

• Heterogenous ensemble approach: Here, all base classification approaches are of distinct types.

On the basis of combination rules, ensemble approaches are divided into two distinct categories:

• Linear ensemble approach: While developing the model, with a linear ensemble approach an arbitrator com-
bines the results that come from the base learners, i.e., selection of classification approach, average weighted,
etc.

(6)Xk+1 = Xk − (JTk Jk + µI)−1Jkek

(7)Xk+1 = Xk −H−1
k

∂

∂X
(Ek),

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

• Nonlinear ensemble approach: While developing the model, with the nonlinear ensemble approach, it fed the
result of the base classifier, which is a nonlinear malware detection model for example Decision tree (DT),
Neural network (NN), etc.

In this work, a heterogenous ensemble approach having three distinct combination rules is adapted. The ensemble
techniques are detailed in Table 6.

BTE (best training ensemble) approach
The BTE technique is based on the observation that each classifier performs differently when the data set is
 partitioned20. Among the applied classifier, the best model is selected to train data set that are founded on the
principles of certain performance parameters. In this research paper, accuracy is considered as a performance
parameter. Algorithm 1 given below is considered to calculate the ensemble output Eresult.

Algorithm 1. Best Training Ensemble (BTE) approach.

MVE (majority voting ensemble) approach
MVE approach, based on the principle to consider the output of the test data for each classifier, and the ensem-
ble output (Eresult) is concerned with the majority group differentiated by the base classifier20. Ensemble output
(Eresult) is calculated by implementing Algorithm 2.

Algorithm 2. Majority Voting Ensemble (MVE) Approach.

NDTF (nonlinear ensemble decision tree forest) approach
In this study, to train the model with base leaner, is also considered. Further, the trained model is implemented
the results on the corresponding testing data set to make the model for the final detection of malware apps. In
this research paper, Decision tree forest (DTF) has been considered as a non-linear ensemble as a classifier which
was suggested by Breiman in 2001. The developed model is based on the outcome of the collected results of the
distinct decision trees. Algorithms 3 is used to calculate the result (Eresult).

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Algorithm 3. Nonlinear Ensemble Decision Tree Forest (NDTF) Approach.

Method for normalizing the data
In order to comply with the required diversity of input properties and prevent the saturation of the neurons,
it is important to normalize the data prior to deploying a neural network spanning the range of 0 to 189. The
Min-max normalizing approach is used in this research study. This technique is work on the principle of a linear
transformation, which brings each data point Dqi of feature Q to a normalized value Dqi , that lies in between 0− 1.

To obtain the normalized value of Dqi : , use the following equation:

The relative values of the relevance of the characteristic Q are min(Q) and max(Q).

Parameters considered for evaluation
This section provides definitions for the performance metrics needed to identify malicious apps. The confu-
sion matrix is used to determine all of these characteristics. Actual and detected classification information is
included in the confusion matrix, which was created using a detection approach. The constructed confusion
matrix is shown in Table 7. F-measure and accuracy are two performance parameters that are used to evaluate
the performance of malware detection algorithms in this research. Formulas for evaluating the accuracy and
F-measure are given below:

• False positive (FP) A false positive occurs when the developed model identifies the positive class incorrectly.
• False negative (FN) When the developed model successfully identifies the negative class, a false negative

occurs.
• True negative (TN) An accurate identification of the negative class by the developed model represents a true

negative conclusion.
• True positives (TP) An accurate identification of the positive class by the developed model represents a real

positive conclusion.
• Recall The data set’s positive classes that are made up of all other positive classes are identified.

 where x = NMalware→Malware , z = NMalware→Benign
• Precision The accuracy measures the proportion of forecasts in the positive class that are indeed in the posi-

tive class.

 where y = NBenign→Malware

Accuracy Accuracy is measured as3:

where Nclasses = x + y + z + w,
w = NBenign→Benign

F-measure F-measure is measured as3:

(8)Normalized(Dqi) =
Dqi −min(Q)

max(Q)−min(Q)
,

(9)Recall =
x

x + z
,

(10)Precision =
x

x + y
.

(11)Accuracy =
x + w

Nclasses
,

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Proposed feature selection validation method
The selection of relevant feature sets is an important challenge for data processing in various machine learning
and data mining applications90–92. In the field of Android malware detection, a number of authors13–15,69,93,94
applied only limited feature subset selection and feature ranking approaches i.e., Correlation, Goodman Kruskals,
Information Gain, Chi-squared, Mutual Information, and t-test methods to detect malware. The first limitation
of the previous studies is that they used a small data set (i.e., the number of malware or benign apps is less in
number) to validate the proposed techniques. The additional significant disadvantage of the feature selection lies
in the fact that after selecting the best features no comparison analyses were made among the classifiers model
developed by reduced sets of features and by using all extracted feature sets. Mainly, the main reason for this is
that the vast collection of features found in particular categories of the app (like books, entertainment, comics,
game, etc.) makes it complex to produce a classifier by examining all the features as input. It is the best of our
knowledge, that academicians and researchers were implemented these feature selection approaches individu-
ally; but no one selected features by combining all of these feature selection approaches. However, a framework
for the feature selection approach has been given in this study, which helps in selecting the most appropriate
features and enhance the effectiveness of the malware detection model. The suggested framework is applied to
apps that have been gathered from the various repositories listed in section 2.4 and that fall under the thirty
categories listed in Table 3. Finally, we verified the framework by comparing the effectiveness of the models
developed after implementing feature selection method with the efficiency of ones constructed using the whole
data set initially formed.

(12)
F −measure =

2 ∗ Recall ∗ Precision

Recall + Precision

=
2 ∗ x

2 ∗ x + y + z

Table 3. Number of apps consider in our study.

ID
Category of Android
app

Downloaded
from Google
Play store

Downloaded
from Third-
party app store Benign apps

Malware families
 Malware
appsAD BA HT RA TR TB TC TD TS TSY

D1 Arcade & Action(AA) 2291 11856 14147 5500 290 210 23 5580 35 30 20 29 20 11737

D2 Books & Reference(BR) 2235 12513 14748 40 100 100 40 100 0 10 20 7 10 427

D3 Brain & Puzzle(BP) 1928 12522 14450 300 5500 300 230 5050 23 22 23 40 13 11501

D4 Business(BU) 1308 12162 13470 2220 30 92 10 22 12 19 0 0 3 2408

D5 Cards & Casino(CC) 886 12106 12992 100 100 230 220 221 190 23 11 5 0 1100

D6 Casual(CA) 2010 12535 14545 33 0 33 33 120 12 89 0 0 23 343

D7 Comics(CO) 667 1254 1921 30 29 90 100 12 13 19 20 33 53 399

D8 Communication(COM) 1414 11106 12520 22 33 89 90 100 47 20 0 0 2 403

D9 Education(ED) 1744 12210 13954 100 200 30 90 200 300 190 20 12 222 1364

D10 Entertainment(EN) 4222 12340 16562 100 5000 0 5000 0 200 200 200 0 0 10750

D11 Finance(FI) 999 12198 13197 20 23 33 122 20 20 0 0 10 5 253

D12 Health & Fitness(HF) 1551 11509 13060 0 0 0 0 90 0 89 60 0 4 243

D13 Libraries & Demo(LD) 655 12134 12789 10 10 10 10 10 20 30 0 7 30 137

D14 Lifestyle(LS) 2650 1735 4385 20 100 300 90 100 500 20 90 80 119 1419

D15 Media & Video(MV) 1019 11123 12142 20 20 20 90 10 10 10 20 0 27 227

D16 Medical(ME) 768 1462 2230 10 0 0 0 40 2 0 0 0 90 142

D17 Music & Audio(MA) 1621 11187 12808 20 20 20 20 20 40 40 40 20 39 279

D18 News & Magazines(NM) 1164 11115 12279 20 0 0 0 0 0 0 45 100 50 215

D19 Personalization(PE) 4334 11616 15950 0 100 20 50 50 50 45 100 200 16 631

D20 Photography(PH) 1133 11189 12322 10 10 20 30 40 10 10 10 10 7 157

D21 Productivity(PR) 1850 1377 3227 230 20 10 0 0 12 100 30 120 66 588

D22 Racing(RA) 766 1184 1950 20 0 0 0 0 0 0 50 0 0 70

D23 Shopping(SH) 1873 17134 14007 10 10 10 10 40 40 90 100 800 91 1201

D24 Social(SO) 1159 12171 13330 20 15 15 12 10 90 300 300 10 637 835

D25 Sports(SP) 1689 12447 14136 200 0 5000 5000 700 0 0 30 0 315 11245

D26 Sports Games(SG) 889 12155 13044 20 300 300 20 29 321 22 34 34 63 1143

D27 Tools(TO) 3346 10715 4061 2001 230 200 100 109 100 122 23 19 0 2904

D28 Transportation(TR) 796 11203 11999 0 227 20 23 34 5000 0 23 11 0 5338

D29 Travel & Local(TL) 2180 1582 3762 20 21 21 42 32 24 34 100 100 119 513

D30 Weather(WR) 853 12160 13013 200 200 200 3000 0 100 100 300 0 8 4108

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Figure 2 demonstrates the phases of the proposed feature selection validation framework. Without using
machine learning algorithms, this framework aims to determine whether the selected features are useful in
detecting malicious apps. The wrapper strategy is used to pick the sets of features that are useful in identifying
malware apps after all crucial components have been examined. It keeps track of the progress of the learning
algorithm that was used to identify each feature subset. In this work, the selected features are investigated using
linear discriminant analysis (LDA).

 i. Data set Table 3 summarized the data set used in this research work. The considered data set belongs to
141 different malware families.

 ii. Normalization of data By using the Min-max normalizing approach, all features are normalized between
the ranges of 0 and 1.

 iii. Partition of data We examined at the data set that wasn’t used for training in order to evaluate the pro-
posed feature selection approach. Further, the data set is divided into two different parts one part is used
for training, and the remaining is used for testing. The group ratios in the training and testing of the data
sets are nearly identical.

 iv. Filter approach Pre-processing is the term that describes this technique because it eliminates extraneous
features. In this step, the t-test and ULR analysis are implemented.

a. t-test analysis It examine the statistical significance of benign and malware apps using the t-test method.
In a 2-class problem (malware apps and benign apps), analysis of the null hypothesis (H0) significant
that the two populations are not equal, or it is seen that there is a noticeable variance among their mean
values and features used by both of them are different95. Furthermore, it shows that the features affect
the malware detection result. Hence, those features are considered, which have significant differences
in their mean values, and others are excluded. Hence, it is essential to approve the null hypothesis (i.e.,
H0) and discard the alternative ones95. t-test is implemented on each of the attributes and then P value
for each feature is calculated, which indicates how well it distinguishes the group of apps. According to
research by95, features with an P value of < 0.05 show significant biases.

b. Univariate logistic regression (ULR) analysis After identifying features that make a significant difference
between malware and benign apps, binary ULR analysis is implemented to test the correlation among
features that helps in malware detection95. ULR analysis is implemented on each selected feature set,
which helps in discovering whether the above-selected features were essential to detect the malware-
infected apps or not. Only those features are considered, which are having P value < 0.05. From the
results of the ULR analysis and t-test, the hypothesis are rejected and accepted mentioned in Table 5.

 v. Wrapper approach To determine optimum sets of the feature, cross-correlation analysis and multivariate
linear regression stepwise forward selection is implemented in this stage.

a. Cross correlation analysis After finding the important features, the correlation analysis is implemented
and then examination for both negative and positive correlation coefficients (i.e., r-value) between
features is performed. If a feature has a value of r > = 0.7 or r-value < =0.7 with other features, i.e., have
a higher correlation then the performance of these features is studied separately. Further, those features
are selected, which perform better.

b. Multivariate linear regression stepwise forward selection It is not imply that, features that are achieved
are relevant to develop malware detection framework. In this stage, ten-fold cross-validation technique
is applied to determine the significant features.

 vi. Performance evaluation Further, to validate that proposed framework is able to identify malware-infected
apps that were developed by implementing the steps mentioned above by using independent test data.
Additionally, the efficiency of the essential feature sets used for malware detection is validated. On thirty
different categories of Android apps, nine different machine learning classifiers were used to develop the
investigation model. To evaluate the framework two separate performance parameters, are considered i.e.,
F-measure and Accuracy. The effectiveness of our detection model is then evaluated using the proposed
malware detection methodology.

Evaluation of proposed framework
Three different approaches are used to evaluate our proposed framework:

a. Comparison with previously used classifiers Parameters like Accuracy and F-measure are compared with
existing classifiers proposed by researchers in the literature to see if our suggested model is feasible or not.

b. Comparison with AV scanners To compare the effectiveness of our suggested work, ten different anti-virus
scanners are considered and their performance is evaluated on the collected data set.

c. Detection of unknown and known malware families The proposed framework is also examined to see whether
it can identify known and unknown malware families.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Experimental setup and results
The experimental setting used to develop the malware detection model is described in this portion of the paper.
The model is developed using a Neural Network (NN) using six different types of machine learning algorithms,
namely GD, NM, LM, GDA, GDM, DNN, and three ensemble techniques, including the best training, non-linear
decision tree forest, and majority voting. These algorithms are applied on Android apps that were collected from
different resources. Each category has a distinct number of benign and malicious apps (they are further separated
into various families), which is sufficient for our analysis. Figure 6 presents PermDroid, our suggested framework.

Table 4. Formulation of feature data set.

Set number Description Set number Description

S 1 SYNCHRONIZATION _DATA S 2 CONTACT_INFORMATION

S 3 PHONE_STATE and PHONE_CONNECTION S 4 AUDIO and VIDEO

S 5 SYSTEM_SETTINGS S 6 BROWSER_INFORMATION

S 7 BUNDLE S 8 LOG_FILE

S 9 LOCATION_INFORMATION S 10 WIDGET

S 11 CALENDAR_INFORMATION S 12 ACCOUNT_SETTINGS

S 13 DATABASE_INFORMATION S 14 IMAGE

S 15 UNIQUE_IDENTIFIER S 16 FILE_INFORMATION

S 17 SMS_MMS S 18 READ

S 19 ACCESS_ACTION S 20 READ_AND_WRITE

S 21 YOUR_ACCOUNTS S 22 STORAGE_FILE

S 23 SERVICES_THAT_COST_YOU_MONEY S 24 PHONE_CALLS

S 25 SYSTEM_TOOLS S 26 NETWORK_INFORMATION

and BLUETOOTH_INFORMATION

S 27 HARDWARE_CONTROLS S 28 Default group

S 29 API calls S 30 Rating and number of user downlaods

Table 5. Null hypothesis.

Hypothesis Description Hypothesis Description

H 1 Set of features S1 does not detect malware-infected apps H 2 Set of features S2 does not detect malware-infected
apps

H 3 Set of features S3 does not detect malware-infected apps H 4 Set of features S4 does not detect malware-infected
apps

H 5 Set of features S5 does not detect malware-infected apps H 6 Set of features S6 does not detect malware-infected
apps

H 7 Set of features S7 does not detect malware-infected apps H 8 Set of features S8 does not detect malware-infected
apps

H 9 Set of features S9 does not detect malware-infected apps H 10 Set of features S10 does not detect malware-infected
apps

H 11 Set of features S11 does not detect malware-infected apps H 12 Set of features S12 does not detect malware-infected
apps

H 13 Set of features S13 does not detect malware-infected apps H 14 Set of features S14 does not detect malware-infected
apps

H 15 Set of features S15 does not detect malware-infected apps H 16 Set of features S16 does not detect malware-infected
apps

H 17 Set of features S17 does not detect malware-infected apps H 18 Set of features S18 does not detect malware-infected
apps

H 19 Set of features S19 does not detect malware-infected apps H 20 Set of features S20 does not detect malware-infected
apps

H 21 Set of features S21 does not detect malware-infected apps H 22 Set of features S22 does not detect malware-infected
apps

H 23 Set of features S23 does not detect malware-infected apps H 24 Set of features S24 does not detect malware-infected
apps

H 25 Set of features S25 does not detect malware-infected apps H 26 Set of features S26 does not detect malware-infected
apps

H 27 Set of features S27 does not detect malware-infected apps H 28 Set of features S28 does not detect malware-infected
apps

H 29 Set of features S29 does not detect malware-infected apps H 30 Set of features S30 does not detect malware-infected
apps

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Following are the phases that are pursued in this study, to develop an effective and efficient malware detec-
tion framework. The proposed feature selection framework is applied to all the extracted feature data sets, to
select significant features. After that, six different machine learning algorithms based on the principle of neural
network and three different ensemble algorithms are considered to develop a malware detection model. So, in
this study, a total of 540 (30 different Android apps data sets * 9 different machine learning techniques * (one

Figure 4. Artificial neural network.

Figure 5. Deep learning neural network (DNN) method constructed with DBN.

Table 6. Classification models ensembles.

Ensemble method Base learners Rules for combination

Heterogenous NN with six distinct training algorithm such as DNN, NM, GDX, GD, GDX, and LM Linear (best in training)

Heterogenous NN with six distinct training algorithm such as DNN, NM, GDX, GD, GDX, and LM Linear (majority voting)

Heterogenous NN with six distinct training algorithm such as DNN, NM, GDX, GD, GDX, and LM Non-Linear (DTF)

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

takes into account all extracted features, and another takes into account features identified using the suggested
feature selection framework.)) different detection models are developed. The following are a detailed description
of the model followed in this study:

1. Thirty different extracted feature data sets are used to implement the proposed feature selection framework.
2. The first stage, which involved identifying significant features, was employed as an input to train the model

using various classification and ensemble machine learning approaches. In this research paper, ten-fold
cross-validation technique is implemented to verify the develop model16. Further, outliers are eliminated,
which effect the performance of the proposed framework. The performance of outliers is measured using
the equation below:

3. The developed model using the aforementioned two processes is evaluated using the collected data set in
order to determine whether or not the proposed framework is successful in identifying malicious apps.

Validation of the proposed feature selection framework
In this subsection, the selection of significant feature sets for malware detection is explained. Our analysis is
started by using thirty different feature sets (mentioned in Table 4).

t-Test analysis
t-test analysis is used to determine the statistical significance of detecting the malware from Android apps. In
this work, t-test is applied on extracted feature sets and calculated its P value. Further, in this study, the cut-off P
value considered is 0.05, i.e., it denotes that feature sets that have P value < 0.05 has a strong prediction capabil-
ity. Figure 7 illustrates the findings of a t-test performed on the thirty various categories of Android apps that
comprise up our obtained data set. The P value is provided using two forms for simplicity of use (box with black

(13)ei =

{

if |zji − ẑj| > 3 ∗ σ for Effective outliers,
if |zji − ẑj| ≤ 3 ∗ σ for Non Effective outliers

Table 7. An Android app’s maliciousness can be determined using a confusion matrix.

Benign Malware

Benign Benign-> Benign (TP) Benign-> Malware (FP)

Malware Malware-> Benign (FN) Malware-> Malware (TN)

Figure 6. Proposed framework i.e., PermDroid.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

circle (·) means P value < 0.05 and blank box � means P value > than 0.05). The sets of features with emphasis
P values of < 0.05 have a significant impact on identifying malicious or benign apps. Figure 7 shows how the
S29, S27, S25, S23, S22, S21, S19, S18, S13, S10, S8, S5, S3, and S1 feature sets might help to detect malicious and
benign apps in the Arcade and Action categories. As a result, in this study, we rule out the hypotheses H1, H3,
H5, H8, H10, H13, H18, H19, H21, H22, H23, H25, H27, and H29, coming to the conclusion that these sets of
features are capable of identifying apps in the Arcade and Action category that are malicious or benign.

To understand the relationship between malware and benign apps, we have drawn an error box-plot dia-
gram. These box-plot diagrams verify the outcomes of the t-test analysis. If there is no overlapping in means and
their confidence intervals (CI), then it means there will be a statistical difference between malware and benign
apps else. There is no significant difference between them. An error box-plot of the 95% confidence intervals
throughout the sets of features and the mean for Arcade and Action category apps is demonstrated in Fig. 8. The
outcomes of other categories of Android apps are of similar types. Based on Fig. 8, we can observe that the boxes
of S29, S27, S25, S23, S22, S21, S19, S18, S13, S10, S8, S5, S3, and S1 sets of feature do not overlap which means
they are significantly different from each other. The mean value of the malware group is higher than the benign
group apps. Based on error box-plots, we consider the hypotheses H1, H3, H5, H8, H10, H13, H18, H19, H21,
H22, H23, H25, H27 and H29 concluding that these feature sets can able to identify the malware-infected apps
for Arcade and Action category Android apps.

ULR analysis
To examine whether the selected sets of feature after implementing t-test analysis are significant to identify
malware apps or not, in this study, ULR analysis is performed on selected sets of features. A set of features is
considerably associated with malware detection if its P value is < 0.05. In every task, some sets of features are
essential for the evolution of the malware detection model, while different sets of features do not seem to be
appropriate for malware detection. The outcomes of the ULR approach are demonstrated in Fig. 9. Equivalent
to t-test analysis, the same representation is used as such in P values, i.e., blank box means P value > 0.05 and
box having black square has P value ≤ to 0.05.

From Fig. 9, it is clear that among thirty different categories of features, only S5, S3, S1, S13, S10, S23, S19,
S29, and S25 sets of features are significant detectors of malware apps. As a result, we reject null hypotheses H1,
H3, H5, H10, H13, H19, H23, H25, and H29 and conclude that these sets of features are directly related to the
functioning of the apps. After implementing t-test and ULR analysis on our collected sets of features, rejection
and acceptance of the hypotheses is done that is presented in the Table 5. Figure 10 demonstrates the rejection
and acceptance of the hypotheses for all of the thirty different categories of Android apps. The horizontal and
vertical axes indicate the name of the hypothesis and the equivalent category of the Android app, accordingly.

Figure 7. t-Test analysis.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

To represent the rejection and acceptance of the hypotheses, the cross symbol (×) and black circle (·) , are used
respectively. Based on Fig. 10, it is observed that only sixteen hypotheses out of thirty are accepted. Others are
rejected for Arcade and Action category Android apps.

Cross correlation analysis
Figure 11 demonstrates the Pearson’s correlation between sets of features for all the categories of Android apps.
The lower triangular (LT) and upper triangular (UT) matrices indicate the correlation in different sets of features
for distinct Android app categories. The linear relation is evaluated by using the value of the correlation coef-
ficient between distinct sets of extracted features from Android apps. In the present paper, Pearson’s correlation
(r: Coefficient of correlation) is used to determine the linear relationship among distinct sets of features. The
direction of the association is determined by whether the correlation coefficient, r, has a positive or negative
sign. If the value of r is positive, it indicates that dependent and independent variables grow linearly or if the
value of r is negative. Both the dependent and independent variables are inversely proportional to each other.
Cross-correlation analysis is conducted only on the sets of features that were identified by implemented ULR
and t-test analysis. If the relevant sets of features show a higher value of correlation (i.e.,r-value ≥ 0.7 or r-value
≤ −0.7) with pertinent other sets of features, then the performance of these sets of feature separately and on the
joint basis for malware detection is validated and consider those sets of feature which perform well. Figure 12
demonstrates the selected sets of the feature after implementing cross-correlation analysis. The selected sets of
features are represented by utilizing a black circle (·) , demonstrating that equivalent sets of features are considered
for this research paper.

Figure 8. Error box-plots for all the set of permissions in Arcade and Action category apps.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Figure 9. ULR analysis.

Figure 10. Hypothesis.

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Stepwise forward selection for multivariate linear regression
After using cross-correlation analysis, the selected subset of features may or may not be important for creat-
ing the malware detection model. Further, a multivariate linear regression stepwise forward selection method
is implemented in this study to discover the most important features for creating Android malware detection
models. After applying multivariate linear regression stepwise on the retrieved feature data set, Fig. 13 shows a

Figure 11. Correlation between set of features (here LT stands for lower triangle and UT stands for Upper
triangle.

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Figure 12. Features selected after implementing cross correlation analysis.

Figure 13. Features selected after implementing multivariate linear regression stepwise forward selection.

22

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

significant set of features. A set of features that were taken into account in this paper while building a malware
detection model is represented by a black circle with the symbol (·).

The overall outcome of the feature selection method
In this study, four distinct phases are used to identify relevant sets of features that will be taken into account
while constructing the Android malware detection model. Some relevant sets of features are identified from
the available sets of features in each stage based on the outcomes of the intermediate analysis. A selection of
features from each of the thirty various categories of Android apps are shown in Fig. 14. To make things easier,
the selected feature sets are represented by four separate characters, as shown below:

• Empty circle symbol: Features are relevant after implementing t-test analysis.
• Triangle symbol: Features are relevant after implementing ULR analysis and t-test.
• Diamond symbol: Features are relevant after applied cross-correlation analysis, ULR, and t-test.
• Filled circle symbol: Features are relevant after implementing multivariate linear regression stepwise forward

selection method, cross-correlation analysis, ULR, and t-test.

Evaluation on the basis of performance parameters
To examine set of features, a new data set is used that was not previously considered in this study. The model is
originally built using ten-fold cross-validation, multivariate linear regression, and selected feature sets as input.
Figure 15 illustrates the box-plot diagram for performance measures for all Android apps categories used in this
study, including F-measure and Accuracy. It reveals that the outcome is computed as Accuracy of 82 percent
and an average F-measure of 0.80.

Evaluation of the malware detection models developed using ANN
In this paper, we use a neural network to develop a model for malware detection using six different types of
machine learning algorithms.

Two separate feature data sets are used as input to construct a model for identifying malware from Android
apps (one comprises all extracted features (EF) and the other is used using the feature selection framework (SF).
The following hardware was used to complete this task: a Core i7 processor with a 1 TB hard disc and 64 GB
RAM. Each malware detection model’s performance is measured using two performance parameters: F-Measure
and Accuracy. The outcomes of using a neural network with six different machine learning techniques to achieve

Figure 14. Selected sets of feature for malware detection.

23

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

performance metrics for various categories of Android apps are shown in Tables 8 and 9. From Tables 8 and 9,
the following conclusions can be drawn:

• The model developed by features selected using proposed framework (Model also developed by using distinct
feature selection approaches are shown in Tables S1 to S14 in “Online Appendix A”) as an input produces

Figure 15. Results of testing data by considering performance parameters.

Table 8. Accuracy. Significance of values are in bold.

ID

GD GDM GDA NM LM DNN BTE MVE NDTF

EF SF EF SF EF SF EF SF EF SF EF SF EF SF EF SF EF SF

D1 82.4 84.8 76 81.6 77.6 82.4 84 88 82.4 93.671 85 89.5 80.8 88 79.2 89.2 84.8 89.6

D2 83 89.7 79.81 84.730 78 83 73 79.61 82 89.6 89 93.723 81 86 87 93 83 89

D3 87 89 76 79.912 81 86 80 85 82 86 89 94.119 76 80 82 86 86 90

D4 83 88 76 79 82 88 81 86 80 83 86 89.1 76 80 81 83 84 90

D5 80 83 72 76.9 82 86 78 82 80.3 86.8 84 89.1 76 82 83 87 88 95

D6 80 83 81 89.9 76 82 68 74 80 84 82 93.1 76 79.9 81 84 83 88

D7 77 79 83 89.9 81 86 70 75 81 89 80 88 72 76 80 83 82 88

D8 67 73 76 79.9 82 89 84 89 83 89 88 96.189 72 78 82 88 86 90.321

D9 77 82 74 79.9 80 84 81 87 83 88 88 95 81 86 83 90 89 96

D10 77 82 72 79.9 84 89 81 89 72 86 84 94.114 76 88 81 89 88 94

D11 56 79 56 79.9 51 82 70 85 62 86 79 84.1 71 82 67 86 86 96

D12 78 89 77 82.913 71 88 70 84 72 86 79 88.121 72 80 62 86 76 90.910

D13 53 79 56 69.912 71 86 76 85 72 86 79 94.1 78 83 80 86 81 92

D14 57 82 76 89.988 74 82 68 79 57 81 78 84.1 72 80 67 78 71 80

D15 81 86 86 89.961 61 86 70 85 82 86 81 94.131 66 80 84 86 88 98

D16 67 79 66 79.932 81 86 70 85.8 88.1 96.7 81 92.1 66 80 82 86 81 92

D17 57 78 76 82.912 80 91 80 85 72 86 79 93 76 84 72 91 76 92

D18 67 82 76 82.114 74 86 68 85 62 86 69 84 66 80 62 86 66 89

D19 71 89 66 89.914 61 81 76 85 80 86 82 96.111 71 82 80 88 82 97

D20 47 78 67 71.621 61 82 70 82 80 89 78 92.133 67 84 80 88 82 91

D21 67 81 72 89.9 80 88 78 82 80 89 81 97.112 86 89 71 86 76 88

D22 77 82 77 89 61 86 72 80 81 88 81 92 66 82 62 86 66 92.96

D23 57 78 56 79 51 76 78 89 52 76 79 90 70 88 72 86 76 93

D24 57 80 76 89.9 81 86 80 89 78 86 89 100 76 88 82 92 86 97

D25 78 89 76 88 68 86 70 82 80 89 82 97 81 93 82 91 86 95

D26 70 82 76 88 80 91 60 75 62 86 89 94 56 70 52 76 66 90

D27 77 89 66 79.432 80 88 80 88 80 88 82 95 70 88 72 89 80 97

D28 67 89 61 74 81 91 80 95 82 96 89 99.1 56 81 62 81.78 66 93.78

D29 77 82.67 71 79.912 71 86.67 80.77 85.98 82.778 89.897 81 96.1 76 80.8 82 89.99 81 96.77

D30 81 89 62 79.9 81 86 80 85 82 86 89 94.1 71 80 82 86 86 90

24

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

better results when compared to a model constructed by taking into account all sets of features, presenting
a significant value of F-measure and Accuracy for identifying malware.

• In compared to the others, the neural network with Deep Neural Network (DNN) training method yields
higher outcomes.

Figures 16 and 17 show the Accuracy and F-measure box-plot diagrams for each model built using classification
methods. Each figure has two box plots, one containing all of the extracted features (EF) and the other contain-
ing only selected feature sets (SF).

The Box-plot diagram assists us in analyzing the performance of all the implemented approaches based on a
single diagram. The line drawn in the middle of each box-plot diagram, i.e. the median, is used to determine its
value. If a model’s median value is high, it’s regarded as the best model for detecting malware. It can be inferred
from Figs. 16 and 17 that:

• The models developed utilizing a significant set of features have high median values. The box-plot diagrams
in Figs. 16 and 17 show that SF outperformed all extracted features in terms of detecting Android malware.

• The DNN-based model yields the best results out of all the machine learning techniques for classification
that have been used.

Evaluation of the malware detection models developed using ensemble techniques
In this study, three different heterogeneous ensemble approaches are considered for creating the Android mal-
ware detection model, each with a different combination rule (1 nonlinear and two linear). From Tables 8 and
9 and Figs. 16 and 17, it can be revealed that the NDTF approach outperformed the BTE and MVE approaches.

Table 9. F-Measure. Significance of values are in bold.

ID

GD GDM GDA NM LM DNN BTE MVE NDTF

EF SF EF SF EF SF EF SF EF SF EF SF EF SF EF SF EF SF

D1 0.899 0.916 0.861 0.896 0.868 0.899 0.908 0.932 0.879 0.9632 0.88 0.921 0.889 0.929 0.882 0.953 0.8914 0.934

D2 0.822 0.864 0.789 0.851 0.794 0.837 0.762 0.881 0.77 0.901 0.8289 0.902 0.8182 0.8953 0.814 0.904 0.8814 0.9234

D3 0.777 0.891 0.676 0.79912 0.71 0.82 0.78 0.80 0.78 0.8612 0.8932 0.923 0.762 0.881 0.81 0.891 0.8622 0.901

D4 0.82 0.8421 0.762 0.7911 0.72 0.872 0.71 0.8622 0.80 0.877 0.82 0.8822 0.77 0.880 0.81 0.838 0.8488 0.90

D5 0.70 0.822 0.712 0.706 0.72 0.862 0.778 0.821 0.803 0.828 0.81 0.881 0.66 0.8222 0.83 0.57 0.78 0.933

D6 0.577 0.7822 0.671 0.871 0.761 0.811 0.68 0.712 0.801 0.8224 0.802 0.9133 0.767 0.799 0.821 0.884 0.8223 0.8568

D7 0.57 0.79 0.63 0.899 0.66 0.76 0.70 0.77 0.8188 0.889 0.703 0.788 0.72 0.767 0.8033 0.8321 0.782 0.788

D8 0.578 0.7711 0.710 0.799 0.8222 0.873 0.82 0.87 0.82 0.87 0.86 0.912 0.67 0.78 0.821 0.871 0.851 0.89321

D9 0.67 0.72 0.788 0.899 0.801 0.821 0.811 0.872 0.63 0.78 0.58 0.85 0.61 0.76 0.723 0.8099 0.889 0.946

D10 0.772 0.812 0.712 0.799 0.74 0.829 0.811 0.869 0.712 0.836 0.814 0.924 0.7621 0.8211 0.812 0.849 0.828 0.90

D11 0.562 0.739 0.676 0.799 0.551 0.782 0.701 0.825 0.612 0.826 0.749 0.841 0.717 0.8152 0.617 0.816 0.836 0.929

D12 0.78 0.819 0.672 0.813 0.711 0.86 0.703 0.814 0.722 0.816 0.69 0.8 0.701 0.82 0.6122 0.863 0.656 0.8910

D13 0.53 0.719 0.526 0.6912 0.7611 0.8026 0.56 0.825 0.702 0.816 0.729 0.884 0.7381 0.82 0.709 0.806 0.811 0.871

D14 0.59 0.72 0.761 0.880 0.67 0.82 0.578 0.789 0.507 0.781 0.88 0.92 0.67 0.822 0.67 0.728 0.721 0.7880

D15 0.811 0.856 0.761 0.8961 0.621 0.861 0.75 0.825 0.82 0.876 0.801 0.931 0.66 0.820 0.780 0.8686 0.818 0.92

D16 0.57 0.709 0.63 0.792 0.71 0.806 0.710 0.88 0.861 0.907 0.821 0.89 0.56 0.810 0.812 0.856 0.801 0.912

D17 0.557 0.768 0.736 0.891 0.810 0.901 0.802 0.845 0.722 0.846 0.769 0.91 0.716 0.814 0.762 0.891 0.726 0.892

D18 0.767 0.812 0.706 0.84 0.714 0.816 0.648 0.825 0.672 0.876 0.692 0.824 0.626 0.810 0.62 0.816 0.566 0.86

D19 0.671 0.809 0.656 0.824 0.601 0.781 0.726 0.825 0.780 0.826 0.682 0.86 0.701 0.872 0.780 0.818 0.872 0.917

D20 0.487 0.768 0.647 0.7621 0.618 0.782 0.67 0.782 0.780 0.869 0.718 0.89 0.617 0.814 0.780 0.82 0.802 0.8891

D21 0.617 0.802 0.712 0.829 0.780 0.81 0.678 0.782 0.780 0.819 0.681 0.912 0.76 0.89 0.711 0.806 0.716 0.838

D22 0.677 0.782 0.577 0.789 0.661 0.786 0.872 0.890 0.71 0.81 0.80 0.89 0.56 0.72 0.60 0.76 0.76 0.91

D23 0.657 0.718 0.656 0.719 0.651 0.876 0.718 0.809 0.52 0.716 0.719 0.890 0.670 0.788 0.802 0.861 0.716 0.893

D24 0.517 0.780 0.676 0.78 0.781 0.86 0.780 0.889 0.678 0.816 0.809 0.99 0.716 0.808 0.802 0.902 0.816 0.967

D25 0.812 0.879 0.716 0.818 0.628 0.856 0.710 0.812 0.780 0.859 0.812 0.94 0.801 0.903 0.812 0.891 0.76 0.895

D26 0.70 0.812 0.71 0.88 0.70 0.89 0.63 0.715 0.562 0.786 0.789 0.9 0.656 0.770 0.52 0.876 0.56 0.89

D27 0.67 0.88 0.66 0.802 0.80 0.878 0.810 0.889 0.780 0.868 0.812 0.895 0.70 0.88 0.712 0.869 0.780 0.95

D28 0.77 0.89 0.601 0.774 0.81 0.891 0.780 0.895 0.802 0.8926 0.819 0.90 0.61 0.81 0.612 0.88 0.62 0.899

D29 0.57 0.82 0.671 0.792 0.701 0.87 0.77 0.81 0.778 0.897 0.71 0.86 0.76 0.88 0.82 0.89 0.801 0.96

D30 0.71 0.82 0.46 0.69 0.71 0.76 0.780 0.845 0.812 0.856 0.829 0.91 0.701 0.880 0.812 0.88 0.66 0.890

25

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Further, it is also noticed that ensemble approaches detect more malware as compared to other implemented
machine learning algorithms except DNN.

Comparison of the findings
In this study, paired Wilcoxon signed-rank tests to assess the relative performance of several feature sets and
machine learning methods is employed. The Wilcoxon test with Bonferroni correction is used in this work for
comparative review.

On the basis of detection approaches
To create a model that can determine whether an Android app is benign or malicious, nine different classifi-
cation algorithms were evaluated. Two sets of features have been identified as inputs for developing malware
detection models for thirty different categories of Android apps using two different performance parameters,
namely F-Measure and Accuracy. One set of features takes into account all extracted features, and the other
sets of selected features that are gained by implementing the framework of the feature selection method. Two
sets of data are used for each strategy, each having 60 data points ((1 feature selection approach + 1 considering
all retrieved features) * 30 Android app categories). The comparisons of pair-wise different machine learning
techniques are shown in Table 10.

There are two sections in Table 10. The value of the significant difference between different pairings is shown
in the second half of the table, and the calculated P value is shown in the first half. Using Bonferroni correction
sets, the significant cutoff value is calculated. In this work, nine different machine learning algorithms were
examined for creating malware detection models, resulting in a total of 36 potential pairs 9techniquesC2 = 36 ,
with all results examined at a significance threshold of 0.05. We can rule out the null hypothesis if the P value is
< 0.05/36 = 0.0013. According to the study, the null hypothesis for the test implies that no significant difference

Figure 16. Box-plot diagram for measured performance parameter i.e., Accuracy.

26

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

exists between the two procedures. Table 10a shows that the P value is < 0.0013, indicating that there is a signifi-
cant difference between the applied processes; out of 36 pairs of training techniques, 22 are offered as a significant
outcome. By examining the mean difference value in Table 10a, it can be seen that the DNN method outper-
formed the performance of other machine learning techniques. In addition, the value of the mean difference of
ensemble techniques is better when compared to other models, with the exception of the model built using DNN.

On the basis of all selected sets of feature using proposed framework and extracted features
By taking into consideration each set of features, a total of 270 different data points ((3 ensemble techniques +
neural network with six machine learning techniques) * 30 types of Android apps) are developed in this study
(one for each performance measure). Wilcoxon signed-rank test performance was described in Table 10b. It is
seen from Table 10b that there is a significant difference between the models developed because the P value is
less than 0.05. Additionally, it is evident that the features taken into account employing the feature selection
framework outperformed the model developed by using all extracted feature sets when comparing the mean
difference values from Table 10b to it.

Proposed framework evaluation
Results comparison with previously employed classifiers
In the present study, our newly developed malware detection model is also compared to the models developed
using previously used classifiers such as decision tree analysis (DT), support vector machine (SVM), Naïve
Bayes classifier (NBC), and logistic regression (LOGR). Two different sets of features (1 considering selected
feature sets + 1 using all extracted features) are considered for 30 different categories of Android apps using
two independent performance measures i.e., F-Measure and Accuracy. An aggregate of two sets i.e., 60 data
points are employed for each classifier model are produced ((1 selected feature sets + 1 considering all extracted

Figure 17. Box-plot diagram for measured performance parameter i.e., F-measure.

27

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Ta
bl

e
10

.
 To

 e
xa

m
in

e
th

e
ra

nk
 te

st
 fi

nd
in

gs
, t

he
 W

ilc
ox

on
 si

gn
ed

 te
ch

ni
qu

e
w

as
 ap

pl
ie

d.

A
cc

ur
ac

y
F-

m
ea

su
re

G
D

G
D

M
G

D
X

N
M

LM
D

N
N

BT
E

M
V

E
N

D
TF

G
D

G
D

M
G

D
X

N
M

LM
D

N
N

BT
E

M
V

E
N

D
TF

(a
) T

ra
in

in
g

m
et

ho
ds

P
va

lu
e

G
D

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

G
D

M
0.

42
5

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
30

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

G
D

X
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

N
M

0.
00

0
0.

41
0

0.
02

20
0.

07
10

0.
05

0
0.

08
1

0.
05

0
0.

07
01

0.
11

0
0.

10
7

LM
0.

00
0

0.
01

20
0.

05
10

0.
02

0
0.

04
0

0.
06

01
0.

10
0

0.
17

0

D
N

N
0.

00
20

0.
00

10
0.

03
0

0.
00

01
0.

00
0

0.
45

0

BT
E

0.
00

40
0.

01
0

0.
00

0
0.

02
0

M
V

E
0.

01
0

0.
01

0

N
D

TF

M
ea

n

G
D

0.
00

0
1.

50
8

2.
45

6
−

2.
04

0
−

3.
01

0
−

3.
50

0
−

2.
20

0
−

2.
09

0
−

2.
90

8
0.

00
0

0.
00

1
0.

01
8

−
0.

05
0

−
0.

02
0

−
0.

06
0

−
0.

02
7

−
0.

02
80

−
0.

03
0

G
D

M
−

1.
00

6
0.

00
0

1.
13

0
−

4.
42

5
−

4.
08

0
−

5.
08

0
−

3.
80

0
−

4.
48

0
−

4.
60

0
−

0.
02

0
0.

00
0

0.
00

5
−

0.
03

0
−

0.
06

0
−

0.
08

0
−

0.
04

0
−

0.
04

5
−

0.
05

0

G
D

X
−

2.
78

8
−

1.
33

0.
00

0
−

4.
00

0
−

4.
21

3
−

6.
17

0
−

3.
12

0
−

3.
78

0
−

4.
23

0
−

0.
01

1
−

0.
00

2
0.

00
0

−
0.

02
1

−
0.

06
0

−
0.

08
0

−
0.

05
0

−
0.

07
0

−
0.

07
8

N
M

2.
89

0
3.

89
9

4.
89

8
0.

00
0

0.
89

0
−

2.
41

0
−

0.
62

0
−

0.
07

10
−

0.
81

0
0.

02
1

0.
03

4
0.

03
9

0.
00

0
−

0.
00

4
−

0.
00

6
−

0.
00

7
−

0.
00

8
−

0.
00

15

LM
3.

47
7

5.
02

5
6.

67
1

1.
33

3
0.

00
0

−
1.

32
2

−
0.

23
3

−
0.

85
1

−
0.

88
0

0.
02

0
0.

31
0

0.
04

0
0.

30
0

0.
00

0
−

0.
00

6
−

0.
00

7
−

0.
00

78
−

0.
01

2

D
N

N
4.

31
1

4.
22

0
3.

78
0

2.
09

81
5.

67
8

00
00

1.
20

0
2.

18
0

1.
91

0
0.

06
0

0.
05

8
0.

05
2

0.
03

8
0.

04
1

0.
00

0
−

0.
00

1
−

0.
00

3
−

0.
00

5

BT
E

2.
99

7
2.

63
3

2.
43

1
2.

10
0

1.
89

0
−

1.
98

8
0.

00
0

−
0.

05
40

−
0.

67
9

0.
02

8
0.

04
1

0.
04

5
0.

00
7

0.
00

9
0.

00
1

0.
00

0
−

0.
00

2
−

0.
02

0

M
V

E
2.

88
2

4.
48

8
5.

67
2

0.
88

9
0.

99
8

−
0.

53
3

0.
56

0
0.

00
0

−
0.

05
4

0.
02

8
0.

04
2

0.
04

6
0.

00
2

0.
00

8
0.

00
1

0.
00

2
0.

00
0

−
0.

00
8

N
D

TF
2.

94
4

4.
55

2
5.

66
1

0.
99

1
0.

78
9

−
0.

45
0

0.
64

6
0.

05
4

0.
00

0
0.

03
6

0.
05

0
0.

05
0

0.
01

5
0.

00
9

0.
00

7
0.

00
8

0.
00

7
0.

00
0

A
cc

ur
ac

y
F-

m
ea

su
re

M
ea

n
P

va
lu

e
M

ea
n

P
va

lu
e

(b
) A

ll
EF

 a
nd

 S
F

EF
SF

EF
SF

EF
SF

EF
SF

EF
0.

00
−

5.
76

0.
00

0.
00

−
0.

04
8

0.
00

SF
5.

76
0.

00
0.

04
8

0.
00

0

28

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

features)* 30 data sets). Figure 18 illustrates both the classifiers employed in this study and the most frequently
used classifiers in the literature.

On the basis of Fig. 18, it can be seen that the model produced using neural networks has a higher median
value and achieves better results than the model developed using the literature’s used classifiers. Further, to decide
that, which model produces better results, a pairwise Wilcoxon signed rank test is implemented. Table 11 summa-
rizes the results of the Wilcoxon test with Bonferroni correction examination for accuracy outcomes. Further, the
Table 11 is divided into two sections, the first of which indicates the P value and the second of which demonstrates
the mean difference between different pairs of classifiers. We implemented thirteen different machine learning
approaches in this research paper (4 previously applied classifier in the literature + 9 implemented classifier in
this study); thus, an aggregate of seventy eight (78) individual pairs are possible 13techniquesC2 = 78 , and all clas-
sifier outcomes are examined at the 0.05 significance level. Only those null hypotheses with an P value is less
than 0.05/78 = 0.000641 are rejected in this study. Table 11 shows that there is a significant difference between
different implemented classifier approaches in a number of cases when the P value is less than 0.000641, i.e.,
66 out of 78 pairs of classification approaches have significant outcomes. Table 11 demonstrates that the DNN
approach outperforms other machine learning classifiers in terms of mean difference value.

Using cost-benefit analysis, comparison with previously employed classifiers
A cost-benefit analysis is used to evaluate the performance of developed model. Using the following equation,
the cost-benefit analysis for each feature selection strategy is calculated:

In this case, Basedcost is determined by the correlation between the specified features set and the class error. The
following equation can be used to compute Basedcost:

The multiple correlation coefficient between the error and the selected feature set is ρSM.fault , and the classifi-
cation accuracy used to build a malware detection model using the selected feature set is Accuracy (SM) . The
proposed model has a greater accuracy and a larger Basedcost since it has a higher multiple correlation coefficient.
After adopting feature selection procedures, NAM stands for feature sets, while NSM stands for the number of
selected features. The following equation can be used to determine Basedcost:

Instead of using the feature selection validation method, we use six other feature ranking approaches to evaluate
PermDroid’s performance in this study. The naming standards used for the experiment are listed in Table 12.
The most important feature selection technique, as suggested in96, is the one that achieves a better value of cost-
benefit. The cost-benefit analysis of different feature selection procedures is shown in Fig. 19a,b. It is discov-
ered that sets of features were selected after applying multivariate linear regression stepwise forward selection
technique, cross-correlation analysis, ULR, and t-test to achieve a higher median Cost-benefit measure when
compared to other feature selection techniques used by researchers in the literature.

In the literature academicians and researchers implemented different feature ranking and feature subset selec-
tion approaches i.e., Chi-squared test, Gain-ratio, Information-gain, Principal Component Analysis and Filtered
subset evaluation. To evaluate the performance of our proposed feature selection approach, an experiment was
performed by using Drebin data set and accuracy is measured and represented in Table 13. Out of implemented
six different feature selection techniques our proposed feature selection approach achieved an higher accuracy
when compared to others.

(14)Cost − Benefit = (Basedcost + Benefitcost)/2.

(15)Basedcost = Accuracy (SM) ∗ ρSM.fault .

(16)Basedcost = NAM − NSM/NAM

Figure 18. Measured performance parameters i.e., Accuracy and F-measure.

29

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Ta
bl

e
11

.
 W

ilc
ox

on
 si

gn
ed

 ra
nk

 te
st

 a
na

ly
sis

 is
 im

pl
em

en
te

d
to

 th
e

pr
ev

io
us

ly
 u

se
d

cl
as

sifi
er

.

A
cc

ur
ac

y P
va

lu
e

M
ea

n

LO
G

R
N

BC
SV

M
D

T
G

D
G

D
M

G
D

X
N

M
LM

D
N

N
BT

E
M

V
E

N
D

TF
LO

G
R

N
BC

SV
M

D
T

G
D

G
D

M
G

D
X

N
M

LM
D

N
N

BT
E

M
V

E
N

D
TF

LO
G

R
0.

00
0

0.
00

0
0.

16
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

2.
01

0
3.

94
0

−
1.

30
−

9.
08

7
−

7.
89

0
−

6.
67

−
11

.8
90

−
12

.8
80

−
15

.8
80

−
11

.7
7

−
12

.9
9

−
13

.0
0

N
BC

0.
00

0
0.

00
0

0.
01

00
0.

67
0

0.
64

2
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
8.

77
0.

00
0

12
.2

2
7.

77
−

1.
08

−
1.

66
0.

08
1.

77
−

3.
89

−
6.

00
−

3.
88

−
4.

88
−

5.
89

SV
M

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

−
3.

89
−

12
.8

9
0.

00
0

−
5.

88
−

13
.8

8
−

11
.5

5
−

10
.8

8
−

15
.7

7
−

13
.8

8
−

17
.8

8
−

15
.7

7
−

16
.9

9
−

17
.0

0

D
T

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
1.

88
−

7.
88

5.
88

0.
00

0
−

7.
88

−
6.

77
−

7.
09

−
5.

66
−

5.
00

−
11

.8
8

−
8.

99
−

9.
99

−
10

.8
9

G
D

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
9.

88
8.

99
12

.8
8

11
.2

0
0.

00
0

1.
67

8
2.

77
−

2.
06

−
3.

88
−

6.
05

−
4.

55
−

5.
08

−
5.

89

G
D

M
0.

66
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

7.
88

5.
00

6.
77

1.
99

2.
89

0.
00

0
1.

11
0

−
0.

89
−

2.
88

−
7.

88
−

6.
77

−
5.

77
−

6.
99

0

G
D

X
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
6.

77
7.

08
6.

88
7.

88
1.

99
2.

00
1

0.
00

0
−

1.
88

−
2.

88
−

8.
99

−
6.

88
−

7.
88

−
8.

09

N
M

0.
00

0
0.

04
1

0.
00

20
0.

00
0

0.
00

0
11

.9
9

10
.9

9
15

.2
2

16
.7

7
2.

33
1.

55
0

1.
77

01
0.

00
0

−
1.

10
7

−
11

.2
2

−
8.

99
−

7.
99

−
10

.9
9

LM
0.

00
0

0.
00

0
0.

00
80

0.
00

0
0.

00
0

13
.7

9
11

.7
9

14
.8

2
18

.6
7

1.
93

1.
95

0
2.

70
1

1.
99

0
0.

00
0

−
13

.2
2

−
7.

99
−

9.
69

−
12

.9
9

D
N

N
0.

00
8

0.
00

0
0.

00
4

18
.7

9
17

.9
0

13
.3

3
16

.0
7

6.
93

5.
05

0
5.

50
1

4.
09

0
3.

78
0

0.
00

0
1.

99
1.

69
1.

09

BT
E

0.
00

3
0.

00
4

12
.9

0
14

.9
0

12
.0

3
15

.9
7

5.
73

4.
05

0
3.

70
1

3.
80

1
0.

78
0

−
1.

00
3

0.
00

0
−

0.
69

−
0.

99

M
V

E
0.

00
3

10
.9

0
12

.8
90

10
.4

03
13

.0
97

2.
73

2.
95

0
2.

70
1

2.
20

1
1.

68
0

−
3.

00
3

−
1.

08
8

0.
00

0
−

1.
99

9

N
D

TF
17

.9
0

16
.8

90
12

.4
03

15
.0

97
3.

63
1

3.
85

0
2.

49
1

2.
88

1
1.

98
0

−
1.

00
3

0.
07

8
0.

07
0

0.
00

0

30

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Comparison of results based on the amount of time it takes to identify malware in real-world apps
In this section of the article, the performance of PermDroid is compared in terms of the time needed to iden-
tify malware in real-world apps. For this experiment, we download the data set from two different repositories
Drebin (https:// www. sec. cs. tu- bs. de/ ~danarp/ drebin/ downl oad. html) and AMD (http:// amd. argus lab. org/) and
experimented by implementing the individual frameworks. Table 14 shows that, when compared to the individual
frameworks available in the literature, our suggested technique can identify malware in less time.

Comparison of the results on the basis of detection rate with different approaches or frameworks available in the
literature
Furthermore, proposed malware detection model (i.e., PermDroid) is compared to previously developed tech-
niques or frameworks present in the literature. The names, methodology, deployment, purpose, data collection,

Table 12. Naming standards used for the experiment.

Abbreviation Corresponding name

FR1 Chi squared test

FS1 t-test

FR2 Gain ratio feature evaluation

FS2 ULR and t-test

FR3 Filtered subset evaluation

FS3 ULR, t-test and cross correlation analysis

FR4 Information gain feature evaluation

FS4 ULR, t-test, multivariate linear regression stepwise forward selection method and cross correlation analysis

AF All extracted features

FR5 Logistic regression analysis

DS Data set

FR6 Principal component analysis (PCA)

Figure 19. Calculated cost-benefit value.

Table 13. Comparison of proposed framework with existing feature selection approaches.

Feature selection technique Accuracy achieved in percentage

FR1 75

FS1 72

FR2 78.6

FR3 73.3

FR5 72.8

FR6 81.8

Proposed feature selection technique 98.7

https://www.sec.cs.tu-bs.de/%7edanarp/drebin/download.html
http://amd.arguslab.org/

31

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

and detection rate of proposed methodologies or frameworks are listed in Table 15. Empirical result revealed
that our proposed framework produced a 3 percent greater detection rate. Experiment was performed by using
Drebin data set (https:// www. sec. cs. tu- bs. de/ ~danarp/ drebin/ downl oad. html).

Comparison of results with different AV Scanners
Although PermDroid outperforms the classifiers used in the research, it should ultimately be similar to the
results obtained using regular anti-virus software in the field for Android malware detection. For this study, ten
different anti-virus softwares are selected from the market and used them on the data set that has been gathered
in this study.

When compared to the various anti-viruses employed in the experiment, PermDroid performs significantly
better. The results of the anti-virus scanner study are shown in Table 16. The anti-virus scanners’ rates of virus
detection vary widely. While the most effective scanners catch 97.1 percent of malware, some scanners only
catch 82 percent of hazardous samples, which is probably a result of their inexperience with Android malware.
PermDroid with DNN and NDTF outperform 1 out of 10 anti-virus scanners on the complete data set, with
detection rates of 98.8% and 98.8%, respectively. Out of implemented different anti-virus scanners, it is discovered
that at least two of them are capable of identifying every malware sample used in this study. As a result, it may
conclude that PermDroid is more effective than many anti-virus scanners’ manually built signatures.

Identification of both well-known and new malware families
Detection of well-known malware families An experiment is also performed to identify whether or not our
suggested framework, i.e., PermDroid, is capable of detecting malware from well-known families. The experi-
ment is carried out on a sample of 20 families from each family (in our research paper, we collect 141 different
malware families). According to empirical results, the suggested framework with DNN is capable of detecting
an average of 98.8% of malware-infected apps, and the proposed framework with NDTF is likewise capable of
doing the same. Table 17 lists the family names and the number of samples for each family, and Fig. 20a,b show
PermDroid’s detection performance for each family (Detection rates for some families are lower because of fewer
samples in the data set).

Detection of new malware families To examine if the suggested framework, is capable of identifying unknown
malware families, PermDroid is trained with a random sample of 10 distinct families based on counting and
then test is performed on the remaining families. Table 18 shows the outcomes in which PermDroid is trained
with limited malware samples, which is required to generalize the characteristics of most malware families, and
achieved a higher detection rate.

Table 14. Compare PermDroid’s performance to earlier frameworks that have been developed. Averaged time
is calculated by taking training and testing time-period and using Drebin data set.

Frameworks TPR FPR Average time in identifying app is malicious or not (Sec)

MADAM (2012)38 0.88 0.6 1200

DroidScope (2012)39 0.89 0.6 1280

AppGuard (2012)40 0.87 0.7 1100

TstructDroid (2013)41 0.88 0.7 1200

AppsPlayground (2013)42 0.88 0.7 1100

AppProfiler (2013)43 0.89 0.8 1000

Andrubis (2014)26 0.88 0.8 980

Androguard (2015)44 0.88 0.7 1100

CopperDroid (2015)45 0.78 0.7 1300

DroidDetector (2016)6 0.80 0.7 1000

MAMADROID (2016)11 0.82 0.6 800

DroidSieve (2017)46 0.88 0.7 920

PIndroid (2017)47 0.89 0.8 810

MOCDroid (2017)48 0.88 0.5 500

DroidDet (2018)7 0.88 0.32 430

MalDozer (2018)49 0.90 0.3 320

Enmobile (2018)29 0.88 0.7 380

SeqDroid (2019)50 0.92 0.2 290

MaMaDroid (2019)97 0.93 0.2 300

DaDiDroid (2019)27 0.91 0.6 330

DeepDroid (2019)13 0.91 0.6 330

DL-Droid (2020)51 0.93 0.19 200

PerbDroid (2020)15 0.91 0.6 330

Proposed approach (i.e., PermDroid) 0.982 0.1 100

https://www.sec.cs.tu-bs.de/%7edanarp/drebin/download.html

32

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

Experimental outcomes
The conclusions reached after conducting experimental work are presented in this section of the paper. The
empirical work was done using a neural network and six different machine learning techniques, including GDA,
NM, GD, GDM, LM, and DNN, as well as three ensemble approaches. The developed models outperform previ-
ously used classifiers in the literature (Table 11) and can detect malware from both known and unknown families
(Table 18, Fig. 20). Additionally, they increase the rate of detection by different Antivirus scanners (stated in
Table 15). It is clear from Fig. 20 and Tables 14, 15, 16, and 18 that:

• PermDroid can detect 98.8% of Android malware, which is impossible for most AV scanners on the market.
• With a detection rate of 98.8% for both known and unknown malware types, PermDroid is capable of finding

malware.

The proposed framework is able to answer the research questions mentioned in “Research questions” section:

Table 15. Comparison with different approaches/frameworks proposed in the literature. Experiment was
performed by using Drebin data set (https:// www. sec. cs. tu- bs. de/ ~danarp/ drebin/ downl oad. html).

Framework/approach Goal Methodology Deployment Data set used while developing Detection rate Availability

Paranoid Android31 (2010) Detection Behavioural and Dynamic Off-device Limited – –

Crowdroid34 (2011) Detection Dynamic, Distributed Very-Limited High –

System call/API and Behavioural

Aurasium25(2012) Detection Dynamic and Behavioural Off-device Limited High Free

Andromaly23 (2012) Detection Dynamic and Profile-based Distributed Very-Limited High Free

AndroSimilar21(2013) Detection Static Off-device Limited Lesser –

TaintDroid30 (2014) Detection Dynamic Off-Device Very-Limited Lesser Free

System call/API and Behavioural

Andrubis26 (2014) Analysis and Detection Static, Dynamic, Off-device Higher Lesser Free

Profile-based and Behavioural

CopperDroid45(2015) Analysis and Detection Dynamic, System/API Off-Device Limited Lesser Free

and VMI

HinDroid98(2017) Detection Dynamic and API Off-device Limited Lesser –

HEMD99(2018) Detection Dynamic and Permissions Off-device Limited Lesser –

MalDozer49(2018) Detection Dynamic Off-Device Limited Lesser –

DroidDet7(2018) Detection Static Off-device Limited Lesser –

Wei Wang100(2019) Detection Dynamic Off-device Limited Lesser –

MalInsight101(2019) Detection Dynamic Off-device Limited High –

MLDroid3 (2020) Detection Dynamic On-device Unlimited High Free

GDroid2 (2021) Detection Static Off-device Limited Lesser Free

IntDroid102 (2021) Detection Static Off-device Limited Lesser –

DNNDroid103 (2022) Detection Dynamic Off-device Limited Moderate Free

PARUDroid104(2023) Detection Dynamic On-device Limited Moderate Free

YarowskyDroid105 (2023) Detection Dynamic Off-device Limited Lesser Free

PermDroid (our proposed
framework) Detection Dynamic,Permissions, Off-device Unlimited Higher Free

API calls, user-rating

and Number of user download
app

Table 16. PermDroid and antivirus scanner detection rates. For this experiment, we use .apk file that’s less
than 27 MB in size. The experiment was carried out using 1000 different Android apps from the real world.

Cyren Ikarus VIPRE McAfee AVG AVware ESET NOD32
CAT
QuickHeal AegisLab NANO Antivirus SF with DNN SF with DNN

Full data set 82% 82.68% 89% 89% 90% 92.8% 92.9% 96.9% 97.1% 96.2% 98.8% 98.8%

Speed in detect-
ing 60 62 40 30 32 30 20 32 30 20 12 12

malware in Sec

https://www.sec.cs.tu-bs.de/%7edanarp/drebin/download.html

33

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

1. To verify the importance of the correlation between the feature sets and the malware detection model, the
t-test and ULR analysis are used. It is discovered that there are several separate sets of features that are highly
connected with the creation of malware detection models as a result of this research.

2. From Fig. 11, it can be noticed that certain sets of features pass a high correlation with other sets of features
(i.e., the case with a black square is having high negative correlation, and the case with a black circle is hav-
ing a high positive correlation). It is essential to remove the collinearity among the features, for calculating
the ability of each feature. In this manner, the models developed by selecting sets of the feature are capable
to detect malware and do not suffer from the aspect of collinearity.

Table 17. Top malware families are taken into account in our data set.

ID Family # of samples ID Family # of samples ID Family # of samples

A1 Airpush 500 A2 AndroRAT 140 A3 Andup 300

A4 Aples 120 A5 BankBot 100 A6 Bankun 133

A7 Boqx 130 A8 Boxer 122 A9 Cova 100

A10 Dowgin 100 A11 DroidKungFu 100 A12 Erop 120

A13 FakeAngry 110 A14 FakeAV 120 A15 FakeDoc 120

A16 FakeInst 110 A17 FakePlayer 120 A18 FakeTimer 120

A19 FakeUpdates 120 A20 Finspy 1110 A21 Fjcon 1230

A22 Fobus 1020 A23 Fusob 1810 A24 GingerMaster 1920

A25 GoldDream 200 A26 Gorpo 120 A27 Gumen 200

A28 Jisut 620 A29 Kemoge 720 A30 Koler 200

A31 Ksapp 290 A32 Kuguo 100 A33 Kyview 500

A34 Leech 30 A35 Lnk 100 A36 Lotoor 20

A37 Mecor 29 A38 Minimob 33 A39 Mmarketpay 200

A40 MobileTX 50 A41 Mseg 23 A42 Mtk 20

A43 Nandrobox 10 A44 Obad 100 A45 Opfake 120

A46 Penetho 120 A47 Ramnit 120 A48 Roop 120

A49 RuMMS 100 A50 SimpleLocker 110 A51 SlemBunk 120

A52 SmsKey 120 A53 SMsZombie 110 A54 Spambot 115

A55 SpyBubble 120 A56 Stealer 300 A57 Steek 230

A58 Svpeng 20 A59 Tesbo 21 A60 Triada 200

A61 Univert 210 A62 UpdtKiller 100 A63 Utchi 300

A64 Vidro 92 A65 VikingHorde 230 A66 Vmvol 533

A67 Winge 190 A68 Youmi 689 A69 Zitmo 230

A70 Ztorg 1000 A71 Imlog 50 A72 SMSreg 50

A73 Gappusin 50 A74 Adrd 50 A75 Geinimi 100

A76 Kmin 157 A77 Plankton 125 A78 GingerMaster 100

A79 Iconosys 100 A80 SendPay 18 A81 GoldDream 200

Figure 20. Detection rate of PermDroid with DNN and NDTF.

34

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

3. Forward stepwise selection process, ULR, correlation analysis, and t-test analysis are implemented to select
features that are able to identify whether the app is malicious or not. The model built by applying the speci-
fied sets of features produces better outcomes when compared to the rest, according to t-test analysis.

4. Six various types of machine learning techniques based on neural network principles, such as NM, GD, LM,
GDM, GDA, and DNN, as well as three ensemble approaches, are implemented in detecting whether an app
is benign or malicious. From the Tables 8 and 9, it is apparent that the model developed using an ANN and
the Deep Neural Network (DNN) approach produces the best results when compared to other techniques.

5. Tables 8 and 9 and Figs. 18, 19 and 20 show that our suggested model is effective in identifying malware from
real-world apps when API calls, permissions, app rating, and the number of people that have downloaded
the app are all considered features.

Threats to validity
In this section, threats to validity are discussed that are experienced while performing the experiment. Three
different threats are mentioned below:

 i. Construct validity The Android malware detection methodology in this research study is capable of detect-
ing whether an app is benign or malicious, however it does not specify how many features are needed to
find vulnerabilities in Android apps.

 ii. Internal validity The homogeneity of the data set employed in this research work is the second threat. Apps
are collected from a variety of promised repositories. Any errors made while gathering data from these
sources are not taken into account in this study. Although, it cannot promise that the data collected and
retrieved for our analysis is 100 percent accurate, it can be believed that it assembled consistently.

 iii. External validity To train the Android malware detection algorithm, 141 different malware families are
considered. Furthermore, the research can be extended to include other malware families in order to train
the technique to identify malicious apps.

Conclusion and future work
This study suggests a framework for selecting small set of features that helps in detecting malware from Android
apps. The following are our observations based on the basis of our proposed framework in this research paper:

• Based on the feature selection method, it is discovered that there is a limited group of attributes that can
detect malware or benign apps with greater accuracy and lower values of incorrectly classified errors.

• Using our feature selection method sets S25, S28, S19, S14, S9, and S4 of features were discovered to be
important malware detectors.

• Based on the Wilcoxon signed-rank test, it is found that there is a significant difference between all extracted
features and the selected feature sets. It is found that, after calculating the mean difference that the model
developed with the input of the selected feature sets outperformed the model with the input of all extracted
feature sets.

Table 18. Detecting unknown malware families with the help of the PermDroid framework proposed in this
study.

Combination of Android malware families to trained the model Detection rate when trained PermDroid with DNN
Detection rat when trained PermDroi
with NDTF

{A1, up to..... , A10} 66% 71%

{A1, A3, up to..... , A11} 70% 69%

: : :

: : :

: : :

{A2, up to , A11} 59% 55%

: : :

: : :

: : :

: : :

: : :

: : :

{A7, up to , A51} 98.4% 98%

: : :

: : :

: : :

: : :

: : :

: : :

35

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

• Different classification algorithms differ significantly, according to the Wilcoxon signed-rank test. By calcu-
lating the mean difference value, it is discovered that the model created by combining a neural network with
the Deep-Learning machine-learning algorithm produced superior results than the other machine learning
methods used in this study.

• It may be inferred from the results of the experiments that the NDTF approach performed better than other
ensemble methods.

• Our used classifier outperformed the performance of the classifiers used in the literature, as shown in Fig. 20
and Tables 11 and 14.

• According to the results of the experiments (Tables 8, 9), the malware detection model built was not signifi-
cantly harmed after deleting 60% of the possible number of sets of features; in fact, in almost all cases, the
results were better.

• As shown in Table 18 and Fig. 20, our proposed malware detection system can detect malware from both
known and undiscovered malware families.

This study established that a malware detection method merely identifies whether an app is malicious or benign.
Several avenues can be explored for future research. Firstly, a large amount of Android apps are required to
develop the model, memorize and disclose information related to the data set. Second, it is also difficult to make a
centralized system at the time of training and testing the model. Third, decentralized, privacy-preserving classifier
model will be proposed for detecting Android malwares. Further, it is also be discovered how many permissions
are necessary to evaluate whether an app is dangerous or not, more investigation may be done.

Data availibility
For materials should be addressed to corresponding authors.

Received: 14 October 2023; Accepted: 29 April 2024

References
 1. Faruki, P. et al. Android security: A survey of issues, malware penetration, and defenses. IEEE Commun. Surv. Tutor. 17(2),

998–1022 (2014).
 2. Gao, H., Cheng, S. & Zhang, W. Gdroid: Android malware detection and classification with graph convolutional network.

Comput. Secur. 106, 102264 (2021).
 3. Mahindru, A. & Sangal, A. MLDroid—framework for android malware detection using machine learning techniques. Neural

Comput. Appl. 33, 1–58 (2020).
 4. Fereidooni, H., Conti, M., Yao, D. & Sperduti, A. Anastasia: Android malware detection using static analysis of applications. In

2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS), 1–5 (IEEE, 2016).
 5. Arp, D. et al. Drebin: Effective and explainable detection of android malware in your pocket. Ndss 14, 23–26 (2014).
 6. Yuan, Z., Lu, Y. & Xue, Y. Droiddetector: Android malware characterization and detection using deep learning. Tsinghua Sci.

Technol. 21(1), 114–123 (2016).
 7. Zhu, H. J. et al. Droiddet: Effective and robust detection of android malware using static analysis along with rotation forest

model. Neurocomputing 272, 638–646 (2018).
 8. Wong, M. Y. & Lie, D. Intellidroid: A targeted input generator for the dynamic analysis of android malware. NDSS 16, 21–24

(2016).
 9. Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder, J. & Cavallaro, L. Droidscribe: Classifying android malware

based on runtime behavior. In: 2016 IEEE Security and Privacy Workshops (SPW), 252–261 (IEEE, 2016).
 10. Chen, S., Xue, M., Tang, Z., Xu, L. & Zhu, H. Stormdroid: A streaminglized machine learning-based system for detecting android

malware. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 377–388 (2016).
 11. Mariconti, E., Onwuzurike, L., Andriotis, P., Cristofaro, E. D., Ross, G. & Stringhini, G. Mamadroid: Detecting Android Malware

by Building Markov Chains of Behavioral Models. arXiv: 1612. 04433 (2016)
 12. Kabakus, A. T. DroidMalwareDetector: A novel android malware detection framework based on convolutional neural network.

Expert Syst. Appl. 206, 117833 (2022).
 13. Mahindru, A. & Sangal, A. Deepdroid: Feature selection approach to detect android malware using deep learning. In: 2019 IEEE

10th International Conference on Software Engineering and Service Science (ICSESS), 16–19 (IEEE, 2019).
 14. Mahindru, A. & Sangal, A. Feature-based semi-supervised learning to detect malware from android. In Automated Software

Engineering: A Deep Learning-Based Approach, 93–118 (Springer, 2020).
 15. Mahindru, A. & Sangal, A. Perbdroid: Effective malware detection model developed using machine learning classification

techniques. In A Journey Towards Bio-inspired Techniques in Software Engineering 103–139 (Springer, 2020).
 16. Mahindru, A. & Sangal, A. Hybridroid: An empirical analysis on effective malware detection model developed using ensemble

methods. J. Supercomput. 77(8), 8209–8251 (2021).
 17. Mahindru, A. & Sangal, A. Semidroid: A behavioral malware detector based on unsupervised machine learning techniques

using feature selection approaches. Int. J. Mach. Learn. Cybern. 12(5), 1369–1411 (2021).
 18. Zhao, Y. et al. On the impact of sample duplication in machine-learning-based android malware detection. ACM Trans. Softw.

Eng. Methodol. (TOSEM) 30(3), 1–38 (2021).
 19. Yumlembam, R., Issac, B., Jacob, S. M. & Yang L. IoT-based android malware detection using graph neural network with adver-

sarial defense. IEEE Internet Things J. (2022).
 20. Kumar, L., Misra, S. & Rath, S. K. An empirical analysis of the effectiveness of software metrics and fault prediction model for

identifying faulty classes. Comput. Stand. Interfaces 53, 1–32 (2017).
 21. Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S. & Bharmal, A. Androsimilar: Robust statistical feature signature for android

malware detection. In Proceedings of the 6th International Conference on Security of Information and Networks, 152–159 (2013).
 22. Milosevic, J., Malek, M. & Ferrante, A. Time, accuracy and power consumption tradeoff in mobile malware detection systems.

Comput. Secur. 82, 314–328 (2019).
 23. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C. & Weiss, Y. Andromaly: A behavioral malware detection framework for android

devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012).
 24. Badhani, S. & Muttoo, S. K. Android malware detection using code graphs. In System Performance and Management Analytics,

203–215 (Springer, 2019).

http://arxiv.org/abs/1612.04433

36

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

 25. Xu, R., Saïdi, H. & Anderson, R. Aurasium: Practical policy enforcement for android applications. In Presented as part of the
21st{USENIX}Security Symposium ({USENIX}Security 12), 539–552 (2012).

 26. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Veen, V. V. D. & Platzer, C. (2014) Andrubis–1,000,000
apps later: A view on current android malware behaviors. In 2014 Third International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS), 3–17 (IEEE).

 27. Ikram, M., Beaume, P. & Kâafar, M. A. Dadidroid: An Obfuscation Resilient Tool for Detecting Android Malware via Weighted
Directed Call Graph Modelling. arXiv: 1905. 09136 (2019).

 28. Shen, F., Vecchio, J. D., Mohaisen, A., Ko, S. Y. & Ziarek, L. Android malware detection using complex-flows. IEEE Trans. Mob.
Comput. 18(6), 1231–1245 (2018).

 29. Yang, W., Prasad, M. R. & Xie, T. Enmobile: Entity-based characterization and analysis of mobile malware. In Proceedings of the
40th International Conference on Software Engineering, 384–394 (2018).

 30. Enck, W. et al. Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans.
Comput. Syst. (TOCS) 32(2), 1–29 (2014).

 31. Portokalidis, G., Homburg, P., Anagnostakis, K. & Bos, H. (2010) Paranoid android: Versatile protection for smartphones. In
Proceedings of the 26th Annual Computer Security Applications Conference, 347–356.

 32. Bläsing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A. & Albayrak, S. An android application sandbox system for suspicious
software detection. In 2010 5th International Conference on Malicious and Unwanted Software, 55–62 (IEEE, 2010).

 33. Aubery-Derrick, S. Detection of Smart Phone Malware. Unpublished Ph.D. Thesis, 1–211 (Electronic and Information Technol-
ogy University, Berlin, 2011).

 34. Burguera, I., Zurutuza, U. & Nadjm-Tehrani, S. Crowdroid: Behavior-based malware detection system for android. In Proceed-
ings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, 15–26 (2011).

 35. Grace, M. C., Zhou, Y., Wang, Z. & Jiang, X. Systematic detection of capability leaks in stock android smartphones. In NDSS,
vol 14, 19 (2012).

 36. Grace, M., Zhou, Y., Zhang, Q., Zou, S. & Jiang, X. Riskranker: Scalable and accurate zero-day android malware detection. In
Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, 281–294 (2012).

 37. Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X. & Zou, W. Smartdroid: An automatic system for revealing UI-based trigger
conditions in android applications. In Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, 93–104 (2012).

 38. Dini, G., Martinelli, F., Saracino, A. & Sgandurra, D. Madam: A multi-level anomaly detector for android malware. In Interna-
tional Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, 240–253 (Springer, 2012).

 39. Yan, L. K. & Yin, H. Droidscope: Seamlessly reconstructing the {OS} and Dalvik semantic views for dynamic android malware
analysis. In Presented as part of the 21st{USENIX}Security Symposium ({USENIX}Security 12), 569–584 (2012).

 40. Backes, M., Gerling, S., Hammer, C., Maffei, M. & von Styp-Rekowsky, P. Appguard–enforcing user requirements on android
apps. In International Conference on TOOLS and Algorithms for the Construction and Analysis of Systems, 543–548 (Springer,
2013).

 41. Shahzad, F., Akbar, M., Khan, S. & Farooq, M. Tstructdroid: Realtime malware detection using in-execution dynamic analysis of
kernel process control blocks on android. Tech Rep (National University of Computer and Emerging Sciences, Islamabad, 2013).

 42. Rastogi, V., Chen, Y. & Enck, W. Appsplayground: Automatic security analysis of smartphone applications. In Proceedings of the
third ACM Conference on Data and Application Security and Privacy, 209–220 (2013).

 43. Rosen, S., Qian, Z. & Mao, Z. M. Appprofiler: A flexible method of exposing privacy-related behavior in android applications
to end users. In Proceedings of the Third ACM Conference on Data and Application Security and Privacy, 221–232 (2013).

 44. Desnos, A. et al. Androguard-reverse engineering, malware and goodware analysis of android applications. URL code google
com/p/androguard 153 (2013).

 45. Tam, K., Khan, S. J., Fattori, A. & Cavallaro, L. Copperdroid: Automatic reconstruction of android malware behaviors. In Ndss
(2015).

 46. Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G. & Cavallaro, L. Droidsieve: Fast and accurate classification
of obfuscated android malware. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,
309–320 (2017).

 47. Idrees, F., Rajarajan, M., Conti, M., Chen, T. M. & Rahulamathavan, Y. Pindroid: A novel android malware detection system
using ensemble learning methods. Comput. Secur. 68, 36–46 (2017).

 48. Martín, A., Menéndez, H. D. & Camacho, D. Mocdroid: Multi-objective evolutionary classifier for android malware detection.
Soft. Comput. 21(24), 7405–7415 (2017).

 49. Karbab, E. B., Debbabi, M., Derhab, A. & Mouheb, D. Maldozer: Automatic framework for android malware detection using
deep learning. Digit. Investig. 24, S48–S59 (2018).

 50. Lee, W. Y., Saxe, J. & Harang, R. Seqdroid: Obfuscated android malware detection using stacked convolutional and recurrent
neural networks. In Deep Learning Applications for Cyber Security, 197–210 (Springer, 2019).

 51. Alzaylaee, M. K., Yerima, S. Y. & Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. Comput.
Secur. 89, 101663 (2020).

 52. Yuan, Z., Lu, Y., Wang, Z. & Xue, Y. Droid-sec: Deep learning in android malware detection. In Proceedings of the 2014 ACM
Conference on SIGCOMM, 371–372 (2014).

 53. Zhang, M., Duan, Y., Yin, H. & Zhao, Z. Semantics-aware android malware classification using weighted contextual API depend-
ency graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, 1105–1116 (2014).

 54. Shankar, V. G., Somani, G., Gaur, M. S., Laxmi, V. & Conti, M. Androtaint: An efficient android malware detection framework
using dynamic taint analysis. In 2017 ISEA Asia Security and Privacy (ISEASP), 1–13 (IEEE, 2017).

 55. Mahindru, A. & Singh, P. Dynamic permissions based android malware detection using machine learning techniques. In Pro-
ceedings of the 10th Innovations in Software Engineering Conference, 202–210 (2017).

 56. Shi, B. et al. Prediction of recurrent spontaneous abortion using evolutionary machine learning with joint self-adaptive sime
mould algorithm. Comput. Biol. Med. 148, 105885 (2022).

 57. Zhang, Q., Wang, D. & Wang, Y. Convergence of decomposition methods for support vector machines. Neurocomputing 317,
179–187 (2018).

 58. Hou, S., Saas, A., Chen, L. & Ye, Y. Deep4maldroid: A deep learning framework for android malware detection based on linux
kernel system call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), 104–111
(IEEE, 2016).

 59. Nix, R. & Zhang, J. Classification of android apps and malware using deep neural networks. In 2017 International Joint Confer-
ence on Neural Networks (IJCNN), 1871–1878 (IEEE, 2017).

 60. Zhang, X. A deep learning based framework for detecting and visualizing online malicious advertisement. Ph.D. Thesis, Uni-
versity of New Brunswick (2018)

 61. Nauman, M., Tanveer, T. A., Khan, S. & Syed, T. A. Deep neural architectures for large scale android malware analysis. Clust.
Comput. 21(1), 569–588 (2018).

 62. Xiao, X., Wang, Z., Li, Q., Xia, S. & Jiang, Y. Back-propagation neural network on Markov chains from system call sequences: a
new approach for detecting android malware with system call sequences. IET Inf. Secur. 11(1), 8–15 (2016).

http://arxiv.org/abs/1905.09136

37

Vol.:(0123456789)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

 63. Martinelli, F., Marulli, F. & Mercaldo, F. Evaluating convolutional neural network for effective mobile malware detection. Procedia
Comput. Sci. 112, 2372–2381 (2017).

 64. Xiao, X., Zhang, S., Mercaldo, F., Hu, G. & Sangaiah, A. K. Android malware detection based on system call sequences and
LSTM. Multim. Tools Appl. 78(4), 3979–3999 (2019).

 65. Dimjašević, M., Atzeni, S., Ugrina, I. & Rakamaric, Z. Evaluation of android malware detection based on system calls. In Pro-
ceedings of the 2016 ACM on International Workshop on Security and Privacy Analytics, 1–8 (2016).

 66. Mas’ud, M. Z., Sahib, S., Abdollah, M. F., Selamat, S. R. & Yusof, R. Analysis of features selection and machine learning classifier
in android malware detection. In 2014 International Conference on Information Science and Applications (ICISA), 1–5 (IEEE,
2014).

 67. Yerima, S. Y., Sezer, S., McWilliams, G. & Muttik, I. A new android malware detection approach using Bayesian classification. In
2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), 121–128 (IEEE, 2013).

 68. Narudin, F. A., Feizollah, A., Anuar, N. B. & Gani, A. Evaluation of machine learning classifiers for mobile malware detection.
Soft. Comput. 20(1), 343–357 (2016).

 69. Wang, W. et al. Exploring permission-induced risk in android applications for malicious application detection. IEEE Trans. Inf.
Forensics Secur. 9(11), 1869–1882 (2014).

 70. Ayar, M., Isazadeh, A., Gharehchopogh, F. S. & Seyedi, M. NSICA: Multi-objective imperialist competitive algorithm for feature
selection in arrhythmia diagnosis. Comput. Biol. Med. 161, 107025 (2023).

 71. Hu, H. et al. Dynamic individual selection and crossover boosted forensic-based investigation algorithm for global optimization
and feature selection. J. Bionic Eng. 20, 1–27 (2023).

 72. Zhong, C., Li, G., Meng, Z., Li, H. & He, W. A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature
selection. Comput. Biol. Med. 153, 106520 (2023).

 73. Zhou, P. et al. Unsupervised feature selection for balanced clustering. Knowl.-Based Syst. 193, 105417 (2020).
 74. Allix, K. et al. Empirical assessment of machine learning-based malware detectors for android. Empir. Softw. Eng. 21(1), 183–211

(2016).
 75. Narayanan, A., Chandramohan, M., Chen, L. & Liu, Y. A multi-view context-aware approach to android malware detection and

malicious code localization. Empir. Softw. Eng. 23(3), 1222–1274 (2018).
 76. Azmoodeh, A., Dehghantanha, A. & Choo, K. K. R. Robust malware detection for internet of (battlefield) things devices using

deep eigenspace learning. IEEE Trans. Sustain. Comput. 4(1), 88–95 (2018).
 77. Chen, K. Z., Johnson, N. M., D’Silva, V., Dai, S., MacNamara, K., Magrino, T. R., Wu, E. X., Rinard, M. & Song, D. X. Contextual

policy enforcement in android applications with permission event graphs. In: NDSS, 234 (2013).
 78. Yerima, S. Y., Sezer, S. & McWilliams, G. Analysis of Bayesian classification-based approaches for android malware detection.

IET Inf. Secur. 8(1), 25–36 (2014).
 79. Gonzalez, H., Stakhanova, N. & Ghorbani, A. A. Droidkin: Lightweight detection of android apps similarity. In International

Conference on Security and Privacy in Communication Networks, 436–453 (Springer, 2014) .
 80. Kadir, A. F. A., Stakhanova, N. & Ghorbani, A. A. Android botnets: What urls are telling us. In International Conference on

Network and System Security, 78–91 (Springer, 2015).
 81. Zhou, Y. & Jiang, X. Android malware genome project. Disponibile a http:// www. malge nomep roject. org (2012).
 82. Garcia, J., Hammad, M. & Malek, S. Lightweight, obfuscation-resilient detection and family identification of android malware.

ACM Trans. Softw. Eng. Methodol. (TOSEM) 26(3), 1–29 (2018).
 83. Mahindru, A. & Sangal, A. Parudroid: Validation of android malware detection dataset. J. Cybersecur. Inform. Manag. 3(2),

42–52 (2020).
 84. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133

(1943).
 85. Faruk, M. J. H., Shahriar, H., Valero, M., Barsha, F. L., Sobhan, S., Khan, M. A., Whitman, M., Cuzzocrea, A., Lo, D., Rahman,

A., et al. Malware detection and prevention using artificial intelligence techniques. In 2021 IEEE International Conference on
Big Data (Big Data), 5369–5377 (IEEE, 2021).

 86. Battiti, R. First-and second-order methods for learning: Between steepest descent and newton’s method. Neural Comput. 4(2),
141–166 (1992).

 87. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944).
 88. Bengio, Y. Learning deep architectures for AI. Found. Trends® Mach. Learn.2(1), 1–127 (2009).
 89. Kaur, J., Singh, S., Kahlon, K. S. & Bassi, P. Neural network-a novel technique for software effort estimation. Int. J. Comput.

Theory Eng. 2(1), 17 (2010).
 90. Doraisamy, S., Golzari, S., Mohd, N., Sulaiman, M. N. & Udzir, N. I. A study on feature selection and classification techniques

for automatic genre classification of traditional Malay music. In ISMIR, 331–336 (2008).
 91. Forman, G. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3(Mar), 1289–

1305 (2003).
 92. Furlanello, C., Serafini, M., Merler, S. & Jurman, G. Entropy-based gene ranking without selection bias for the predictive clas-

sification of microarray data. BMC Bioinform. 4(1), 54 (2003).
 93. Coronado-De-Alba, L. D., Rodríguez-Mota, A. & Escamilla-Ambrosio, P. J. Feature selection and ensemble of classifiers for

android malware detection. In 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), 1–6 (IEEE, 2016).
 94. Deepa, K., Radhamani, G. & Vinod, P. Investigation of feature selection methods for android malware analysis. Procedia Comput.

Sci. 46, 841–848 (2015).
 95. Kothari, C. R. Research methodology: Methods and techniques. New Age International (2004).
 96. Chaikla, N. & Qi, Y. Genetic algorithms in feature selection. In IEEE SMC’99 Conference Proceedings. 1999 IEEE International

Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), vol 5, 538–540 (IEEE, 1999).
 97. Onwuzurike, L. et al. Mamadroid: Detecting android malware by building Markov chains of behavioral models (extended ver-

sion). ACM Trans. Privacy Secur. (TOPS) 22(2), 1–34 (2019).
 98. Hou, S., Ye, Y., Song, Y. & Abdulhayoglu, M. Hindroid: An intelligent android malware detection system based on structured

heterogeneous information network. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 1507–1515 (2017) .

 99. Zhu, H. J. et al. HEMD: A highly efficient random forest-based malware detection framework for android. Neural Comput. Appl.
30(11), 3353–3361 (2018).

 100. Wang, W., Zhao, M. & Wang, J. Effective android malware detection with a hybrid model based on deep autoencoder and con-
volutional neural network. J. Ambient. Intell. Humaniz. Comput. 10(8), 3035–3043 (2019).

 101. Han, W., Xue, J., Wang, Y., Liu, Z. & Kong, Z. Malinsight: A systematic profiling based malware detection framework. J. Netw.
Comput. Appl. 125, 236–250 (2019).

 102. Zou, D. et al. Intdroid: Android malware detection based on API intimacy analysis. ACM Trans. Softw. Eng. Methodol. (TOSEM)
30(3), 1–32 (2021).

 103. Mahindru, A. & Arora, H. Dnndroid: Android malware detection framework based on federated learning and edge computing.
In International Conference on Advancements in Smart Computing and Information Security, 96–107 (Springer, 2022).

http://www.malgenomeproject.org

38

Vol:.(1234567890)

Scientific Reports | (2024) 14:10724 | https://doi.org/10.1038/s41598-024-60982-y

www.nature.com/scientificreports/

 104. Mahindru, A. & Arora, H. Parudroid: Framework that enhances smartphone security using an ensemble learning approach. SN
Comput. Sci. 4(5), 630 (2023).

 105. Mahindru, A., Sharma, S. K. & Mittal, M. Yarowskydroid: Semi-supervised based android malware detection using federation
learning. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 380–385
(IEEE, 2023).

Acknowlegment
This work was partly supported by the Technology Innovation Program funded by the Ministry of Trade, Indus-
try & Energy (MOTIE) (No.20022899) and by the Technology Development Program of MSS (No.S3033853).

Author contributions
All the authors have contributed equally.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 024- 60982-y.

Correspondence and requests for materials should be addressed to A.M., S.K.G., S.M. or J.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-60982-y
https://doi.org/10.1038/s41598-024-60982-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	PermDroid a framework developed using proposed feature selection approach and machine learning techniques for Android malware detection
	Related work
	The artificial neural network (ANN) technique is used to identify malware on Android devices
	Using feature selection approaches, to detect Android malware
	Research questions

	Research methodology
	Independent variables
	Dependent variables
	Creation of experimental data set and extraction of features

	Machine learning technique
	Gradient descent with momentum approach
	Gradient descent approach
	Gradient descent method with adaptive learning rate approach
	Levenberg Marquardt (LM) approach
	Quasi-Newton approach
	Deep learning neural network (DNN) approach
	Ensembles of classification models
	BTE (best training ensemble) approach
	MVE (majority voting ensemble) approach
	NDTF (nonlinear ensemble decision tree forest) approach

	Method for normalizing the data
	Parameters considered for evaluation

	Proposed feature selection validation method
	Evaluation of proposed framework

	Experimental setup and results
	Validation of the proposed feature selection framework
	t-Test analysis
	ULR analysis
	Cross correlation analysis
	Stepwise forward selection for multivariate linear regression
	The overall outcome of the feature selection method
	Evaluation on the basis of performance parameters

	Evaluation of the malware detection models developed using ANN
	Evaluation of the malware detection models developed using ensemble techniques
	Comparison of the findings
	On the basis of detection approaches
	On the basis of all selected sets of feature using proposed framework and extracted features

	Proposed framework evaluation
	Results comparison with previously employed classifiers
	Using cost-benefit analysis, comparison with previously employed classifiers
	Comparison of results based on the amount of time it takes to identify malware in real-world apps
	Comparison of the results on the basis of detection rate with different approaches or frameworks available in the literature
	Comparison of results with different AV Scanners
	Identification of both well-known and new malware families

	Experimental outcomes

	Threats to validity
	Conclusion and future work
	References
	Acknowlegment

