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Pulmonary arteries in coelacanths 
shed light on the vasculature 
evolution of air‑breathing organs 
in vertebrates
Camila Cupello 1*, Gaël Clément 2, Marc Herbin 3, François J. Meunier 4 & Paulo M. Brito 1

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant 
vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including 
coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately 
identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of 
pulmonary organs and limitations of invasive studies in extant specimens. Here we present 
the first description of the pulmonary vasculature in both fossil and extant actinistian, a non‑
tetrapod sarcopterygian clade, contributing to a more in‑depth discussion on the morphology 
of these structures and on the possible homology between vertebrate air‑filled organs (lungs of 
sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).

Vascular canals and/or spaces are rarely documented in fossil bones. They have been described using both 
traditional techniques, such as ground sections (e.g. the Devonian osteostracan agnathan Norselaspis glacialis1), 
and advanced technologies such as synchrotron imaging. Regarding early vertebrates, phase contrast X-ray 
synchrotron imaging of an acanthothoracid placoderm from the Early Devonian of Canadian Artic Archipelago 
has provided a detailed three-dimensional view of the skull vascularization and nerve  canals2. The same technique 
also revealed vascular spaces in other taxa, such as the vascular mesh of the interolateral plate of the placoderm 
Compagopiscis croucheri (Late Devonian of Gogo Formation, Western Australia) or the vascular architecture of 
the humerus of Eusthenopteron, a sarcopterygian fish close to tetrapods (Late Devonian of Québec, Canada)3. 
Among tetrapods, traces of fossil blood vessels (arteries and veins) were reported for instance in the nasal bone 
of Discosauriscus austriacus from the Early Permian of Czech  Republic3, in a Triceratops skull from the Upper 
Cretaceous of Hell Creek Formation,  Montana4, in whale bones from the Middle-Upper Miocene of Peru)5, and 
in turtles from the Eocene of Germany and Miocene of  Colombia6. These might represent internal moulds of 
the vascular walls or even the filling of the vascular  channels5.

On the other hand, pulmonary vasculature (including traces such as internal moulds) has not been 
documented in vertebrate fossils to date. Pulmonary arteries and veins are documented in all groups of extant 
osteichthyans, except in Lepisosteidae (where the dorsal aorta serves as the afferent blood supply to the respiratory 
gas bladder), and in Chondrostei and Teleostei (which exhibit celiacomesenteric arteries)7. However, pulmonary 
arteries have never been properly described in any developmental stage of the extant coelacanth Latimeria 
chalumnae. This may be due to the challenge of visualizing vessels in x-ray microtomography (the unique effective 
non-invasive methodology to study all developmental stages of extant coelacanths) without the presence of a 
contrast solution or even to the reabsorption of vascularization in adult specimens of the extant coelacanth 
that possess a vestigial  lung8–10. Based on histological thin sections of the lung lumen, pulmonary arteries were 
first erroneously described due to a misconception involving the pulmonary bony plates that are located on 
the vestigial  lung11,12. More recently, these small and dense plates that surround the vestigial lung of Latimeria 
chalumnae were described as homologous to the calcified plates of Palaeozoic and Mesozoic coelacanth  lungs11.
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Here we describe, for the first time, the presence of pulmonary vessels in both fossil and extant coelacanths. 
These new observations confirm the air-breathing function of the so-called calcified organ in fossil coelacanths 
and the regressed state of the so-called vestigial lung in extant coelacanths. Presence of pulmonary vessels within 
this group resolves a piece of the puzzle regarding the evolution of air-breathing in vertebrates.

Results
Identification of pulmonary vasculature in the fossil coelacanth Macropoma mantelli (Late 
Cretaceous, Chalk Formation, Lewes, England)
The calcified lung of the specimen NHMUK PV 4270 is a well-developed unpaired organ, tubular in shape. It 
displays large superimposed bony plates surrounding a wide lumen (Fig. 1). Plates are rounded in shape and 
present a concave internal side. The lung is preserved in a ventral, but distorted, position, without division into 
chambers and without constriction (Fig. 1a), as known in some other fossil coelacanths. The anterior opening 
is not visible. The specimen, its tomographic segmentation, and three-dimensional reconstructions (Fig. 1a and 
b), clearly display the impression of the dorsal aorta, the most important vessel of the circulatory system, along 
the entire length of the external surface of the lung (Fig. 1a and b). Two pulmonary arteries, both with the same 
length, are also present parallel, but internal to the lung lumen and recovered by the bony plates (Figs. 1c, 2). 

Figure 1.  The pulmonary system of the Cretaceous coelacanth Macropoma mantelli NHMUK PV P 4270. 
(a) Photograph of specimen NHMUK PV 4270 in left lateral view. (b) Three-dimensional reconstruction of 
NHMUK PV 4270 with highlighting of the calcified lung, dorsal aorta and pulmonary arteries. (c) Close-up 
of the dorsal aorta and left and right pulmonary arteries. Pink, calcified lung; purple, pulmonary arteries; blue, 
dorsal aorta. Ang fragment of the angular bone, Cl cleithrum, Da dorsal aorta, Gu gular bone, L lung, Lp left 
pulmonary artery, Rp right pulmonary artery.
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These arteries are connected to each other by a transversal vessel. The pulmonary arteries give raise to branches 
of some arteries, as vascular channels (Fig. 1 c).

Evidence of pulmonary vasculature in a juvenile extant coelacanth Latimeria chalumnae
The lung of this juvenile coelacanth of 42.5 cm total length (specimen CCC 94) is unpaired, conical in shape and 
ventral to the oesophagus (Fig. 3). It is 2.157 cm long, corresponding to 15.88% of the length of the fatty organ 
and 5.13% of the length of the specimen (Fig. 3b). No bony plates are observed by X-ray tomography at this 
ontogenetic stage. The relative proportions between the lung and the total length (TL) of this specimen is lower 
in comparison to the same ration in embryos and higher in comparison with the same ratio in adult  specimens8.

The specimen CCC 94 was historically injected with colloidal barite for observation of the circulatory 
 system12, which reduced the quality of the tomography data for the soft tissues (Extended Data Fig. 1). However, 
this ancient injection has today enabled the visualization of the pulmonary arteries by X-ray tomography (usually 
not visible in coelacanth specimens without adding of colloidal barite) (Extended Data Fig. 1). The vestigial lung 
of CCC 94 is irrigated by two atrophied pulmonary arteries (Fig. 3c). Both pulmonary arteries run along the 
ventral surface of the vestigial lung. The dorsal aorta is not visible in this specimen, due to the artefacts generated 
by the massive injection of the contrast product. Indeed, barite strongly absorb X-rays, resulting in a local hyper-
signal that obscures the anatomical structures on tomographic data. No vascularization canals or branches were 
observed within the fatty organ or in the connective tissue surrounding it (Fig. 3d).

Discussion
Despite the rarity of preserved air-filled organs  (AO13) in the fossil record, remains of pulmonary organs are 
known in an ornithuromorph bird, a salamander, a tadpole, as well as in almost all Palaeozoic and Mesozoic 
coelacanth  families10,11,14–18. Almost all well-preserved fossil coelacanths, except some taxa such as Diplurus, 
Coccoderma suevicum and juveniles of Axelrodichthys araripensis, show well preserved ossified plates in their 
abdominal  cavity18. These bony plates are superimposed, multilayered, and separated from one another by 
unossified connective tissue, likely enabling their mobility for volume adjustment during air-breathing, as well as 
providing protection against hydrostatic  pressure11,14. The tubular structure, called the calcified organ, delimitated 

Figure 2.  The calcified lung of Macropoma mantelli NHMUK PV P 4270. (a) Three-dimensional reconstruction 
of the calcified lung of the specimen. (b,c) Transverse sections of a high-resolution computerized axial 
tomography scan of NHMUK PV P 4270. Green arrows pointing to the pulmonary arteries internal to the lung 
lumen. Blue arrows, pointing to the dorsal aorta. Transverse tomography sections (b,c) corresponding to the 
successive dotted sections in (a).
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by a characteristic organization of these ossified plates has been recently considered as a structure constitutive of 
a functional lung in fossil coelacanths, homologous of the vestigial lung of extant  coelacanths8,11,14.

The Cretaceous coelacanth specimen of Macropoma mantelli here studied has a well-developed pulmonary 
organ with ossified plates surrounding it, as well as well-developed dorsal aorta, pair of pulmonary arteries, 
and supplementary pulmonary branches irrigating this air-breathing organ. The extant coelacanth Latimeria 
chalumnae, which inhabits moderately deep waters and do not perform aerial gas exchange, shows a vestigial 
lung with vestigial vasculature, consisting of only a pair of pulmonary arteries.

Coelacanths are key taxa for the understanding of the evolutionary steps of the air-breathing history in 
osteichthyans. These occurrences of pulmonary vasculatures in both fossil and extant coelacanths reinforce 
the homology hypothesis between the fossil calcified organ and the vestigial lung. They then shed light on the 
evolution of the pulmonary complex within the actinistian clade and particularly on the loss of air-breathing 
during deep-marine water adaptation of the Latimeria relatives. Presence of lung vascular systems in both 
fossil and extant coelacanths also provides new anatomical elements concerning the evolutionary history of the 
vascular supply of air-filled organs in osteichthyans and the homology between lungs and gas bladders (also 
called swimbladders or air bladders).

Lungs and gas bladders are morphologically distinct air-filled organs that can serve the functions of 
buoyancy control and/or air-breathing. The homology (or lack thereof) between these organs has been a 

Figure 3.  The pulmonary system of a juvenile specimen of the extant coelacanth Latimeria chalumnae. (a) 
Photograph of specimen CCC 94 (42.5 cm TL) in left lateral view. (b) Three-dimensional reconstruction of CCC 
94. (c) Close-up of the three-dimensional reconstruction of the vestigial lung with left and right pulmonary 
arteries. (d) Close-up of the left and right pulmonary arteries. Pink, vestigial lung; purple, pulmonary arteries. 
Lp left pulmonary artery, Rp right pulmonary artery.
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subject of discussion for almost 180  years19,20. Since the nineteenth century, this discussion has been based on 
morphological and molecular analysis. Among the molecular aspects, some authors have proposed homology 
based on the co-expression of genes in both tetrapod lungs and actinopterygian gas  bladders21, homologous 
genes shared between gas bladders and the human  lung22, and the similar surfactant system between both 
air-filled  organs23. Morphologically, a homology was proposed based on different developmental stages of 
extant taxa that present a common origin from the posterior portion of the respiratory  pharynx24–27), their 
identical arterial  supply7,13,25,28, and their similar hydrostatic and/or respiratory  function13,29. Indeed, the only 
morphological difference between lungs and gas bladders is the ventral and dorsal origins from the  foregut21,30. 
Other characteristics previously used to differentiate both organs have been discarded in recent studies, as the 
lungs of actinopterygians and sarcopterygians, as well as the respiratory gas bladder of some actinopterygians, 
share certain morphological  conditions9,10. However, sharing the same function and/or morphology does not 
necessarily imply  homology9,10,21,30.

Based on our results, we confirm that extant and fossil coelacanths possess pulmonary arteries homologous to 
the same paired branches of the air-filled organs (including gas bladders) of other osteichthyans (Fig. 4). We also 
support the hypothesis that pulmonary arteries are a synapomorphy of Osteichthyes (Fig. 5). If considering the 
common arterial supply as an indicator of homology between lungs and gas bladders, our results may contribute 
to a better understanding of the homology of air-breathing organs in vertebrates (Fig. 5), but further studies may 
explore better this condition, as well as the anatomy of fossil and extant chondrichthyans to support the absence 
of pulmonary arteries in this group.

Methods
Specimen CCC 94 is a juvenile female of Latimeria chalumnae (42.5 cm TL) fished on a line in Comoro Islands in 
 197431. This specimen was injected with colloidal barite to facilitate the observation of the circulatory  system12. 
It was scanned with long propagation phase-contrast synchrotron X-ray microtomography at the ID19 beamline 
of the European Synchrotron Radiation Facility (Grenoble, France) in a plastic tube filled with water and with 

Figure 4.  Schematic figure with a comparison of the pulmonary vascularization in Osteichthyes with 
potentially functional air-breathing organs (modified from Longo et al. 2013). (a) The actinopterygian 
Polypterus senegalus. (b) the holostean Amia calva. (c) the fossil coelacanth Macropoma mantelli. (d) the lungfish 
Protopterus dolloi. C celiacomesenteric artery, Da dorsal aorta, Lp left pulmonary artery, Rp right pulmonary 
artery.

Figure 5.  Schematic reconstruction of the evolutionary history of vertebrate lungs. Unpaired lung, pulmonary 
arteries and pulmonary arteries are plesiomorphies of Osteichthyes. Modified from Cupello et al.10. This figure 
was made with free silhouettes from PhyloPic.
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a propagation distance of 13 m. The beam produced by the wiggler was filtered by 2 mm of aluminium and 
15 mm of copper, at a gap of 30 mm, and resulting in an average detected energy of 170 keV with a bandwidth 
of 85 keV FWHM. The voxel size of the scan is 28.43 μm and the final reconstructions of 85.29 μm was obtained 
after binning. Slices were reconstructed with filtered back-projection algorithm, a single distance phase-retrieval 
 process3,32. Sub-scans were converted into 16-bit TIFF stacks and concatenated to generate a single complete 
scan. For more detail, see Cupello et al.8.

Specimen NHMUK PV 4270 is an adult specimen of the fossil coelacanth Macropoma mantelli from the Late 
Cretaceous of Chalk Formation, Lewes, Sussex, UK. X-ray computed micro-tomography (µCT) scanning of this 
specimen was performed at the AST-RX Platform of the Muséum national d’Histoire naturelle, Paris, France. 
The voltage was 140 kV, current 350 mA, voxel size 127.85 µm and the view number was 1500.

For both specimens, segmentation and three-dimensional rendering were realized using the software MIMICS 
Innovation Suite 20.0 to 25.0 (Materialise) at the Laboratório de Ictiologia Tempo e Espaço of the Universidade 
do Estado do Rio de Janeiro.

Data availability
Data can be made available by the corresponding author upon request.
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