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Measuring the prediction difficulty 
of individual cases in a dataset 
using machine learning
Hyunjin Kwon 1,2, Matthew Greenberg 3, Colin Bruce Josephson 4,6 & Joon Lee 2,5,6,7*

Different levels of prediction difficulty are one of the key factors that researchers encounter when 
applying machine learning to data. Although previous studies have introduced various metrics 
for assessing the prediction difficulty of individual cases, these metrics require specific dataset 
preconditions. In this paper, we propose three novel metrics for measuring the prediction difficulty of 
individual cases using fully-connected feedforward neural networks. The first metric is based on the 
complexity of the neural network needed to make a correct prediction. The second metric employs 
a pair of neural networks: one makes a prediction for a given case, and the other predicts whether 
the prediction made by the first model is likely to be correct. The third metric assesses the variability 
of the neural network’s predictions. We investigated these metrics using a variety of datasets, 
visualized their values, and compared them to fifteen existing metrics from the literature. The results 
demonstrate that the proposed case difficulty metrics were better able to differentiate various levels 
of difficulty than most of the existing metrics and show constant effectiveness across diverse datasets. 
We expect our metrics will provide researchers with a new perspective on understanding their datasets 
and applying machine learning in various fields.

In recent years, machine learning (ML) techniques have experienced significant growth and have been widely 
adopted in many fields. The expectation that ML has the potential to solve real-life problems such as disease pre-
diction, product recommendation, and image recognition led to the development of ML applications in various 
fields1. Along with these developments, researchers are examining what deficiencies exist in the process of apply-
ing ML to data2. While there are many important factors, this paper focuses on the varying levels of prediction 
difficulty of individual cases in a dataset. Difficult cases are those that are hard to make correct predictions for3. 
For instance, in the same dataset, some cases may be easily classified by simple ML models, while some cases 
may require additional data and expertise to be classified correctly. Despite these differences in difficulty, most 
ML research does not consider such differences.

Previous studies found that prediction difficulty is one of the aspects inherent to an individual case4–6. Pre-
diction difficulty is sometimes referred to as instance hardness which quantifies the likelihood of an instance 
being misclassified4. For intuitive understanding of the term, this paper uses the term ‘case difficulty’ to refer 
to instance hardness. The previous study proposed several metrics to measure case difficulty and found spatial 
overlap between target classes in a feature space was one of the principal contributors to misclassification4. 
Another study introduced a set of case difficulty metrics that can be obtained for an entire data set5. Yu and col-
leagues proposed a novel case difficulty metric defined as the proportion of a set of classifiers that make incorrect 
predictions6. The existing case difficulty metrics in the literature are listed in Table 1.

The metrics in Table 1 can be grouped by the concepts that have been used to develop the metrics: Neighbor-
hood-based method (kDN), decision tree-based methods (DCP, TD_P, TD_U), Naïve Bayes-based methods (CL, 
CLD), class skewness-based methods (MV, CB), and distance-based methods (N1, N2, LSC, LSR, Harmfulness, 
Usefulness), and feature-based method (F1).

OPEN

1Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary,  
Alberta, Canada. 2Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Alberta, 
Canada. 3Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, Alberta, 
Canada. 4Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, 
Alberta, Canada. 5Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, 
Alberta, Canada. 6Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 
Calgary, Alberta, Canada. 7Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, 
South Korea. *email: joon.lee@ucalgary.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61284-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10474  | https://doi.org/10.1038/s41598-024-61284-z

www.nature.com/scientificreports/

However, the existing metrics have limitations, particularly in terms of their applicability to various types of 
datasets7. For example, the neighborhood-based method is vulnerable to datasets with categorical data, since 
distances cannot be clearly defined with respect to either nominal or ordinal categorical variables. The decision 
tree-based methods can show substantially different performances depending on the complexity of the dataset. 
Decision tree-based metrics can detect non-linear relationships through deeper trees. However, when the tree 
becomes excessively deep and attempts to create overly specific splits, it can lead to overfitting and poor perfor-
mance on unseen data8. The Naïve Bayes-based methods work under the assumption that features in a dataset 
are independent, but features are often dependent on one another in real-world data9. The class skew-based 
methods are improper to use with balanced data since these metrics require a certain degree of class imbalance 
to calculate case difficulty. The distance-based methods cannot accurately calculate a distance in mixed data 
since the distance calculation involving both continuous and categorical variables is unclear. The Feature-based 
methods calculate case difficulty based on the overlap area between classes and are significantly affected by the 
presence and size of the overlap. Consequently, the existing metrics require several dataset preconditions to 
calculate case difficulty properly. However, it is often challenging to evaluate these preconditions of real-world 
datasets due to their diversity and complexity. Thus, there is a need for new universal metrics that are able to 
calculate case difficulty across various types of datasets.

In this paper, we propose novel metrics to measure case difficulty using fully-connected feedforward neural 
networks (NNs). There are two reasons why NNs are chosen over other ML models for developing metrics. First, 
NNs can act as universal approximators. According to the universal approximation theorem, a NN with a single 
hidden layer containing a sufficient number of neurons is capable of approximating any nonlinear continuous 
function10. Second, measuring model complexity in NNs is straightforward. The number of neurons represents 
the model’s complexity, and this complexity can be used to calculate the difficulty of individual cases. Therefore, 
the NN is a suitable model for developing new metrics to measure case difficulty, which can perform equally 
well across datasets from different domains. We employ simulated and real-world data from various domains to 
develop these metrics. Simulated data allows for the visualization of the difficulty levels quantified by the met-
rics, whereas real-world datasets from diverse domains can evaluate the application of the proposed metrics in 
various fields. We evaluate our novel metrics through visualization and comparisons with the existing metrics. 
For simplicity, we focus only on classification problems based on tabular data.

In summary, case difficulty, which refers to the prediction difficulty of individual cases, is an inherent aspect 
of each case within a dataset. Previous studies have proposed several metrics to measure case difficulty. However, 
these existing metrics have shown limitations in their applicability across various datasets with specific data con-
ditions. The conditions under which the existing metrics show weaknesses vary for each metric, but may include 
datasets with categorical variables, dependent features, balanced classes, and mixed continuous and categorical 
features or highly complex datasets. To address these limitations, we propose three novel case difficulty metrics, 
designed as universal tools for assessing case difficulty in any dataset.

Methods
Datasets
We used simulated datasets and real-world datasets to evaluate our case difficulty metrics. The simulated datasets 
were designed to have diverse shapes, including isotropic Gaussian blobs, interleaving crescent moons, and a 

Table 1.   Existing case difficulty metrics.

Method Measure Description

Neighborhood based method k-Disagreeing Neighbors (kDN)4 Percentage of the k nearest neighbors of a case that do not belong to the same class

Decision tree-based method
Disjunct Class Percentage (DCP)4 Percentage of the cases in its disjunct, discovered rules in decision trees or rule-based 

learning algorithms, that belong to the same class

Tree Depth (TD)4 The depth of the leaf node for a case in an induced decision tree. There are two ways 
to use the metrics, using pruned (TD_P) and unpruned (TD_U) decision trees

Naïve bayes-based method
Class Likelihood (CL)4 Likelihood of a case belonging to its class

Class Likelihood Difference (CLD)4 The difference between the class likelihood of a case and the maximum likelihood for 
all the other classes

Class skew-based method
Minority Value (MV)4 The ratio of the number of cases that belong to the same class to the number of cases 

in the majority class

Class Balance (CB)4 The ratio of the number of cases that belong to the same class to the number of cases 
in the dataset

Distance-based method

Fraction of nearby instances of different classes (N1)5 The percentage of cases of different classes connected to the minimum spanning tree

Ratio of Intra/Extra Class Nearest Neighbor Distance (N2)5 The ratio of the distances between each example and its closest same class neighbor 
and its closest neighbor from another class

Local Set Cardinality (LSC)5 The relative cardinality of the local set which is the number of the same class data 
points before reaching the nearest different class

Local Set Radius (LSR)5 The normalized radius of the local set which is the number of the same class data 
points before reaching the nearest different class

Harmfulness5 The number of cases having a case as their nearest enemy

Usefulness5 The fraction of cases having a case in their local sets

Feature-based method Fraction of features in overlapping areas (F1)5 The percentage of features of a case whose values lie in an overlapping region
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large circle containing smaller circles. These datasets contained varying amounts of class overlap. The isotropic 
Gaussian blob data were generated using the make_blobs function from the sklearn.datasets in Python11. The 
parameters adjusting the standard deviation of the clusters were set to 2, 4, and 6, respectively, based on the 
desired levels of overlap. For the interleaving crescent moons data, a custom function named moon_shape was 
developed to generate clusters with controlled noise levels and parameters. The amount of overlap was manipu-
lated by the parameters for the standard deviation of the Gaussian noise, and set to 0.1, 0.2, and 0.4, respectively. 
Data with a large circle containing smaller circles were created using the make_circles function from sklearn.
datasets11. The scale factors between the inner and outer circles were set to 0.3, 0.5, and 0.7, respectively. Each 
simulated dataset consisted of two features to be visualized in a two-dimensional space because data visualization 
makes it easier to understand the distribution of case difficulty.

Different simulated datasets were generated for the three different metrics of measuring case difficulty 
(described in the Case Difficulty Metrics section below). Case difficulty model complexity (CDmc) used 2000 
simulated cases for binary classification and 3000 simulated cases for 3-class classification (1000 per class). Case 
difficulty double model (CDdm) used 8000 and 12,000 simulated cases for binary and 3-class classification, 
respectively (4000 per class). Case difficulty predictive uncertainty (CDpu) used the same simulated datasets 
as CDmc.

The real-world datasets were chosen from three different domains: health, telecommunications, and market-
ing. The health data employed in this study were the UCI Wisconsin Breast Cancer Original data (UCI breast 
cancer data) from the UCI machine learning repository12,13. This is a binary classification dataset that includes 
458 benign and 241 malignant breast cancer cases. The data consisted of nine features including clump thickness, 
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli, and mitoses. Each feature was assigned an integer value between 1 and 10. The data 
included 16 missing values in the bare nuclei column denoted by ‘?’. These missing values were imputed with 
the mean values of the bare nuclei column. The standard scaler, a method that centers the data around 0 with a 
standard deviation of 1, was used to scale the data11.

The telecommunications data utilized in this study were the Telco Customer Churn data (Telco data) from the 
Kaggle dataset14. This is a binary classification dataset that involves customer information with the label column 
indicating whether a customer left within the last month. The dataset comprised 7043 instances, consisting of 
1869 churned customers and 5174 non-churned customers. The data contained nineteen features including 
gender, senior citizen, partner, dependents, tenure, phone service, multiple lines, internet service, online secu-
rity, online backup, device protection, tech support, streaming TV, streaming movies, contract, paperless billing, 
payment method, monthly charges, and total charges. There were 11 missing values in the total charge column, 
which occurred when the tenure value was 0, signifying that the customer used 0 months of service from the 
telco company. Thus, the missing values in the total charge column were replaced with 0. The data underwent 
preprocessing using a standard scaler for the continuous features (tenure, total charges, and monthly charges), 
while one-hot encoding was applied to the categorical features.

The marketing dataset was the Customer Segmentation data (Customer data) from Kaggle15. This is a multi-
class classification dataset having 8068 instances categorized into four different customer groups: 1972 instances 
in group A, 1858 instances in group B, 1970 instances in group C, and 2268 instances in group D. The data had 
nine features including gender, ever married, age, graduated, profession, work experience, spending score, family 
size, and an anonymized variable. There were varying numbers of missing values in the following features: ever 
married (140 missing values), graduated (78 missing values), profession (124 missing values), work experience 
(829 missing values), family size (335 missing values), and the anonymized variable (76 missing values). These 
missing values were imputed using the most frequent values. The data were preprocessed using a standard 
scaler for continuous features (age, work experience, and family size), while one-hot encoding was applied to 
the categorical features.

Case difficulty metrics
We developed and investigated three case difficulty metrics which are described in detail below.

CDmc (case difficulty model complexity)
CDmc assumes that difficult cases require complex models to be predicted correctly. We counted the number 
of neurons an NN with one hidden layer would need to make a correct prediction. The flow of CDmc is shown 
in Fig. 1.

In Fig. 1, the NNs model began with the simplest structure: one neuron in one hidden layer. The NNs model 
used the ReLU activation function and the Adam optimizer. The batch size was set to 32 with 100 epochs and 
without dropout. The process started with one sample being left out as test data (i.e., leave-one-out). The rest 
of the data was split into 70% training and 30% validation. Twenty (arbitrarily chosen and can be changed 
depending on the problem or dataset) NNs were trained using training data with random initialization and 
using validation data for early stopping. If fewer than 90% of the 20 NNs could correctly predict the left-out test 
case, the model complexity was increased by adding a neuron. The process repeated until at least 90% of the 
20 NNs could correctly predict the test case or reach a maximum number of neurons (MNN). This MNN was 
required since there was a chance that the model could not make a correct prediction regardless of the number of 
neurons. Therefore, the MNN was set as 1% of the sample size and used as a normalization factor in the metric. 
When the loop stopped, the number of neurons at that point was divided by the MNN. The calculated value 
was the case difficulty measure which ranged between 0 and 1, with an easy case being close to 0 and a difficult 
case being close to 1.
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CDdm (case difficulty double model)
CDdm assumes that the prediction correctness of a model for a given case can be predicted by another model. 
The flow of CDdm is shown in Fig. 2.

First, data were divided into five sets of equal size. Next, Model A was trained on the first and second sets. 
Next, the trained model A predicted the cases in the third and fourth sets. Then, Model B was trained with a target 
variable (Correctness in Fig. 2) defined as whether Model A made correct or incorrect predictions. This allowed 
model B to predict the probability of correctness from the given data. Lastly, trained Model B made probability 
predictions of correctness for the fifth set. These predicted probabilities from Model B were the case difficulty 
of the individual cases in the fifth group. This process was repeated five times to obtain the case difficulties of all 
sets. Since predicted probabilities have a range between 0 and 1, the case difficulty values also range between 0 
and 1, with values closer to 1 indicating more difficult cases.

Figure 1.   The flow of CDmc. NN: Neural network; MNN: Maximum number of neurons.

Figure 2.   The flow of CDdm. Models A and B are neural networks. × 1 and × 2: example data in the third and 
fourth groups.
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Models A and B were NNs and Hyperopt was used for hyperparameter tuning. Hyperopt is a Python library 
for hyperparameter optimization which uses a form of Bayesian optimization to find the best hyperparameter 
settings16. Hyperopt searched in the following hyperparameter space: learning rate: 0.01, 0.03, 0.1; batch size: 
32, 64, 128; number of hidden layers: 1, 2, 3; number of neurons in the hidden layer: 5, 10, 15, 20; and activation 
function: ReLU, Tanh. Both Models A and B were trained using the Adam optimizer and early stopping with 
500 epochs and 50 patience. In Hyperopt, Models A and B were subject to 5 and 10 iterations, respectively, to 
find the best hyperparameter settings for the simulated data and UCI breast cancer data. For the Telco data and 
Customer data, since they were larger and more complex than the simulated data, Models A and B were subject 
to 200 and 200 iterations, respectively, to find the best hyperparameter settings.

CDpu (case difficulty predictive uncertainty)
CDpu defines case difficulty as the variability of predictions made by the model. The main assumption is that 
easy cases would lead to narrow prediction probability distributions (i.e., less uncertainty) near the correct label. 
Conversely, difficulty cases would lead to wide prediction probability distributions centered far from the correct 
label. We used the mean and standard deviation of the prediction probability distribution to calculate the case 
difficulty. The flow of CDpu is shown in Fig. 3.

The process began by leaving out one sample as test data (i.e., leave-one-out). The remaining data was divided 
into 70% for training and 30% for validation, aiming to tune the hyperparameters of a NN. 100 NNs were trained 
using a randomly shuffled original dataset, excluding the test data. Next, each of the 100 trained NNs generated 
a prediction probability for the test data. The formula in Fig. 3 was applied to the 100 prediction probabilities 
and the resulting value represented the case difficulty, with an easy case being closer to 0 and a difficult case 
being closer to 1.

The formula in Fig. 3 was developed based on the assumption that the worst prediction probability distribu-
tion is the uniform distribution. The uniform distribution represents the most conservative uncertainty estima-
tion, and the standard deviation of the uniform distribution can be used as the normalization factor17. Since 
the prediction probability value ranged between 0 and 1, the standard deviation of the uniform distribution is 
approximately the square root of one over twelve. When the 100 predicted probabilities formed the distribution, 
the standard deviation of the prediction probabilities was calculated and divided by the normalization factor. The 
normalized value was the distribution factor. The distance from ground truth (the location factor) was calculated 
as the distance between the mean of the prediction probability distribution and ground truth (0 or 1). The average 
of this distance and the distribution factor became the case difficulty of the test data. For multi-class classification, 
the distribution and location factors were calculated for each class using the predicted probabilities according 
to each class. The average of the case difficulty values across all classes became the case difficulty of the test data.

There are rare cases when the case difficulty exceeds 1. This happens when the prediction probabilities exhibit 
a bimodal distribution pattern for 0 and 1, with two peaks in the distribution. Since the bimodal distribution 
results in a higher standard deviation than a uniform distribution, it can cause the distribution factor to go over 
1. In such instances, the case difficulty is capped at 1.

To reduce computational time, Hyperopt ran under ray tune, which performs distributed hyperparameter 
tuning18. In Hyperopt, NNs were subject to 100 iterations. To find the best hyperparameter settings, Hyperopt 
searched in the following hyperparameter space: learning rate: 0.01, 0.03, 0.1; batch size: 32, 64, 128; number of 

Figure 3.   The flow of CDpu. µ : mean value of prediction probabilities; ground truth: the target label of the 
sample that is excluded in the first step; σ : standard deviation of prediction probabilities.
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hidden layers: 1, 2, 3; number of neurons in the hidden layer: 5, 10, 15, 20; and activation function: ReLU, Tanh. 
NN were trained using the Adam optimizer and early stopping with 100 epochs and 30 patience. For the UCI 
breast cancer data, early stopping was set to 10 patience because of its small sample size.

Evaluation methods and statistical analysis
CDmc, CDdm, and CDpu were assessed using two methods. First, we visually inspected the case difficulty cal-
culated from the existing metrics and proposed metrics. The existing metrics were calculated using the Pyhard 
Python package18. Second, we computed the Pearson and Spearman correlations between the case difficulty 
measures from our metrics and the existing metrics in the literature. For example, for a simulated dataset com-
prising 3000 cases, we obtained 3000 case difficulty values from each of the existing and the proposed metrics. 
Then, we calculated the Pearson and Spearman correlations between these sets of values. Pearson correlation is 
a parametric measure of correlation assessing the linear relationship between two continuous variables, whereas 
Spearman is a non-parametric measure of correlation evaluating the monotonic relationship between two con-
tinuous or ordinal variables20. Since we are comparing our metrics with multiple existing metrics that were 
developed based on various methods to calculate case difficulty, it is uncertain whether the relationship between 
the case difficulty from our metrics and the existing metrics adheres to parametric (linear) or non-parametric 
(non-linear or monotonic) patterns. Therefore, we have employed both Pearson and Spearman correlations to 
investigate the relationships between the metrics. This approach allows us to account for potential linear and 
non-linear associations and provides a more comprehensive analysis of the relationships.

Results
Simulated datasets
The case difficulty values for simulated datasets from CDmc, CDdm, and CDpu are plotted in Fig. 4. Figure 4 
shows that difficult cases are mostly located in overlapping and borderline areas.

We selected one metric from each similarly developed group among the 15 existing metrics. The chosen 
metrics were kDN, DCP, TD_U, CL, CB, N1, LSC, and F1. The case difficulty values from selected simulated 
datasets are shown in Fig. 5 (See the Supplementary Figures S1-S18 for the results from the 15 existing metrics 
applied to the 18 simulated datasets).

Dataset (a) in Fig. 5 shows the results of the metrics applied to linearly separable data without overlapping 
areas. Most metrics indicate that all the cases have low case difficulty, while TD_U and CB show high case dif-
ficulty for every case. N1, LSC, F1, and CDpu show more diversely distributed case difficulty.

Dataset (k) in Fig. 5 shows the results of metrics applied to non-linearly separable data with overlapping 
areas. kDN, DCP, and N1 exhibit high case difficulty on the borderlines of the overlapped area. Similarly, CL, 
CDmc, CDdm, and CDpu display more scattered difficult cases along the borderline of the overlapped area. 
TD_U result expresses an attempt to classify the classes using linear lines, resulting in a distribution of case 
difficulty that follows linear lines. LSC and F1 present the highest case difficulty at the center of the data due to 
the overlap of the three classes.

Dataset (p) in Fig. 5 shows the results of metrics applied to non-linearly separable data without overlapping 
areas. kDN, DCP, N1, and CL exhibit a few challenging cases around the borderlines. TD_U and F1, however, 
do not effectively find the difficulty in the borderline area. CDdm demonstrates low case difficulty for every case. 
On the other hand, CDmc and CDpu reveal high case difficulty along the borderline of the simulated datasets 
of concentric circles, while LSC shows high difficulty cases for all cases except the center area. CB could not dif-
ferentiate difficulty levels in datasets (a), (k), and (p) since these datasets were balanced between target classes.

The Pearson and Spearman correlations between our metrics and the existing metrics are shown as heatmaps 
in Fig. 6.

Figure 6 shows the case difficulty from CDmc has a higher correlation when evaluated using the Pearson cor-
relation than the Spearman correlation. The results show measures from metrics kDN, DCP, CL, CLD, and N1 
show the highest correlations with CDmc. Moreover, lower correlations occurred when the data were simulated 
datasets of concentric circles. For instance, case difficulties ranging from simulated data (m) to (r) exhibited 
lower correlations than the correlations in the other simulated datasets.

Case difficulty from CDdm is more correlated with the existing metrics when evaluated by the Spearman cor-
relation method. Most existing metrics showed a high positive correlation with the case difficulty from CDdm. In 
particular, higher correlations occurred when the data had more overlapping areas. For example, case difficulties 
from simulated data (c) resulted in higher correlations than those from simulated data (b), and case difficulties 
from simulated data (f) showed higher correlations than those from simulated data (e).

Case difficulty from CDpu has a higher correlation when evaluated using the Pearson correlation. Similar to 
CDmc, the case difficulty from CDpu demonstrates the higher correlation with existing metrics such as kDN, 
DCP, CL, CLD, and N1. However, CDpu also shows a high correlation with N2 and higher correlations with the 
existing metrics for the simulated datasets of concentric circles (m) to (r).

Real‑world data
UCI breast cancer data was unable to be plotted as a two-dimensional image due to its nine features. Therefore, 
we applied t-distributed Stochastic Neighbour Embedding (t-SNE) to reduce the dimensionality and enable 
visualization19. The UCI breast cancer data were standardized before applying t-SNE. Similarly, Telco data and 
Customer data could not be plotted as two-dimensional images due to their nineteen and nine features. Since 
these datasets contain both categorical and continuous features, the Factor Analysis of Mixed Data (FAMD) was 
used to reduce the dimensionality and allow visualization20. The case difficulty results of UCI breast cancer data, 
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Telco data, and Customer data are plotted in Fig. 7 (See the Supplementary Figures S19-S21 for the results from 
the 15 existing metrics applied to the real-world data).

UCI breast cancer data in Fig. 7 shows that kDN and N1 are similar to CDmc, demonstrating high case dif-
ficulty in the overlap area and outliers on the left side. CDpu, DCP, and CL assigned high case difficulty for the 
cases in the overlap area and several outliers. TD_U, CB, LSC, F1, and CDdm were more influenced by the class 
imbalance and assigned high case difficulties to the minor class.

Telco data in Fig. 7 shows that kDN, DCP, CDdm, and CDpu share similar difficulty distributions. TD_U 
displayed a widely distributed case difficulty in the upper left area, whereas CL exhibited concentrated high case 
difficulty in the lower left area. CB assigned high case difficulty to the minor class due to the class imbalance. N1 
and CDmc depicted high case difficulty at the borderline of the overlapped area, while LSC and F1 struggled to 
differentiate the difficulty of individual cases.

Customer data in Fig. 7 shows that the Customer data exhibit substantial overlap between the target classes. 
The central overlapping area was effectively recognized by kDN, DCP, TD_U, CL, N1, CDmc, CDdm, and CDpu. 
In contrast, CB, LSC, and F1 were inadequate to be used with the Customer data. Furthermore, the clusters of 

Figure 4.   Case difficulty for the simulated datasets. The letters for the rows refer to various simulated datasets, 
while the columns represent the proposed metrics used to calculate the case difficulty (CDmc: Case difficulty 
model complexity, CDdm: Case difficulty double models, CDpu: Case difficulty predictive uncertainty). CDdm 
results were calculated using four times more samples than CDmc and CDpu because more training data were 
required to train two models. Case difficulty ranges from 0 to 1, with an easy case being colored light red and a 
hard case being colored dark red.
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Figure 5.   Case difficulty from the existing metrics (kDN: k-Disagreeing Neighbors, DCP: Disjunct Class 
Percentage, TD_U: unpruned decision trees, CL: Class likelihood, CB: Class balance, N1: Fraction of nearby 
instances of different classes, LSC: Local set cardinality, F1: Fraction of features in overlapping areas) and the 
proposed metrics (CDmc: Case difficulty model complexity, CDdm: Case difficulty double models, CDpu: Case 
difficulty predictive uncertainty). The dataset (a), (k), and (p) represent binary classification data with isotropic 
Gaussian blobs shape, multi-class classification data with interleaving crescent moons shape, and multi-class 
classification data with a large circle containing a smaller circle shape. CDdm results were calculated using four 
times more samples than CDmc and CDpu because more training data were required to train two models. Case 
difficulty ranges from 0 to 1, with an easy case being colored light red and a hard case being colored dark red.
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Figure 6.   Correlations between the case difficulty values from the proposed metrics (CDmc: Case difficulty 
model complexity, CDdm: Case difficulty double models, CDpu: Case difficulty predictive uncertainty) and the 
existing metrics (kDN: k-Disagreeing neighbors, DCP: Disjunct class percentage, TD_P: Pruned decision trees, 
TD_U: Unpruned decision trees, CL: Class likelihood, CLD: Class likelihood difference, N1: Fraction of nearby 
instances of different classes, N2: Ratio of intra/extra class nearest neighbor distance, LSC: Local set cardinality, 
LSR: Local set radius, harmfulness, usefulness, F1: Fraction of features in overlapping areas) for the simulated 
datasets. Only the correlation values with a p-value below 0.05 are displayed. Each row corresponds to each 
simulated dataset described in Fig. 4, and the columns are described by the acronyms of the existing metrics 
described in Table 1. The MV and CB are not shown since the simulated datasets had balanced classes and these 
metrics could not be calculated. The colors represent the strength of correlation. The correlation color ranges 
between 0 and 1, with a weak correlation colored light red and a strong positive correlation colored dark red.
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Figure 7.   Case difficulty from the existing metrics (kDN: k-disagreeing neighbors, DCP: Disjunct class 
percentage, TD_U: Unpruned decision trees, CL: Class likelihood, CB: Class balance, N1: Fraction of nearby 
instances of different classes, LSC: Local Set Cardinality, F1: Fraction of features in overlapping areas) and 
proposed metrics (CDmc: Case difficulty model complexity, CDdm: Case difficulty double models, CDpu: Case 
difficulty predictive uncertainty). The t-SNE was used to visualize the UCI breast cancer data, and the FAMD 
was used to visualize the Telco data and Customer data. The number of principal components was set to 2 to 
plot the results in a two-dimensional space. The case difficulty scale ranges from 0 to 1, with the lightest color 
indicating a low case difficulty, and the darkest color indicating a high case difficulty.
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low case difficulty were observed in two areas. Dataset (Customer) in Fig. 7 shows that class 2 cases are linearly 
clustered on the left side, where DCP, CL, CDmc, and CDpu successfully captured these patterns and indicated 
lower difficulty in these areas. On the middle right side, round-shaped class 3 cases are clustered, which were 
well identified by kDN, DCP, TD_U, CL, N1, CDmc, CDdm, and CDpu.

The computed correlations with the existing metrics are shown in Fig. 8.
Figure 8 shows case difficulty from CDmc, CDdm, and CDpu mostly have a positive correlation with the 

existing metrics.
UCI breast cancer data in Fig. 8 shows the proposed metrics were closely related to the existing metrics in 

the order of CDmc, CDpu, and CDdm. When the correlation is evaluated with the Pearson correlation method, 
case difficulty from CDmc showed a stronger association with the existing metrics. When the correlation was 
evaluated with the Spearman correlation method, case difficulty from CDdm and CDpu showed a stronger 
association with the existing metrics.

Telco data in Fig. 8 shows the proposed metrics were closely linked to the existing metrics in the following 
order: CDpu, CDmc, and CDdm. When the correlations were evaluated with the Spearman correlation method, 
the case difficulty from CDmc, CDdm, and CDpu showed stronger associations with the existing metrics.

Customer data in Fig. 8 shows the proposed metrics were highly related to the existing metrics in the order 
of CDpu, CDmc, and CDdm. When the correlation is evaluated with the Pearson correlation method, case dif-
ficulty from CDdm and CDpu showed a stronger association with the existing metrics. Conversely, when the 
correlation is evaluated with the Spearman correlation method, case difficulty from CDmc showed a stronger 
association with the existing metrics.

Discussion
This study aimed to develop new case difficulty metrics showing good performance for a wide range of different 
datasets. The existing metrics in the literature require specific dataset preconditions, limiting their applicability 
to certain datasets. However, our case difficulty metrics perform well across diverse datasets and can provide a 
unique perspective for understanding difficulty. Furthermore, we evaluated our metrics using real-world data 
from various domains and successfully verified their performance across datasets from different domains. Com-
parisons between the existing metrics and CDmc, CDdm, and CDpu are summarized in Table 2. The existing 
metrics were executed on a system with Intel(R) Xeon(R) CPUs @ 2.20 GHz and 13 GB RAM. The computational 
times for the UCI breast cancer data in Table 2 were measured when the CDmc used 20 CPUs, CDdm used 1 
CPU, and CDpu used 30 CPUs with 10 GB RAM (Intel(R) Xeon(R) Gold 6342 CPUs @ 2.80 GHz).

Table 2 demonstrates that the current metrics have drawbacks when encountering specific data conditions. 
This may be an important point to consider in some applications. For example, the neighborhood-based method 
showed vulnerability when dealing with data containing continuous and categorical features. With Telco and 
Customer data, the neighborhood-based method failed to identify several easy cases. Since this method heavily 
relies on the nearest data points, the presence of both numeric and categorical features could lead to degraded 
performance of the neighborhood-based method.

Decision tree-based methods are vulnerable to non-linearly separable data. The results showed the metrics 
poorly performed for interleaving crescent moons shapes and data shapes with a large circle containing smaller 
circles. The metrics need deeper trees to understand non-linear patterns, and the lack of modification of the 
decision tree’s parameters caused lower performance.

The Naïve Bayes classification-based methods have a premise that features need to be independent. The metric 
did not work well in identifying the case difficulty of Telco data since the data have dependent features such as 
monthly and total charges.

The class skewness-based methods are inappropriate for balanced data. When the simulated datasets are 
balanced, Class skew-based methods could not use class imbalance information to calculate the case difficulty.

The distance-based methods showed varying performance across different datasets since these methods 
encompass various distance calculation metrics. N1 and N2 yield good performance in most datasets, while LSC, 
LSR, Harmfulness, and Usefulness often show poor performance based on the dataset. Particularly, most methods 
did not function well with the Telco and Customer data, which have mixed continuous and categorical features.

The feature-based methods did not perform well for either simulated or real-world data. Since the feature-
based methods utilize the relationship between the features of a case and the overlap area, they may exhibit 
limited performance in calculating case difficulty when the dataset has no overlap area or when the dataset is 
too complex the classes to be separated using the features.

The proposed metrics (CDmc, CDdm, and CDpu) consistently demonstrated strong performance across vari-
ous datasets. CDmc and CDpu process data individually, which leads to longer computational times but yields 
more reliable results. However, CDdm takes less computational time by processing data in groups. Moreover, 
CDdm has one of the notable advantages in that it can calculate the case difficulty of a new data point without 
knowing its ground truth.

Taking a closer look at the correlation comparison result, CDmc and CDpu displayed a higher correla-
tion when evaluated using the Pearson correlation method, while CDdm showed a higher correlation with the 
Spearman correlation method. This finding suggests that the case difficulty from CDmc and CDpu had a linear 
relationship with the measures from the previous studies and the case difficulty from CDdm had a monotonic 
relationship. In other words, case difficulty from CDmc and CDpu changed proportionally with the measures 
from the previous studies, while case difficulty from CDdm showed a consistent pattern of change.

The results showed that CDmc, CDdm, and CDpu have a strong positive correlation with the measures from 
CL and CLD. The reason is that CL and CLD both use similar concepts to how NNs compute case difficulty. CL 
and CLD use the likelihood of an instance belonging to its class to measure the case difficulty4. Similarly, trained 
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Figure 8.   Correlation between case difficulty from the existing metrics (kDN: k-disagreeing neighbors, DCP: 
Disjunct class percentage, TD_P: Pruned decision trees, TD_U: Unpruned decision trees, CL: Class likelihood, 
CLD: Class likelihood difference, MV: Minority value, CB: Class balance, N1: Fraction of nearby instances 
of different classes, N2: Ratio of intra/extra class nearest neighbor distance, LSC: Local set cardinality, LSR: 
Local set radius, harmfulness, usefulness, F1: Fraction of features in overlapping areas) and the proposed 
metrics (CDmc: Case difficulty model complexity, CDdm: Case difficulty double models, CDpu: Case difficulty 
predictive uncertainty) for the real-world datasets. Only the correlation values with a p-value below 0.05 are 
displayed. The rows correspond to the proposed metrics used to calculate the case difficulty, and the columns 
are the existing metrics described in Table 1. The colors represent the strength of the association. The darker red 
color represents a strong correlation, while the lighter red color means a weak correlation.
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NNs make a prediction based on the probability of each case belonging to each class21. Therefore, the measures 
from these metrics and case difficulty from CDmc, CDdm, and CDpu can show a high correlation.

Likewise, kDN and DCP showed similar correlation values with the proposed metrics as they use a similar 
concept to calculate the case difficulty. The kDN metric determines the case difficulty by estimating the percent-
age of instances that do not belong to the same class based on 10 nearest neighbours4. Similarly, the DCP metric 
evaluates the percentage of the same class in the leaf node induced from the decision tree4. As the leaf node 
generally contains the nearest cases, kDN and DCP consider similar values to calculate the difficulty.

The results showed that measures from TD_P and TD_U have a low correlation for the simulated datasets of 
concentric circles. As the decision tree is inefficient to solve complex problems such as XOR, parity or multiplex 
problems, these metrics could not calculate proper case difficulty for these datasets22,25.

CDmc, CDdm, and CDpu showed a high correlation when dealing with more complex datasets, while no 
correlation results were available for simple datasets. When the dataset is simple, the existing metrics and metrics 
assigned the same lowest case difficulty to all cases. With the constant case difficulty, it was impossible to calculate 
either the Pearson correlation or Spearman correlation, resulting in the empty cells in rows (a) and (d) of Fig. 6.

Limitations
There are several limitations with our case difficulty metrics and points to consider when deciding which met-
ric to use. First, high computational resources are needed to implement CDmc, CDdm, and CDpu. Training 
NNs requires high computational power23, and the proposed metrics require many iterations of NN training 
and evaluation. CDmc requires training 20 NNs until 90% of them make the correct prediction or the MNN 
is reached. CDdm performed hyperparameter tuning for two NNs several times. CDpu is associated with the 
highest computational cost to train and hyperparameter-tune100 NNs for each case. However, case difficulty 
only needs to be calculated once and can be used again in other studies. Therefore, high computational costs 
may be acceptable. Furthermore, we used various techniques such as multiprocessor, Hyperopt, and ray tune to 
reduce computational time as much as possible.

Second, the number of NNs and MNN in CDmc are arbitrary and should be adjusted based on the sample 
size and complexity of the data. In this study, we utilized 20 NNs and set 1% of the sample size for MNN. Despite 
increasing the number of NNs and MNN, we found that CDmc produced similar results for the simulated data. 
However, the optimal number of NNs and MNN may vary depending on the data. When the data is more com-
plicated, increasing the number of NNs can yield more stable results and increasing MNN can test more neurons 
in the hidden layer which might be needed to make a correct prediction. Similarly, increasing the number of 
NNs in CDpu did not significantly affect the results for the simulated data. Thus, appropriate adjustments to the 
number of NNs in the CDpu calculation may also be necessary.

Third, the hyperparameter range needs to be modified depending on the data. As the proposed metrics use 
NNs, hyperparameter tuning is essential24, particularly in CDdm. As the two NNs work together in CDdm, find-
ing hyperparameters for both models are important. The first model’s performance affects the second model’s 

Table 2.   Comparison between the existing metrics and CDmc, CDdm, and CDpu.

Method

Computational 
time (UCI brest 
cancer data)

Class balanced 
data

No class 
overlapped data

Mixed features 
data

Dependent 
features

Non-linearly 
separable data

Required data 
size

Need ground 
truth

Neighborhood- 
based method 
(kDN)

 < 1 min Good Medium Poor Good Good Medium Yes

Decision tree-
based method 
(DCP, TD_P, 
TD_U)

 < 1 min Good Medium Good Good Poor Medium Yes/No

Naïve bayes-based 
method (CL, CLD)  < 1 min Good Good Good Poor Good Medium Yes

Class skewness-
based method 
(MV, CB)

 < 1 min Poor Good Good Good Good Small Yes

Distance-based 
method (N1, 
N2, LSC, LSR, 
Harmfulness, 
Usefulness)

 < 1 min Good Medium Medium Good Good Medium Yes

Feature-based 
method (F1)  < 1 min Good Medium Poor Good Good Medium Yes

Case Difficulty 
Model Complexity 
(CDmc)

 ~ 6 h Good Good Good Good Good Big Yes

Case Difficulty 
Double Model 
(CDdm)

 ~ 10 min Good Good Good Good Good Big No

Case Difficulty 
Predictive Uncer-
tainty (CDpu)

 ~ 5 h Good Medium Good Good Good Big Yes



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10474  | https://doi.org/10.1038/s41598-024-61284-z

www.nature.com/scientificreports/

ability to determine the case difficulty. Although finding the best hyperparameters for NNs requires additional 
effort, NNs’ capability to detect complex patterns in datasets makes them an effective tool for determining case 
difficulty.

Fourth, our metrics require sufficient sample sizes. Insufficient data can hinder the training of NNs and 
result in low performance23,25. This is especially important for CDdm, as the data is divided into five groups, 
resulting in fewer training data for NNs. We discovered that using the same number of simulated data from 
CDmc for CDdm was inadequate. Therefore, we increased the sample size of the simulated data to investigate 
CDdm. Despite that CDdm requires more data than CDmc, CDdm is preferred when the research needs more 
differentiated case difficulties.

Fifth, as the case difficulty from CDmc is directly related to the number of neurons, the resolution of the 
case difficulty metric can be limited when MNN is small. For instance, if MNN is 10, the case difficulty metric 
has a step size of only 1/10 = 0.1 which may be too coarse. In contrast, the case difficulty metric from CDdm is 
a probability and has a float value ranging from 0 to 1.

Sixth, the effect of data preprocessing on case difficulty was not analyzed. Data preprocessing can ensure 
data quality and improve a model’s performance. However, altering cases during preprocessing could affect their 
inherent difficulty. Therefore, we applied minimal preprocessing to the real-world data, which included only 
imputation for missing values and scaling for different features as required for NNs. This allowed us to preserve 
the individual cases in their original forms.

Seventh, uncertainty quantifications, such as confidence intervals or metric value ranges, were not included 
for the proposed metrics. In this study, we recorded a single value for case difficulty for each case, as it was the 
only value needed for comparisons between the proposed and existing metrics. However, incorporating uncer-
tainty quantification may be necessary in some instances to enhance the reliability of these metrics.

Lastly, if there are more than two features, it becomes hard to assess the case difficulty results through 
visualization. In this study, the UCI breast cancer data were visualized using t-SNE, and Telco and Customer 
data were visualized using FAMD. But it is uncertain whether the dimensional reduced results can accurately 
represent the original data. Therefore, an additional evaluation method needs to be used. One possible evalua-
tion method is to compute the correlation between the log-loss values of various ML models and case difficulty. 
Previous research has shown that model misclassification is related to case difficulty4,5. Therefore, when the data 
is complex and cannot be visualized as an image, comparing the log-loss values of various ML models can help 
to evaluate case difficulty.

Future work
In future work, the design of the proposed metrics in this paper can be further extended using ML models other 
than NNs. Additionally, other factors that may affect the calculation or credibility of case difficulty could be 
explored. This exploration might include aspects mentioned here as limitations, such as data preprocessing or 
the presentation of uncertainty estimates. Furthermore, our metrics can be expanded to assess case difficulty in 
regression problems and used to develop novel prediction performance evaluation metrics. For the performance 
evaluation metrics, it is possible to apply the case difficulty values derived from the proposed metrics as weights. 
This can allow us to observe the changes in performance based on the difficulty of individual cases.

Conclusions
In this paper, we proposed three novel case difficulty metrics based on model complexity, a double model, and 
predictive uncertainty. These metrics performed well across several datasets and required less data precondi-
tions than existing metrics. These metrics were particularly effective when there were no overlapped areas in 
the dataset or when the dataset contained both categorical and continuous features. Moreover, the high cor-
relation with some existing metrics indicates that the proposed metrics can capture case difficulty in a similar 
manner to the existing metrics. Despite these advantages, the proposed metrics have some limitations. Besides 
high computational complexity, the metrics need appropriate modifications based on the datasets and require 
sufficient sample sizes. Future work could involve using ML models other than NNs to address these limitations, 
extending the research to measure case difficulty in different types of data and develop new, case difficulty-aware 
prediction performance metrics. We expect using our case difficulty metrics can provide a new perspective to 
ML researchers in many fields and provide more detailed case-by-case explanations to users.

Data availability
The datasets generated and analysed during the current study are available in the GitHub repository,
https://​github.​com/​data-​intel​ligen​ce-​for-​health-​lab/​Measu​ring_​Case_​Diffi​culty.
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