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Tunable electronic 
and photoelectric properties 
of Janus group‑III chalcogenide 
monolayers and based 
heterostructures
Yipeng Zhao 1, Qiaolai Tan 2*, Honglai Li 3, Zhiqiang Li 1, Yicheng Wang 1 & Liang Ma 1*

Janus group-III chalcogenide monolayers and based heterostructures with breaking vertical structural 
symmetry offer additional prospects in the upcoming high-performance photoelectric devices. We 
studied the geometrical, electronic, and photoelectric properties of Janus group-III chalcogenide 
monolayers and heterostructures. The most energy favorable stacking design of ten vertical 
heterostructures are considered. The results showed that the Janus Se-In-Ga-S and S-In-Ga-Se 
monolayers exhibit semiconducting characteristics with the band gaps of 1.295 eV and 1.752 eV, 
respectively. Furthermore, the different stacking configurations and surface termination at interface 
can realize the transition of band alignment between type I and type II due to the interlayer coupling. 
Moreover, we systematically investigated the photoelectric properties of Janus group-III chalcogenide 
heterostructures and predicated an optimized power conversion efficiency of 16.2%. These 
findings can aid in comprehending the customized characteristics of Janus group-III chalcogenide 
heterostructures, offering theoretical guidance for creating innovative photoelectric devices.

Since the successful exfoliation of graphene, two-dimensional (2D) materials have received worldwide interest 
due to their astonishingly physical properties and potential implementation in next-generation electronic and 
photoelectric devices1–5. Among various 2D materials, group-III monochalcogenides (MX, M=Ga, In; X=S, 
Se) have received more attention in recent years due to their remarkable mechanical, electronic, and optical 
properties6–8. The MX monolayers has a honeycomb lattice structure and stacking in the order of X-M-M-X. 
To date, various MX monolayers had been successfully synthesized, and it exhibited high carrier mobility, good 
metal contacts, high thermal stability, and the absence of dangling bond9–11. All these merits make MX monolay-
ers promising for photoelectric devices and improve the motivation to design heterostructures based on these 
materials12–14. However, MX monolayers display relatively large indirect band gaps with 2.0–4.0 eV, resulting 
a poor absorption in the visible light spectrum15,16. Thus, it is very important to find suitable means to realize 
effective tunable of electronic structure and optical properties in MX monolayer for its practical application17–21.

Generally, the atom structure symmetry plays a crucial role in the determination of electronic properties 
for ultrathin materials22–25. Due to its lattice asymmetry, the Janus monolayers has an intrinsic built-in electric 
field in the vertical direction compare with traditional MXs, which can separate the charge carriers and enhance 
the electron-phonon interaction26–28. In addition, Janus MX monolayers showed distinct physical properties 
such as excellent absorption coefficient, high charge carrier mobility, and rapid separation of photogenerated 
carriers, which gives them potential for photovoltaic and photoelectric applications29,30. For instance, the Janus 
In2SSe monolayer possesses an indirect-direct bandgap transition due to the broken vertical symmetry31. Bui 
et al. systematically studied the structural, electronic, and optical properties of Janus Ga2XY and In2XY (Y = S, 
Se, Te) monolayers, and compared the acquired electronic band gaps with their binary analogs32. Zhong et al. 
have been predicted the dynamic stability of Janus Ga2XY monolayer, and the phonon dispersions confirmed 
that the monolayers can exist as a freestanding structure33. Furthermore, Ahmad et al. found that the band gaps 
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of XGaInY monolayer extend from 0.74 to 2.66 eV, and the light absorption coefficients were greater than 104 
cm−1 in the visible and ultraviolet region34.

In addition, van der Waals (vdW) heterojunctions opens the way for new promising applications as they main-
tain the advantages of each monolayer and introduce new exciting properties due to the interlayer coupling35–37. 
Inspired by the traditional 2D vdW heterojunctions, several attempts have been proposed to various hetero-
structures based on Janus monolayers to explore their novel properties38–40. To date, numerous MX-based vdW 
heterostructures have been studied, such as In2SeTe/Ga2STe and SeGa2Te/SeIn2Se41,42. More interestingly, the 
MX-based vdWs heterostructures show the power conversion efficiency (PCE) up to 13.17%, while it further 
boosted to 21% in Janus In2SeTe/Ga2STe lateral heterostructures42. In addition, the Janus-In2STe/InSe lateral 
heterostructures exhibit a high optical absorption coefficient of 8×105 cm−1 in visible light zone43. Particularly, 
the combination of Janus monolayers gives birth to versatile heterostructures with magnificent properties such 
as excellent optical, tunable electrical contact properties, and etc44–46.

Herein, we put forward first-principles simulations to examine the structure, electronic, photoelectric proper-
ties of Janus MX monolayers and MX-based heterostructures. Herein, we first evaluated the structural parameters 
and cohesive energy of Janus MX monolayers, and further investigated their electronic band structure and optical 
properties. Next, we construct ten vertical heterostructures of Janus MX with different stacking configurations, 
and investigated the electronic band structure and band diagrams of the most stable configurations. In addition, 
the enhanced light absorption of heterostructures is presented and the PCE of the heterostructures was evaluated. 
Our results establish that Janus MX and based heterostructures would be the probable candidates for electronic 
and photoelectric applications.

Computational details
All the first-principles computations within the framework of density-functional theory (DFT) were carried out 
by DS-PAW software. The Device Studio program provides several functions for performing visualization and 
modeling. We chose the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) for-
malism to describe the exchange–correlation potential47–49. A vacuum thickness of 20 Å (for single layer material) 
and 40Å (for heterojunction) are built to avoid the interactions between adjacent layers. The Monkhorst-Pack 
k-point meshes of 9×9×1 is used for geometric optimization and electronic structure calculation of Janus mon-
olayers and heterojunction. A plane wave basis set with a cutoff energy of 500 eV was employed for plane wave 
expansion. In our calculations, the force and energy parameters of atomic relaxation are set as 0.01 eV/Å and 10−8 
eV. To confirm the origin of the catalytic activity of vertical heterojunction, density of states (DOS) calculations 
and Bader charge analysis were performed. In the process of heterojunction optimization and computation, the 
DFT-D3 method with Grimme correction is adopted to describe the long-range van der Waals interactions50. 
Additionally, the more accurate Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional was employed to check 
the reliability of the band structure51.

Results and discussion
Figure 1a,b depicts the top and side view of atomic crystal structure in Janus Se-In-Ga-S and S-In-Ga-Se mon-
olayers. Clearly, the Janus MX monolayer is made up of X-M-M’-X’ configuration with broken mirror symmetry 
in the vertical direction. The optimized lattice constant, bond lengths and thicknesses after relaxation are listed in 
Table 1. The Ga-In bond lengths in the different Janus monolayers remain particularly unchanged, being similar 
to Ga–Ga and In–In bond lengths in traditional MX monolayer. In addition, the Bader charge analysis shows 
that the charge is transferred from metal atoms to chalcogenide atoms, as shown in Fig. 1c,d. For instance, the Ga 
and In atoms lose 0.773e and 0.706e for the Janus Se-In-Ga-S monolayer, while the Se and S atoms receive 0.662e 
and 0.818e, respectively. Actually, the Bader charge transfer is associated with the type of element and the bond 
length between the metal and chalcogenide atoms52. The bond length of M-S (M-Se) is 2.42 Å (2.62) in Janus 
Se-In-Ga-S and 2.52 Å (2.50) in S-In-Ga-Se monolayers, respectively. As can be seen in Fig. 1e,f, the calculated 
phonon spectra of Janus Se-In-Ga-S and S-In-Ga-Se monolayers shows no imaginary frequency, indicating its 
dynamic stability. The chalcogenide atoms attract electrons from metal atoms since the chalcogenide atoms are 
more electronegative53. The different arrangements of metal and chalcogen atoms have noticeable effects on the 
charge transfer and electronic properties.

The electronic band structures of Janus Se-In-Ga-S and S-In-Ga-Se monolayers were calculated at the PBE 
and HSE06 level along the high symmetry points of M–K–Γ–K–M, as shown in Fig. 2a and b. Clearly, the Janus 
Se-In-Ga-S and S-In-Ga-Se monolayers preserve the semiconducting character, with the band gaps of 1.295 eV 
(2.14 eV) and 1.752 eV (2.61 eV) with the PBE (HSE06) functional, respectively. The PBE bandgap is always lower 
than the HSE06 bandgap. The band structure calculated using HSE06 hybrid functional are consistent with the 
results calculated using PBE functional for the type of band gap34. The results show that the Se-In-Ga-S monolay-
ers exhibit direct gaps with their valence band maximum (VBM) and conduction band minimum (CBM) points 
located at the Γ-point, while the S-In-Ga-Se monolayers are indirect band gap. Actually, the CBM of Se-In-Ga-S 
monolayers is main contributed by the s and pz orbitals of Ga atoms and small contribution from s and pz-orbitals 
of In atoms, and the VBM is mainly determined by the px and py orbitals of Se atoms. The CBM of S-In-Ga-Se 
monolayers is organized by the s orbitals of Ga atoms and small contribution from s orbitals of In and Se atoms, 
and the VBM is mainly determined by the pz orbitals of S and Se atoms and small contribution from pz orbitals 
of In and Ga atoms. The orbital-resolved band structures of Janus Se-In-Ga-S and S-In-Ga-Se monolayers show 
in Fig. S1. The band gap of MX can be effectively tuned by constructing the Janus structure, which provides an 
effective method to tailor the photoelectric properties of MX monolayers. In addition, Fig. 2c,d depicts the opti-
cal absorption coefficients of the Janus Se-In-Ga-S and S-In-Ga-Se monolayers as a function of photon energy. 
Obviously, the monolayers show considerable visible light and near-ultraviolet absorption, which can be ascribed 
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Figure 1.   (a,b) Top view and side view of the Janus Se-In-Ga-S and S-In-Ga-Se monolayers. The average 
potential energy of the Janus Se-In-Ga-S (c) and S-In-Ga-Se (d) monolayers. The phonon spectrum of Janus 
Se-In-Ga-S (e) and S-In-Ga-Se (f) monolayers.

Table 1.   Calculated lattice constant (a and b), layer spacing (d), S-M and Se-M chemical band length(dS-M, 
dSe-M), total thickness (t) and electronic band gap (Eg) using different exchange correlation functionals for 
monolayer Janus Se-In-Ga-S and SInGaS.

Monolayer Janus a (Å) b (Å) dS-M (Å) dSe-M (Å) t (Å) Eg
PBE (eV) Eg

HSE06 (eV)

Se-In-Ga-S 3.82 3.82 2.42 2.62 5.03 1.29 2.14

S-In-Ga-Se 3.84 3.84 2.52 2.50 5.00 1.74 2.61
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to the enhanced hybridization states near the VBM and the CBM. The excellent absorption coefficients in the 
visible region indicates that the Janus Se-In-Ga-S and S-In-Ga-Se monolayers are suitable for further applications.

The structure and stability properties of the heterostructures based on Se-In-Ga-S and S-In-Ga-Se were 
investigated. Since both the Janus Se-In-Ga-S and S-In-Ga-Se monolayers are mirror symmetry broken with two 
different terminated surfaces, here we construct totally 10 vertical configurations of heterostructure. Such as SSA, 
SSB, and SSC configurations, their commonality lies in the interlayer S element attached to each other (defined 
as SS), while their difference lies in the arrangement of metal element In and Ga. The atomic arrangement order 
and structural abbreviation of vertical heterojunctions are shown in Table 2. Furthermore, to check the energy 
stability of heterostructures, we calculated the binding energy: Ecoh = ESGaInSe/SeGaInS − ESGaInSe − ESeGaInS , 
where ESGaInSe/SeGaInS is the total energy of the heterostructure,ESGaInSe and ESeGaInS are the total energy of the 
isolated Se-In-Ga-S and S-In-Ga-Se monolayer, respectively. For SSA configurations, there have five different 
stacking patterns, shown in Fig 3. For all the configurations, the binding energies are all negative, and the most 
energy favorable stacking pattern are also listed in Table S1. The AB stacking has the smallest binding energies, 
which is most favorable stacking pattern. The calculated lattice parameter, equilibrium interlayer distance of 
favorable stacking pattern are also summarized in Table 3.

The electronic band structures of the vertical heterostructure with different stacking pattens are shown in 
Fig. 4a,d and Figs. S2, S3. The phonon spectra curves of SSA and SeSeB configuration are described in Fig. S4, 
and shows no imaginary frequency, which further verify the dynamical stabilities of these configuration. The 
heterostructures are indirect band gap semiconductors with the CBM located at Γ point and the VBM located 
near the Γ point of the Brillouin zone. The band gap of heterostructure with SSA configuration is 1.103 eV, which 
is smaller to the pristine Janus Se-In-Ga-S and S-In-Ga-Se monolayers. Clearly, the CBM of the heterostruc-
tures for SSA configuration is mainly contributed by the electronic states from the top layer, while the VBM is 
dominated by the bottom layer. Therefore, the type II band alignment of heterostructures can be found and the 
conduction band offset (CBO) between acceptor and donor is 0.176 eV, as shown in Fig. 4b,c. While for SeSeB 
configuration, the CBM is contributed by the top Se-In-Ga-S layer, and the VBM is dominated by the bottom 
S-In-Ga-Se layer, as shown in Fig. 4d,e. The band gap and CBO of SeSeB configuration are 1.039 eV and 0.271 
eV, respectively. Typically, the type-II band alignment at interface allows the electrons and holes to be separated 

Figure 2.   (a,b) The band structure calculated using PBE and HSE06 methods for the Janus Se-In-Ga-S and 
S-In-Ga-Se monolayers. The calculated optical absorption coefficients of the Janus Se-In-Ga-S (c) and S-In-
Ga-Se (d) monolayers.
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in different materials, which can effectively reduce the recombination of electron-hole. Actually, the band align-
ment is strongly dependent on the surface termination owing to the intrinsic internal electric field of the Janus 
monolayer54. The band gap of other different configurations is list in Fig. 4f. The tunable interface coupling and 
band alignment provide an ideal platform for promoting the effective separation of photogenerated carriers and 
facilitating the quantum efficiency.

To acquire the physical origin of charge transfer and charge redistribution, we calculated the plane differen-
tial charge density ( �ρ ) along the z direction (see Fig. 5a,b and Fig. S5). In general, the �ρ can be calculated by 
�ρ(z) =

∫

ρSGaInSe/SeGaInSdxdy −
∫

ρSGaInSedxdy −
∫

ρSeGaInSdxdy , where ρSGaInSe/SeGaInS , ρSGaInSe , and ρSeGaInS 
are the charge density in the heterostructure, S-Ga-In-Se and Se-Ga-In-S monolayers, respectively. It is worth 
noting that the electric dipole in the heterostructure contain two parts: the intrinsic electric dipole in the prime 
Janus monolayers and the interface dipole caused by charge redistribution55. It is found that electron rearrange-
ment mainly occurs in the interspace between two layers, which can induce the built-in electric dipole at the 

Table 2.   SS: Interlayer S element is attached to S element; SeSe: Interlayer Se element is attached to Se element; 
A type: Two layers of material Ga element adhered to Ga element; B type: Two layers of material Ga element 
adhered to In element; B’ type: Two layers of material In element adhered to Ga element; C type: Two layers of 
material In element adhered to In element.

Element order

Type

SSA SSB SSC SeSeA SeSeB SeSeC SSeB SSeA SSeC SSeB’

First layer

1 Se Se Se S S S Se Se Se Se

2 In In Ga In In Ga In In Ga Ga

3 Ga Ga In Ga Ga In Ga Ga In In

4 S S S Se Se Se S S S S

Second layer

5 S S S Se Se Se Se Se Se Se

6 Ga In In Ga In In In Ga In Ga

7 In Ga Ga In Ga Ga Ga In Ga In

8 Se Se Se S S S S S S S

Figure 3.   Top view and side view of the five models of Janus heterostructures.

Table 3.   Calculated lattice constant (a and b), interlayer distance (d), electronic band gap (Eg
PBE), conduction 

band offset (CBO) and power conversion efficiency (PCE) for different heterostructures.

Heterostructure a (Å) b (Å) d (Å) Eg
PBE (eV) CBO (eV) PCE (%)

SSA 3.82 3.82 3.07 1.103 0.176 12.8

SSB 3.83 3.83 3.03 1.176 0.604 6.8

SSC 3.84 3.84 3.01 1.304 0.426 12.9

SeSeA 3.84 3.84 3.22 1.238 0.492 10.3

SeSeB 3.83 3.83 3.18 1.039 0.271 16.2

SeSeC 3.82 3.82 3.16 1.035 0.272 12.7

SSeB 3.82 3.82 3.11 1.065 0.217 14.6

SSeA 3.83 3.83 3.14 1.042 0.241 13.6

SSeC 3.83 3.83 3.08 1.164 0.613 6.4

SSeB’ 3.84 3.84 3.11 1.157 0.575 6.9
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interface. Also, the Bader charge analysis showed that there is a small amount of electron transfer at the interface, 
resulting in an intrinsic p-n junction. The corresponding transferred charge (from first layer to second layer) for 
SSA, SSB, SSC, SeSeA, SeSeB, SeSeC, SSeB, SSeA, SSeC and SSeB’ configuration are − 0.0011e, − 0.0034e, 0.0005e, 
0.0002e, − 0.0066e, − 0.0019e, 0.0039e, 0.0107e, 0.0083e and 0.0143e, which is consistent with the direction of 
electron transfer in the band arrangement.

In addition, we calculate the electrostatic potential difference �� of the heterostructure, as shown in Fig. 5c,d 
and Fig. S6. The �� of SSA is 0 meV, which indicates that their left and right work functions are the same because 
the materials on both sides have the same structure. The �� of SeSeB configuration is 287 meV, which indicates 
that their left and right work functions are different because the materials on both sides have different structures. 
Similarly, Guo at al. studied the structural and optoelectronic properties of Janus aluminum monochalcogenide 
(C2h-Al2XY) (X/Y=S, Se and Te) compounds, and found that the wider atomic size difference leads to a larger 
ΔΦ56. Actually, the dipole in those heterostructures is associated with the stacking order, local configurations, 
and charge redistribution, and so on.

The optical properties of materials can be revealed by the light absorption governed by the characteristics of 
electronic band structures, which is the important metric for assessing viability of heterojunctions in the pho-
toelectric devices. Generally, the light absorption coefficient can be deduced from the frequency-dependent 
complex dielectric function, i.e. α(ω) =

√
2ω/c

[

√

ε1(ω)
2 + ε2(ω)

2 − ε1(ω)

]1/2

 , where ω is the angular fre-
quency, c is the speed of light, ε1 and ε2 denotes the real and imaginary part of the dielectric function. Fig. 6a and 
Fig. S7 depicts the optical absorption coefficients as a function of photon energy extended from ultraviolet to 
visible light for in-plane light polarization. As shown, the absorption of heterostructure possess considerable 
visible light and near-ultraviolet absorption, which are substantially greater than those of Janus Se-In-Ga-S and 
S-In-Ga-Se monolayer. Meanwhile, the absorption edge of heterostructure shows an obviously red shift owing 
to the narrow band gap compare with the intrinsic Janus monolayers. Indeed, a narrow band gap of 

Figure 4.   The band structure and DOS of the 2D Janus group-III chalcogenide for SSA (a) and SeSeB (d) 
configuration. (b) Band arrangement of Janus Se-In-Ga-S and S-In-Ga-Se monolayers. Band arrangement of 
SSA (c) and SeSeB (e) configuration. (f) Band arrangement of Janus heterostructures.
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heterostructure with type II band alignment indicates a stronger absorption spectrum because it makes electron 
and hole pairs easier to generate.

Additionally, the range of incident solar light spectra suggests that these materials have the capacity to absorb 
sunlight. We carried out more research on the PCE of heterostructures in order to better understand their utiliza-
tion efficiency for solar light. For heterostructures with type II band alignment, the PCE can estimated by 

Scharber’s method57, i.e. η =
0.65

(

Edg−�Ec−0.3

)

∫∞
0

P(hν)/ hνd(hv)
∫∞
0

P(hν)d(hv)
 , where 0.65 is the fill factor, Edg  is the donor band 

gap, �Ec represents the CBO, and P(hν) is the AM1.5 solar energy flux. Fig. 6b and Table 3 shows the PCE for 

Figure 5.   The charge transfer density of SSA (a) and SeSeB (b) configuration. The average potential energy of 
SSA (c) and SeSeB (d) configuration.

Figure 6.   (a) The calculated optical absorption coefficients of SSA and SeSeB alignment, which comparison 
with Janus Se-In-Ga-S, S-In-Ga-Se monolayers and solar spectral radiation. (b) The contour plot of power 
conversion efficiency as a function of donor domain band gap and the CBO for all type II heterostructures.
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all type II heterostructures. The PCE of SSeB and SSA configuration are 12.8%, and 16.2%, respectively. Actually, 
the PCE of heterostructure is dependent on the band gap and CBO, i.e. a suitable band gap of the donor mon-
olayers for maximum light absorption and a lower CBO for reduced energy loss. Notably, the physical and 
photoelectric properties of Janus MX monolayers and based heterostructure can be effectively tuned by external 
factors such as electric field and strain58,59. In a word, Janus MX and based heterostructures possess impressive 
photoelectric conversion capabilities with ultrathin thickness, indicating potential applications in photoelectric 
systems.

Conclusion
In summary, the fundamental characteristics of the Janus MX monolayer and ten vdW heterostructures have 
been systematically studied using first-principles computations. Initially, our findings suggest that the investigated 
monolayers are semiconducting with band gaps ranging from 1.2 eV to 1.7 eV. Bader charge analysis and electro-
static potential distribution revealed inherent electric field in Janus MX monolayers and based heterostructures. 
The heterostructures possess higher light absorption coefficient, intrinsic electric field and type II band align-
ment, which demonstrate that constructing a heterostructure is essential for high photovoltaic performance. 
Our findings assess the stability and excellent properties of Janus MX monolayers and based heterostructures, 
recommend them as promising materials for 2D photoelectric applications.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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