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Comprehending the complex interplay among urban mobility, human behavior, and the
COVID-19 pandemic could deliver vital perspectives to steer forthcoming public health
endeavors. In late 2022, China lifted its "Zero-COVID" policy and rapidly abandoned nearly
all interventions. It provides a unique opportunity to observe spontaneous mobility changes
without government restriction throughout such a pandemic with high infection. Based on
148 million travel data from the public bus, subway, and taxi systems in Shenzhen, China, our
analysis reveals discernible spatial discrepancies within mobility patterns. This phenomenon
can be ascribed to the heterogeneous responses of mobility behavior tailored to specific
purposes and travel modes in reaction to the pandemic. Considering both the physiological
effects of virus infection and subjective willingness to travel, a dynamic model is proposed
and capable of fitting fine-grained urban mobility. The analysis and model can interpret
mobility data and underlying population behavior to inform policymakers when evaluating
public health strategies against future large-scale infectious diseases.
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Introduction

s one of the most infectious pandemics, COVID-19 has

resulted in a devastating toll of over 7 million lives lost

and an estimated $8 trillion in economic damage (Clark et
al,, 2020; Taskinsoy, 2020; Weiss et al., 2020; Zhang et al., 2022).
Research on the COVID-19 pandemic and its impact holds the
potential to offer valuable insights for addressing unforeseen
large-scale, highly infectious diseases in the future (Chen et al,
2022; Menkir et al.,, 2021; Sibley et al., 2020).

Due to rapid urbanization, more than 55% of the global
population resides in urban areas which serve as a hotbed for
infectious diseases due to dense population (United Nations,
2018). It is imminent to study the response and recuperation of
urban mobility during the influence of COVID-19 (Arellana et al.,
2020; Atkinson-Clement and Pigalle, 2021; Gkiotsalitis and Cats,
2021; Levin et al., 2021) to facilitate understanding of the spread
of the pandemics (Chang et al., 2021; Wei et al., 2021). Simul-
taneously, the change in urban mobility profoundly influences
economic dynamics and mental health outcomes, among other
societal aspects (Wang et al., 2021, 2022). Existing research has
primarily investigated how governments proactively implement
mandatory or advisory stay-at-home orders to change people’s
mobility behavior and contain virus transmission (Martinez and
Short, 2021; Shen et al.,, 2020; Tirachini and Cats, 2020; Wang
et al, 2022; Zhang, 2021). However, there is limited knowledge
regarding the spontaneous change in citizens’ mobility behavior
during the COVID-19 pandemic. The spontaneous change con-
sists of individuals’ voluntary adaption of their travel behavior
concerning the infection rate of disease and perceived threats,
without the restriction of government policies (Han et al., 2021).
In the case of COVID-19, the self-driven behavior involves
engaging in home-based care while infected, limiting travel to
essential trips only, avoiding crowded places, shifting on-site
work to remote work to reduce potential exposure to the virus,
etc. (Balmford et al., 2020; Tisdell, 2020). A better understanding
of these spontaneous mobility changes can provide valuable
insights into the necessary mobility behavior of the citizens and in
turn facilitate the design of urban mobility-related policies during
pandemics.

In this paper, we investigate spontaneous mobility changes
without stay-at-home orders throughout a highly infectious
pandemic, from its emergence through large-scale proliferation to
eventual stabilization. The mobility changes are manifested as
fluctuations in the number of individuals traveling, which are
microscopically composed of varying purpose-specific mobility
behavior. We aim to answer the following research questions:

Q1: At the temporal and spatial scale, how does urban mobility
evolve in response to a pandemic’s lifecycle?

Q2: Given distinct regions corresponding to varied functional
zones and data pertaining to various modes of transportation
within a city, what is the underlying mobility behavior, and how
do they react to the pandemic?

Q3: How to establish a dynamic model to deduce the spatio-
temporal mobility changes of the entire city based on the beha-
vior of different travel purposes and modes?

To answer these questions, we utilize origin-destination (OD)
mobility data involving 148 million occurrences before and after
the cancellation of the "Zero-COVID" policy in Shenzhen subway,
bus, and taxi systems, China, as shown in Fig. 1a, b. The OD data
logs the time and quantity of individuals traveling from areas
proximal to the origin to regions near the destination in the urban
public transport system. Such data encapsulates the spatio-
temporal mobility of urban populations, focusing solely on the
volume of individuals moving between two regions, while
avoiding the disclosure of individual-specific information. This
ensures a high degree of privacy preservation.
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The period before and after the cancellation of the "Zero-
COVID" policy provides a unique opportunity to observe the
spontaneous evolution of urban mobility without mobility-
restricting measures, facing the pandemic spreading on a large
scale in a short period. The "Zero-COVID" policy focuses on
promptly identifying and containing localized outbreaks using
advanced technologies such as big data analysis and nucleic
acid screening (China CDC, 2022). Through strict quarantine
measures, identification of infection sources, and high-risk
group identification, China aims to swiftly end outbreaks with
minimal societal and economic impacts. China’s imple-
mentation of the "Zero-COVID" policy has been highly suc-
cessful. Despite its massive population of 1.4 billion people,
the country has reported relatively low numbers of COVID-19
cases and deaths before the cancellation of the "Zero-COVID"
policy. Impressively, China has recorded 1,655,477 cases (less
than 0.2% of the population) and 13,524 deaths (less than
0.1%% of the population) (Burki, 2022). In late 2022, the
Omicron variant of SARS-CoV-2 became predominant
worldwide and it was known for its high transmissibility (basic
reproduction number = 9.5) and penetration rate. Yet, com-
pared to previous variants, it also demonstrated a relatively
lower infection fatality rate (<1%) (Liu et al., 2022). Under
such a circumstance, on Dec. 7, 2022, China lifted the "Zero-
COVID" policy along with the travel restrictions. However,
the Omicron variant showed a high rate of immune escape
from vaccines which merely prevented people from serious
symptoms without delivering comprehensive immunity.
Therefore, the lift of the policy led to a rapid and massive
spread of the Omicron variant of SARS-CoV-2. It is estimated
that within a month, the proportion of infected individuals in
cities sharply escalated from nearly zero to surpassing 70%
(Leung et al., 2023). Besides, Shenzhen is a megacity with a
permanent population exceeding 17 million individuals and a
population density reaching 8,800 individuals per square
kilometer (Shenzhen Government, 2023). The research on
mobility behavior during the pandemic in Shenzhen is
representative and informative.

An analytic framework and a dynamic model are proposed
with the following key designs. In terms of spatial distribution,
mobility in central business districts (CBDs) and their adjacent
areas is significantly impacted. The mobility changes can be
quantitatively represented by a time series and evaluated by
features about the decline and recovery of trips. To explore the
spatial disparities, four mobility patterns are found among the
mobility changes corresponding to various OD pairs through
the K-means+-+ clustering algorithm (answering Q1). We
overlay an urban land use (ULU) map on origins and desti-
nations, thus elucidating the intent behind mobility behavior,
such as commuting, recreation, schooling, and more. The dif-
ferences in mobility changes among subways, buses, and taxis
are also discussed (answering Q2). Inspired by this, we try to
devise a dynamic model of changes in passenger flow, pre-
dicated on the impact of COVID-19 on different mobility
behavior. We model distinct mobility behavior by combining
physical infection and the willingness influence, which subse-
quently deduces the effects of ULU embodying travel inten-
tions. As a result, we can infer the mobility within the
geographic regions housing these lands with different uses
(answering Q3). Our model allows us to not only fit observed
changes in trips but also to conduct detailed analysis at a
granularity of less than 500m. We believe the proposed insight
and model could be leveraged to provide public health officials
with a holistic recommendation as they decide on mobility-
related policies under similar pandemic conditions.
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Fig. 1 Temporal and spatial characteristics of OD mobility data. a Trips in the Shenzhen bus, subway, and taxi systems from December 8, 2022, to

January 6, 2023. China adhered to a rigorous "Zero-COVID" policy and implemented strong non-pharmaceutical measures from the beginning of the

COVID-19 outbreak until early Dec. 2022. As a result, over 99% of the population in China had never been infected by any variant of SARS-CoV-2. Even
though China heavily distributed the COVID-19 vaccine, the vaccine merely prevents people from serious symptoms without comprehensive immunity due
to the fast variability of COVID-19. On December 7, 2022, the "Zero-COVID" policy, along with the travel restrictions, was rescinded. The travel volume
immediately returned to a level approximating normalcy. Thereafter, the spread of SARS-CoV-2 precipitated a substantial decrease in urban mobility. A
progressive recovery would then succeed. To highlight the impact of the pandemic more effectively, we conducted normalization separately for weekdays,
Saturdays, and Sundays, ultimately showcasing the trip rate. b The lines bridging the origin and destination maps symbolize the human movement between
two corresponding regions. Due to the dense nature of OD data, we depict flows exceeding a daily average of 200 for clarity. Three time periods are

highlighted: before the COVID-19 pandemic outbreak, during the peak impact, and during the gradual stabilization period. These periods correspond to

three different levels of mobility.

Results
Spatial distributions of urban mobility level. The spatial dis-
tribution of the decline and recovery in mobility levels can be
approximately observed based on Fig. 2. This observation is made
at the granularity of a 1km x 1km grid level. For subways, buses,
and taxis in a grid, the initial travel volumes for departures and
arrivals are aggregated and compared with the passenger flow
from the pre-pandemic period to assess the level of mobility. It is
observed that the mobility in CBDs was more significantly
impacted by COVID-19 compared to areas farther from the
CBDs.

CBDs are typically characterized by high density, both in terms
of population and infrastructure. This density leads to more

congested public spaces and transportation systems. During the
pandemic, such conditions increased the risk of virus transmis-
sion, leading to more stringent movement restrictions and a
greater reluctance among the public to travel in these areas.
Furthermore, this may be related to the attributes of land use,
which will be discussed in the section “Population behavior
behind mobility patterns”.

Identifying mobility patterns. To investigate mobility changes at
a finer granularity (street level), bus and subway data were pro-
cessed based on station information and passenger flow, while
taxi data were analyzed by urban areas (see Methods for a detailed
description of the data). The OD data derived from the public
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Fig. 2 Spatial distribution and temporal modeling of urban mobility changes across different stages. a The departure and arrival passenger flows for
each region were aggregated and then divided by their pre-pandemic values to ascertain the mobility levels in each area. Notably, Day 15 was observed to
have one of the most significant reductions in passenger flow. Day 7 marked a period of decline, whereas Days 21 and 28 were identified as recovery

phases. Furthermore, a disparity in the impact on mobility levels was observed between the CBD and its adjacent areas compared to regions located further
from the CBD. b The spontaneous mobility changes consist of the reduction, trough, and recovery stages. These three stages are quantitatively measured

and a set of corresponding features are formed, as listed in Table 1.

bus, subway, and taxi systems in Shenzhen include both spatial
and temporal information on urban mobility. In the bus system,
bus routes establish connectivity between two distinct urban
regions corresponding to the origin station and destination sta-
tion, and passenger flow is influenced by the gradual spread of the
epidemic, resulting in temporal variations. This principle is
similarly applicable to subway and taxi systems.

Following the large-scale outbreak of the COVID-19 pandemic
(post-December 7, 2022), the mobility for almost all OD pairs
swiftly plummeted from pre-pandemic levels to a markedly low
volume, eventually showing signs of gradual recovery, as shown
in Fig. 2. This change in trips can be delineated via a temporal
variation curve for each OD pair, as shown in Fig. 3a. We
normalize each time series of OD passenger flow using historical
data (i.e., typical passenger flow levels before November 25, 2022)
and subject the data to preprocessing.

To quantify the initial decline and subsequent recovery in
mobility during the COVID-19 pandemic (Fig. 2), we establish a
set of features to assess how trips evolve, as listed in Table 1. The
concept of resilience is about how the system responds to
disturbances (Qian et al.,, 2022; Schwarz, 2018; Standish et al.,

4

2014; Tabatabaei et al., 2018): does it withstand the shock and
remain unchanged, does it adapt and transform into a new state,
or does it collapse (Forzieri et al., 2022; Kumpfer, 2002; Zhao
et al., 2021). Inspired by this, we concentrate on the resilience of
mobility to the pandemic—a characteristic of mobility decreasing
and rapidly recovering from large-scale infectious diseases.
Features are devised to quantitatively measure the three stages
—reduction, trough, and recovery— capturing the mobility
changes throughout the COVID-19 pandemic.

Once the features of changes in mobility for OD pairs are
extracted, the mobility trends for different modes of transporta-
tion can be uniformly analyzed. Based on the aforementioned
properties, we employ unsupervised machine learning technol-
ogy, i.e. K-means++ clustering algorithm (Arthur and
Vassilvitskii, 2006), to discern the similarities and disparities in
passenger flow among various OD pairs (see Methods for detail).
As depicted in Fig. 3a, the K-means++ algorithm categorizes the
OD trip trends into four distinct patterns.

The OD mobility in Cluster 1 exhibits the most notable decline,
with a total magnitude of impact of -13.47(% - days), as presented
in Table 1. In the initial phase of the COVID-19 pandemic, a
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Fig. 3 Mobility patterns and the underlying population behavior. a This time series chart shows the changes in OD trip rate during the period from

December 8, 2022, to January 6, 2023. The clustering algorithm identifies four distinct groups with different mobility patterns of decline and recovery. The
middle line in each plot represents the average trip rate for each cluster. b Through the spatial attractiveness of ULU, we can infer prominent mobility
behavior under each cluster. The changes in mobility are related to mobility behavior between different origins and destinations. ¢ indicates the total impact

on the overall passenger volumes of subway, bus, and taxi services.

Table 1 Features to assess how mobility evolves over time (see Methods for detailed mathematical formulations) and the
average values corresponding to four clusters derived from the K-means-+-+ algorithm.
State Feature Meaning Average value
Cluster 1 Cluster 2 Cluster 3 Cluster 4
Reduction Declining speed (%/days) The rate of diminishing mobility. —0.0420 —0.0349 —0.0328 —0.0264
Declining amplitude (%) The largest differential of mobility. — 65.7% —51.6% —48.8% —38.2%
Trough Trough duration (days) The duration of lowest mobility period. 14 4 4 6
Recovery Recovery speed (%/days) The rate of recovering mobility. / 0.0261 0.0376 0.0195
Recovery amplitude (%) The highest recovery differential of mobility. / 33.8% 48.8% 27.2%
Total Total impact (% - days) The differential of the overall effect. —13.47 —8.39 —7.26 —5.91

precipitous decrease in passenger flow was observed, with the
average value plummeting to less than 50% by the 12th day.
While the subsequent descent in passenger flow exhibited a
slower pace, a persistently low level or downward trend was
maintained. Certain OD passenger flows reached a standstill till
the conclusion of the statistical period. This suggests a high
degree of travel flexibility within this cluster, or significant
aversion to infection, implying that this demographic endeavors
to avoid travel throughout the pandemic. Furthermore, the
resurgence of travel intent tends to be protracted, with a near-
zero recovery rate in the short term.

Cluster 2 exhibits a pronounced U-shape curve with a
comparable decline rate, as shown in Fig. 3a. The nadir of OD
passenger flow appeared around the 15th day, hovering at
approximately 50%. Thereafter, the travel volume exhibited a
gradual resurgence, culminating in an average travel volume
recovery of 82.2%. The graphical representation illustrated a
significantly slower pace of travel recovery in the pandemic’s later
stages, in contrast to the rapid decline observed during the initial

phases. The mobility behavior characterizing Cluster 2 aligns with
the epidemiological patterns of infection and recovery. During the
initial phase of the COVID-19 pandemic, citizens refrained from
traveling, either due to active infection or as a preventive measure
against contagion. However, as the infection peaked and those
infected began to recover, travel volume followed a trajectory of
gradual recovery. This pattern is representative of the majority of
mobility behavior.

The mobility change curve for Cluster 3 also exhibits a
U-shaped pattern; however, its recovery speed significantly
outpaces that of Cluster 2. Following the onset of the pandemic,
there was a rapid decrease in passenger flow, averaging
approximately a 48.8% reduction. Contrasting with the sluggish
recovery observed in Cluster 2, the resurgence pace in Cluster 3
mirrors the speed of passenger flow decline experienced during
the reduction stage. Consequently, by the conclusion of the
observation period, the OD mobility level essentially reverted to
its pre-epidemic benchmark. In the end, the mobility behavior
corresponding to this cluster rapidly surmounted the impacts of
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the COVID-19 pandemic, facilitating, and even accelerating, the
return to pre-epidemic levels.

The mobility patterns of OD bus stations in Cluster 4 are
minimally impacted by the COVID-19 pandemic, with the total
impact merely a third of that experienced by Cluster 1. The
corresponding curve demonstrated minor fluctuations, with a
peak declining amplitude of 38.2%. Across the tripartite stages of
mobility alteration (reduction, trough, recovery), the pandemic’s
impact on passenger volume was relatively insubstantial. This
suggests that within this cluster, the corresponding origins and
destinations exhibit robust travel demand, complemented by
relatively inflexible mobility behavior.

Population behavior behind mobility patterns. The two crucial
facets of population behavior are where to go and how to get
there. Consequently, we delve into discussions on insights
regarding travel purposes and modes during the processes of
mobility decline and recovery.

Travel purpose. Mobility between two areas is aggregated from
population behavior with various travel purposes. Lands with
specific uses around each origin and destination have the
potential to reveal the land-use characteristics of the places where
passengers most visit (Chang et al., 2021; Sun et al, 2007).
Therefore, the integration of OD data and the ULU map has the
potential to reveal the travel purposes behind OD trips. For
example, if a passenger departs from a station (or pick-up point
of a taxi trip) surrounded by lands with the category of residential
and alights at lands with the category of the company at night
o’clock, it can be inferred that the passenger is most likely
commuting to work. Therefore, the ULU categories clearly indi-
cate people’s travel purposes.

More generally, we establish a ULU feature vector to represent
the probability of departure or arrival at each nearby urban land
category (Xing et al., 2020). We have collected nine common
types of ULU information from Gaode Maps and Baidu Maps,
including the residential, company, commercial service, transport
hub, college, school, hospital, cultural/sport, and park/scenery.
The OD pairs are mapped to OD land pairs according to the
corresponding ULU feature vectors (see Methods for details). We
further delineate the primary ULU visited and the key travel
objectives within each cluster, as presented in Fig. 3b.

Travel behavior to schools is mainly classified within Cluster 1
and Cluster 2. Following COVID-19’s onset, passenger flow
experienced a precipitous decline, with no short-term recovery
trend in sight. Firstly, the health of minors is often perceived as
more vulnerable, prompting parents to exercise added caution in
safeguarding their children from the COVID-19 virus (She et al,,
2020). Parents likely prefer to refrain from sending their children
to school, owing to concerns regarding viral transmission.
Subsequently, as infection rates escalated, schools transitioned
to online or remote learning modalities (Betthduser et al., 2023).
This shift obviated the need for students, teachers, and staff to
commute daily, thereby perpetuating the decrease in passenger
flow. The passenger volume at school-associated stations was
anticipated to remain low until the pandemic stabilizes. As for
colleges, numerous students were sent home ahead of the lifting
of the "Zero-COVID" policy, resulting in a significant decline in
passenger flow.

The majority of trips from residential, company lands to park/
scenery, cultural/sports lands are concentrated within clusters
with a more significant impact on mobility. Analyzing travel
sentiments reveals that these journeys are deemed non-essential,
and the inclination to embark on them significantly diminishes
following the COVID-19 pandemic outbreak (Han et al., 2021).

6

Given the increased risk of COVID-19 infection, older popula-
tions exhibit heightened caution when using buses and visiting
crowded locations, resulting in highly affected resilience. After
contracting COVID-19 (Wang et al., 2022), individuals experi-
ence compromised systemic and pulmonary functions (Mulcahey
et al, 2021), leading to a reluctance to engage in strenuous
physical activity at sports halls for a short duration. Conse-
quently, there was a diminished recovery in passenger flow to
sports halls. Although there is no lockdown ban, citizens avoid
visiting by bus and maintain social distance.

Intriguingly, despite the overarching epidemic conditions,
passenger counts for the transport serving major transport hubs
such as airports, train stations, and ferry terminals exhibit
comparatively minor reductions and rapid recovery, mainly
aligning with the trends of Cluster 3 and Cluster 4. The relative
stability of these numbers can largely be attributed to the inherent
nature of long-distance travel across cities. Unlike short-range
transit, which may be supplanted by walking, cycling, or personal
vehicles, alternatives for long-haul journeys are notably limited,
thereby maintaining a baseline demand for buses servicing these
transport hubs even during the height of the COVID-19 pandemic.

The alterations in mobility patterns concerning residential—
hospital are primarily observed within clusters characterized by a
comparatively modest reduction in mobility. The OD trips
exhibited fluctuation, characterized by a decline and a gradual
recovery within 30 days. In the initial stages, individuals with
chronic conditions are advised to minimize hospital visits to
lower their exposure risk to COVID-19. However, the pandemic
triggered an escalation in healthcare demand, as numerous
individuals sought medical care, testing, and treatment (Birk-
meyer et al., 2020; Peiffer-Smadja et al., 2020). The heightened
need for infectious disease services counterbalanced the reduction
in visits to other outpatient clinics in hospitals, thereby
contributing to the recovery of passenger flow towards hospitals.
Moreover, the surge in hospital visits necessitated that healthcare
workers and other essential personnel continue to commute to
and from hospitals, irrespective of the pandemic situation. Their
unwavering travel patterns help maintain a basic level of
passenger flow of over 40% trip rate.

The behavior disparity between residential —company exhibits
various patterns, with a significant proportion found in various
clusters. Overall, they are relatively less affected, serving as
primary driving factors for urban mobility recovery. It is possibly
related to the various industries of companies. On one hand, the
characteristics of various industries significantly influence the
patterns of public transport use. Employees in industries of
internet technology and electric communication demonstrate
greater adaptability to remote work during the COVID-19
pandemic. Due to the pressing demand for healthcare products,
drugs, and research, stations located near pharmaceutical
companies are expected to experience a faster recovery in
passenger flow. The nature of manufacturing and factory work
typically requires on-site participation, rendering remote work
impractical. On the other hand, income levels within industries
also influence travel patterns. Employees in the internet and
telecommunications industries tend to have higher incomes and
have more flexibility in choosing their transport modes,
potentially opting for private vehicles over public transport
during the COVID-19 pandemic to reduce exposure risks. In
contrast, lower-income employees might be more reliant on
public transportation to commute to their workplaces, maintain-
ing the demand for buses. The income disparity between
industries further contributes to the observed differences in
passenger flow trends during the pandemic.

Travel behavior involving commercial service falls within
Cluster 3 and Cluster 4. The effect on the service industry

| (2024)11:591 https://doi.org/10.1057/541599-024-03068-4



ARTICLE

essentially aligns with the proportion of the population infected
with the virus. Following about three years of "Zero-COVID"
policy, the associated panic has largely dissipated. As people
yearn to return to normalcy and recreational activities, customer
flow at shopping malls stages a swift recovery in later phases. This
observation appears comprehensible, given the fundamental
nature of work activities as a pivotal component of economic
endeavors. With the resumption of work activities, a consequen-
tial surge in demands for commercial activities is anticipated (Ma
et al., 2023).

Overall, during the COVID-19 pandemic, commuting, com-
mercial, and healthcare demand constituted the largest compo-
nents of urban mobility. It is crucial to maintain and promptly
restore the supply of buses among communities, transport hubs,
hospitals, and companies. Integrating ULU data with OD data
enables governments and transport operators to thoroughly
analyze and elucidate shifts in mobility behavior during the
pandemic. This comprehensive approach offers a solid founda-
tion for well-informed policy development and implementation
against unforeseen pandemics with high infection and low case
fatality rates.

Travel mode. The total impact for the overall passenger volumes
of subway, bus, and taxi services are computed, as presented in
Fig. 3c. The data indicates varying degrees of reduction in pas-
senger flow, with subways (—9.42% - days) experiencing the most
significant decline, followed by buses (—8.63% - days), and taxis
(—7.90% - days). This trend can be primarily attributed to the
perceived risk of COVID-19 transmission in different transpor-
tation environments and the adaptive responses of urban popu-
lations to the pandemic.

Subways, typically characterized by high passenger densities
and closed environments, represent the apex of perceived
transmission risk. The significant drop in subway usage can be
attributed to people’s avoidance of crowded spaces and potential
virus hotspots. Furthermore, the role of subways as connectors of
various urban hubs rendered them particularly vulnerable to
reduced usage as individuals sought to minimize travel and
potential exposure to the virus. In contrast, buses, while also
experiencing a notable decline in passenger flow, were marginally
less impacted than subways. This difference might be due to the
varied nature of bus routes, some of which cater to essential travel
less feasible via other means, and the slightly lower passenger
densities compared to subways.

Taxis, offering more individualized and controlled travel
environments, demonstrated the least reduction in passenger
flow. This trend suggests a public preference for modes of
transportation perceived as safer and less conducive to virus
spread. Nonetheless, the overall decline in taxi usage reflects
broader patterns of reduced mobility, driven by lockdown
measures, the shift to remote work, and heightened public health
awareness. Economic factors also played a role, as the financial
impacts of the pandemic might have influenced individuals’
transportation choices, with taxis being a costlier option
compared to public transit. Collectively, these observations
underscore the multifaceted impact of the COVID-19 pandemic
on urban transportation, shaped by an interplay of health,
lifestyle, and economic considerations.

Dynamic model of urban mobility. We develop a dynamic OD
mobility model to quantitatively simulate the fine-grained impact
of the COVID-19 pandemic on OD passenger flow. The mobility
changes can be ascribed to the rate of COVID-19 infection and
the willingness to travel. We employ an epidemic transmission
model, the susceptible-infectious-removed (SIR) model (Cooper

et al,, 2020; Keeling and Eames, 2005), to simulate the rise in
infection cases in the city. In general, people who got afflicted
with COVID-19 would recuperate at home for days, leading to a
plunge in overall city-wide human mobility flow. However, some
patients might choose to crowd into the hospitals which leads to
an unusual increase in travel needs between urban lands.
Therefore, we establish the willingness factors to represent the
emotional effects of the COVID-19 pandemic on various types of
mobility behavior. The disparity in OD passenger flow under high
spatial granularity can be elucidated by the travel purposes and
travel modes (refer to Methods for details).

Specifically, people in the dynamic OD model have three
distinct states: usual (U), infectious (I), and recovered (R). (Fig.
4). In contrast to the classic SIR model, the usual state in the
proposed model refers to passengers who remained uninfected by
the COVID-19 pandemic, with unaffected travel willingness.
Infectious passengers encompass those who have contracted the
COVID-19 virus or have been driven by panic to abstain from
bus travel. Over time, if affected passengers decide to resume
travel, they transition out of the recovered state. The model has
merely four free parameters that scale: (1) transmission rate of the
COVID-19 pandemic, (2) recovery rate of the COVID-19
pandemic, (3) willingness factors for transmission, and (4)
willingness factors for recovery; all four parameters persist as
constants over time. The first two parameters, which are
determined by the infectivity and virulence of the epidemic itself,
remain consistent for all OD pairs. The latter two categories of
parameters are determined by travel purposes, which can be
inferred by the ULU surrounding OD bus stations.

The willingness factors serve as a measure of how much the
panic mentality contributes to the decline and recovery in
mobility. They reflect the degree of anxiety and perceived risk
associated with traveling during the COVID-19 pandemic. For
example, as the number of infectious passengers increases, other
passengers perceive a higher risk of infection when taking the
subway, which leads them to seek alternative means of transport
or avoid traveling altogether. This corresponds to a negative
willingness factor. Conversely, the surge in public health demand
during the COVID-19 pandemic leads to positive willingness
factors associated with medically related travel. The willingness
factors collectively illustrate the various responses of different
travel purposes to the COVID-19 pandemic.

Our model precisely matches the observed trips of OD pairs in
Shenzhen from December 8, 2022, to January 6, 2023, as shown
in Fig. 4. As shown in Supplementary Fig. 1, the average values of
willingness factors correspond to the analysis of mobility patterns
in section “Population behavior behind mobility patterns”. For
example, the value of the willingness factor for recovery
associated with the travel behavior of school-age children exhibits
a significantly negative trend, indicating a slow recovery in their
travel activities. This observation aligns well with the predomi-
nant mobility pattern observed within Cluster 1. The willingness
factors for the recovery of “residential-transport hub” and
“company-transport hub” are the two highest positive values,
indicating that there are fewer viable alternatives for long-
distance travel, and as a result, passenger flow is less affected. The
distinctions between subway, bus, and taxi services can also be
discerned from the willingness factors.

At a micro level, we can forecast the decline and recovery of
mobility between any two stations or taxi-operating regions in
Shenzhen. At a macro level, our model precisely captures the
average mobility changes for the four clusters (Fig. 4). The
dynamic OD model enables even a relatively straightforward UIR
model to accurately fit observed passenger flow, despite mobility
behavior during that period. This model offers valuable insights
into urban mobility during potential future outbreaks of
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Fig. 4 A dynamic OD mobility model is developed to simulate the fine-grain impact of the COVID-19 pandemic on mobility behavior. The model inputs
encompass the pandemic's transmission and recovery rates, as well as people’s willingness factors. Furthermore, the model requires the ULU information
near bus stations and the pre-outbreak historical passenger flow levels. In the model, the passengers have usual (U), infectious (1), and recovered (R)
states. We fit models to all OD pairs in bus, subway, and taxi systems, which shows full model fits of four clusters corresponding to Fig. 3. The blue line
represents the model predictions. As the trips of the OD passenger flow tend to have great variability, we also show the smoothed average (line of a
different color from blue). Shaded regions denote the 2.5th and 97.5th percentiles across stochastic realizations. The green dashed line represents the
predictions without considering willingness factors (In this case, the predictions for all clusters are consistent). We sample 100 parameter sets of

willingness factors and perform stochastic realizations for each set.

infectious diseases with high infection, empowering policymakers
to deduce alterations in urban mobility and population behavior
during the initial stages of an epidemic outbreak.

Discussion

Although COVID-19 has become a familiar presence in our lives,
it continues to pose a significant global threat. As we write this
paper, the virus still claims a life every three minutes (WHO,
2023). The suffering and the painful lessons learned from the
COVID-19 pandemic must not be in vain. The analytical fra-
mework and model proposed in this research contribute to the
long-term management of the COVID-19 pandemic and offer
tools to confront potential future viral epidemics.

Based on 148 million travel records, this paper examines the fine-
grained spatio-temporal characteristics of urban mobility during the
COVID-19 pandemic. It integrates these characteristics with an
urban land use map to elucidate the heterogeneity in the decline and
recovery of mobility. In terms of travel purposes, trips originating
from schools and colleges experienced a sharp decline attributable to
class suspensions and risk aversion to infections. Non-essential
travel, such as visits to museums, sports halls, and parks, saw a
substantial decrease and a gradual recovery. In contrast, travel
associated with commuting, commercial services, and healthcare
exhibited relatively modest declines and a quicker rebound.
Regarding transportation modes, the most affected to least affected
were subway, bus, and taxi. Subsequently, the UIR model with
willingness factors is built, which comprehensively captures the

8

influence of COVID-19 on travel willingness. In contrast to previous
research that primarily focused on macro-level mobility analysis, we
propose a set of indicators to measure the temporal variations in
urban mobility and uncover the heterogeneity of mobility changes
through clustering. There were rare urban mobility models at the
block level encompassing various modes of transportation.

Our dataset has limitations as it does not encompass all modes
of urban mobility. The model is also minimalist, neglecting
regional differences in epidemic spread. Nevertheless, our find-
ings are valuable for revealing spatial differences in the decline
and recovery of travel. The proposed analytical framework and
dynamic model are adaptable and extensible, which can be
applied to different pandemics of other cities or other travel
modes, capturing detailed aspects of real-world urban mobility.

This paper offers potential implications for future application
and research aimed at formulating more targeted and effective
public health policies and strategies. In the context of evaluating
public health policies, our results can guide policymakers in
assessing the opportunity cost of urban mobility limitations
during large-scale pandemic outbreaks. The dynamic OD urban
mobility model provides a benchmark for mobility changes
without mobility-restricting intervention, enabling the precise
evaluation of the impacts on the transmission rate and economic
productivity. Additionally, in the realm of policy formulation,
policy decisions can influence mobility behavior by altering travel
willingness and emotions associated with different POI types,
significantly affecting the outcome of the epidemic infection.
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Improved paid leave policy or income support can reduce
mobility for essential staff during illness. Strengthening hygiene
and disinfection, maintaining proper ventilation, and increasing
routes between origins and destinations of high travel demand
contribute to enhanced passenger safety. Lastly, in terms of future
academic research, fusing large language models with computa-
tional, interactive agents seems to be a path to realistic simula-
tions of human behavior (Xu et al, 2023). Based on emerging
urban sensing technologies (e.g., drones (Wang et al., 2022) and
crowdsensing (Chen et al., 2019; Guo et al,, 2021; Xia et al., 2023),
diverse and heterogeneous human behavioral data are con-
tinuously mined. Integrating travel behavior and large models to
construct urban individual profiles for simulating travel behaviors
appears to be a promising direction. Additionally, we will con-
tinue to investigate the changes and resilience of urban elements
when faced with restricted urban mobility, including variations in
air pollution (Chen et al., 2020), unmanned delivery (Chen et al.,
2022), and emergency communication (Ren et al., 2023).

Methods

Datasets

Origin-destination data of urban mobility. Thanks to the extensive
deployment of mobile devices (Chen et al., 2020), the travel data
are collected by a public transportation service company in
Shenzhen. The original data, gathered by 663 bus routes,
16 subway routes, and 17,826 taxis during operation, total com-
prises approximately 148 million trips. Through advanced data
collection (Li et al., 2022) and processing techniques (Chen et al.,
2018), aggregated OD data can be obtained. The data collection
period for bus-related information spans from October 15, 2022,
to January 6, 2023, while that for subway and taxi data extends
from November 1, 2022, to January 6, 2023. The OD data for
buses has a shape of (3010, 3010, 98), where the first and second
dimensions correspond to 3010 bus stations representing origins
and destinations, respectively, and the third dimension represents
dates. Similarly, the OD data for subways has a shape of (240,
240, 67) with a similar interpretation. The original data for taxis
consists of individual trip records, including vehicle ID, pick-up
time, drop-off time, pick-up latitude and longitude, and drop-off
latitude and longitude, among other details. Based on the urban
land use (ULU) map in Shenzhen (Fig. 5a), which can be divided
into 11362 regions (Gong et al., 2020), we perform individual
matching of each order’s latitude and longitude to the corre-
sponding urban region or the nearest urban region based on
proximity to the region’s boundaries. The taxi OD data has been
organized into a matrix of shapes (11362, 11362, 67). Among
them, we specifically focused on the data of 56 million urban
mobility records spanning from December 8, 2022, to January 6,
2023. The data preceding December 7, 2022, are utilized to cal-
culate the baseline level of mobility and assist in obtaining the
spatial attractiveness of ULU.

This dataset, capturing changes in passenger flow before and
after China’s cancellation of the "Zero-COVID" policy, is distinct
from other datasets. China adhered to the "Zero-COVID" policy
from 2020 to 2022, with over 99% of Chinese residents never
having been infected with COVID-19. After the policy’s
cancellation on December 7, 2022, Shenzhen experienced the
entire process of large-scale COVID-19 spread without mobility-
restricting intervention. As of July 23rd, 2023, China has
implemented universal and free COVID-19 vaccination for its
population. The reported vaccination rates are as follows (Xinhua,
2022): a cumulative coverage rate of 92.1% for the first dose, a
completion rate of 89.7%, and an enhanced immunization rate of
71.7%. Among individuals aged 60 and above, the rates are 89.6%
for at least one dose, 84.7% for completion, and 67.3% for

enhanced immunization. The widespread administration of
vaccines has significantly reduced the mortality rate, facilitating
recovery from COVID-19. However, the transmissibility of
SARS-CoV-2 remains high. This data offers insights into the
effects of highly infectious and low-toxicity viruses on social
mobility and public transport use under natural transmission
conditions in the city. This information provides a baseline for
assessing the potential impact of future infectious diseases on
urban mobility in the absence of government intervention.

This dataset encompasses the entire process of trip changes,
from the initial stage to a sharp decline, and ultimately to a
gradual recovery during large-scale infectious disease outbreaks in
cities. From November 1, 2022, to November 25, 2022, Shenzhen
experienced fewer than 50 confirmed cases per day, and the daily
lives of citizens remained largely unaffected (Shenzhen
Government, 2022). The data from this period can be considered
the baseline passenger volume for Shenzhen’s bus system. As the
number of confirmed cases progressively increased, the govern-
ment implemented stringent lockdown measures from November
25, 2022, to December 7, 2022, resulting in a substantial decrease
in passenger flow. As of December 7, 2022, the cumulative
number of confirmed cases constituted less than 0.1% of the total
population. The official outbreak of the COVID-19 pandemic
transpired after the cancellation of the "Zero-COVID" policy. The
Omicron variant of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spread rapidly (Leung et al,
2023), which is evident in the drastic reduction of passenger
flow within the public transport system. Subsequently, as a
majority of urban residents became infected and recovered, the
public transport passenger flow gradually rebounded, as depicted
in Fig. 1.

Assuming the passenger flow from origin i to destination j on
day t is denoted as f;;, the entire dataset can be denoted as

f”f’t i=12,... Myj=1.2,... Myt=102,...T @

where M represents the sum of the number of bus stations,
subway stations, and the total number of taxi-operating urban
regions. T is the number of days.

Point of interest data and urban land use data. As online social
media and mobile communication continue to flourish, location-
based service (LBS) systems such as Google Places, Gaode Maps
(China Satellite Maps), and Facebook are gaining popularity
across various sectors (Han et al., 2021; Xing et al., 2020). These
LBS systems enable users to search for points of interest (POIs) to
access better services and share experiences from places they have
visited (Chang et al., 2021). Generally, a POI is a specific location
that individuals may find useful or intriguing. The term is com-
monly used to refer to commercial services, schools, subway
stations, or other categories found in digital maps (Wang et al,,
2019; Zhu et al., 2020).

A detailed land use map of Chinese cities can be derived by
combining POI data with 10-meter satellite imagery, Open-
StreetMap, nighttime lights, and Tencent social big data (Gong
et al., 2020). This map serves as a valuable resource for inferring
travel intentions. As the data is from 2018, we complement the
newly developed land use attributes based on the latest available
POI data. The data sources include Gaode Maps and Baidu Maps,
which are leading providers of digital map content, navigation,
and location service solutions in China. Important urban land use
categories for travel are selected, including residential, company,
commercial service, transport hub, college, school, hospital,
cultural/sport, and park/scenery.

| (2024)11:591| https://doi.org/10.1057/s41599-024-03068-4 9



ARTICLE

a

= Residential ) Hospital 3 Transport Hub
> Commercial Service 3 Cultural / Sport ) College

= Company ) Park/Scenery () School

(\\ ,II

e
o

Fig. 5 Urban land use map and how to formulate land use feature vector. a This map shows urban land use categories in Shenzhen. b This figure

illustrates the process of obtaining the urban land use feature vector.

OD data preprocessing. For each OD pair (, ) in bus, subway,
and taxi systems, the time series of mobility can be represented as:

fij = [fi,j,l»fi,j,zv "‘Vfi.j,TL (i,j=12,...,M) ()

Since the passenger flow at a single OD pair exhibits randomness,
f;; experiences significant fluctuations over time, as shown in
Supplementary Fig. 2. To better illustrate the impact of COVID-
19 on public transport, we apply Kalman filtering to smooth
the data.

Kalman filtering is a recursive algorithm utilized for estimating
the state of a dynamic system by combining noisy measurements
with a mathematical model of the system (Chui et al., 2017).
When applied to noisy time series data, the Kalman filter can
provide a smoothed version of the data by recursively estimating
the underlying state of the system that generated the data. The
filter accounts for uncertainties in both the measurements and the
system’s model, rendering it particularly effective at reducing
noise while preserving the true signal. Upon applying Kalman
filtering, the resulting sequence for the OD station pair (i,j) is

10

denoted as:
f';; = Kalman Filtering(f; ;) (3)

The mobility between different OD pairs exhibits significant
variation, with a maximum difference spanning several orders of
magnitude. To uncover the general patterns impact of large-scale
infectious diseases on passenger flow, it is essential to perform
normalization on the time series f'; j- Specifically, for any OD pair
(i,j), the passenger flow on December 8, 2022 is considered a
normal level unaffected by the epidemic. The normalized time
series is calculated by:

f/i,j,z f/i,j,T
f/i,j,l ’ ,f/ij,l

f//“= 17 (4)

Identifying mobility patterns via clustering algorithm

Measuring of mobility changes. The features of changes in
mobility are developed to facilitate description and subsequent
clustering analysis. Drawing inspiration from the resilience in the
fields of biology and engineering (Schwarz, 2018; Standish et al.,
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2014; Tabatabaei et al., 2018), we develop a set of features to
comprehensively quantify the decline and recovery patterns of
travel before, during, and after a large-scale infectious disease
outbreak. These features can characterize the temporal changes in
the response of mobility behavior to the pandemic, which reflects
the interplay between human behavior, public policy, and the
built environment, and provides insights into the dynamics of
urban mobility under extraordinary circumstances.

Firstly, for any OD time series f’, j» we can identify several
basic features, including the maximum value R, before the
passenger flow decreases, the minimum value Rpottom Of passenger
flow, the final passenger flow level R.,4, and their corresponding
time moments fo, t1, ,, t3. The definition and significance of the
features are as follows.

Declining speed I': The speed at which trips decrease serves as
a measure of how quickly urban populations adapt their mobility
behavior in response to public health crises. It is calculated by:

[ = Rbottom - Rtop (5)
t =1t

Declining amplitude A: The maximum amplitude of the
decrease in trips directly mirrors the influence of the epidemic on
mobility behavior.

A= Rbottom - Rtop (6)

Trough duration IT: The third indicator of mobility changes
we define pertains to the trough duration of mobility. This
indicator captures the persistence of the reduced trips during the
COVID-19 pandemic, reflecting the extent to which the usual
travels are disrupted.

O=t-t )

Recovery speed ©: When infected individuals gradually
recover and the overall panic levels subside, this metric captures
the speed at which urban mobility bounces back to normalcy. The
determination of the indicator is achieved through:

R._4—R
0= end bottom (8)
t3 - t2

Recovery amplitude Y: The amplitude of mobility recovery
highlights the degree to which trips rebound after the initial
impact of the pandemic. As infected citizens gradually recover
and no longer reject traveling, this indicator provides insights into
the interplay between public health measures, human behavior,
and the ability of societies to regain their normal functioning after
experiencing a large-scale infectious disease outbreak.

Y= Rend - Rbottom (9)

Total impact A: We finally introduce a comprehensive metric
that captures the decline and recovery process of the pandemic’s
impact on mobility. This total impact indicator effectively
represents the degree to which the pandemic affects mobility,
calculated as the area between the curve and the usual level of
trips using the formula:

13
A= /t (R(t) — Ryop)dt (10)
A lower value indicates a more substantial influence of the
epidemic on mobility.

Therefore, we extract features of mobility change from each

OD array (4, f):

/! _
£ = xi; = [T, Ay Ty, i Al (11

K-means++ clustering. In order to identify change patterns of
OD mobility during the pandemic, we perform the K-means++
clustering algorithm on the OD dataset. K-means++- clustering is

0,

1

an unsupervised machine learning algorithm used for partitioning
a given dataset into a specified number (K) of clusters.

K-means++ clustering aims to minimize the within-cluster
sum of squared (WCSS) distances from the data points to their
respective cluster centroids by iteratively updating the centroids
and assigning the data points. Specifically, the input of the K-
means++ clustering algorithm is

X = {xi }
V) ij=12,..M

where each OD time series is represented by the features.

The algorithm first needs to initialize the cluster center. A
centroid ¢; is randomly chosen from X. For each x;;€X,
compute the squared distance to its nearest centroid:

(12)

2

) (13)

X
! 2

i %

D(x;;)* = min ’
( 1’1) cPeC

where C = {cp} . represents the set of centroids chosen so
p=1, k=1

far. Then, the next centroid ¢, is determined from the data points
with probability proportional to D(x;)*:

¢, = argmax D(xi’j)z
L = . A
X Zx,JEXD(Xi,j)Z

ij

(14)

Repeat the two steps until we have taken K centers altogether.

After selecting the K initial centroids, the algorithm proceeds
with the standard iterative updates of centroids. Step 1 is
assigning x;; to the closest centroid using (13). Suppose that at
iteration #, the dataset is divided into K clusters:

Xy = {Xw‘"

In step 2, calculate new centroid positions for each cluster by
minimizing the WCSS distance:

2

(n)
) :D(Xt])z} 3(p: 1727"'5K) (15)

(n)
Xij =

"D = arg min

» B xui{pﬂ (16)
The two steps are repeated until convergence is reached, i.e.,
when the assignment of samples to clusters no longer changes.

The elbow method is utilized to determine the optimal number
of clusters, denoted as K, in K-means clustering (Bholowalia and
Kumar, 2014). The elbow method involves plotting the variance
explained or the sum of squared distances (SSE) of the data points
to their cluster centroids against different values of K. The elbow
method suggests selecting the value of K at the “elbow" or bend in
the SSE plot (Supplementary Fig. 3a). This point represents the
optimal trade-off between minimizing SSE and avoiding excessive
complexity in the clustering model.

After establishing a preliminary range for K using the elbow
method, Silhouette Analysis is employed to finalize the value of K
(Lleti et al., 2004). For each K-value, silhouette coefficient is
computed for each data point, which measures the similarity
between each data point and the cluster to which it is assigned,
with values ranging from -1 to 1. Subsequently, the average
silhouette coefficient is calculated for all data points at each K-
value. This average value serves as an indicator of cluster cohesion
and separation, with higher values indicating better clustering
results. As depicted in Supplementary Fig. 3b, the analysis
determined that the optimal value for K=4.

Finally, we derive K clusters of OD mobility, as shown in Fig.
3a. The labels for each OD pair have been obtained. Furthermore,
the OD pairs can be associated with spatial information, which
leads to subsequent analysis.

| (2024)11:591| https://doi.org/10.1057/s41599-024-03068-4 11



ARTICLE

Spatial attractiveness of urban land use. Our goal is to illumi-
nate the variation in mobility for OD pairs during a widespread
infectious disease outbreak. Solely analyzing the geographical
locations of the starting and ending stations of travel, however, is
inadequate. As a result, we endeavor to extract travel purposes by
integrating the urban land use map.

Lands in close proximity to bus stations, subway stations, and
taxi pick-up and drop-off points provide insight into passengers’
potential travel motivation. For example, when a bus station is
located in a residual land, there is a high probability that
passengers disembarking at this station intend to commute to
their residences. Accordingly, a ULU feature vector is established
for each origin and destination, which is represented as:

(17)

where r=1,2,..., R represents urban land use categories. s, is
defined as the spatial attractiveness of land use category r to the
citizens boarding or disembarking from the station or urban
regions i(i=1,2,...,M).

For the bus stations and subway stations, a common method
(Xing et al,, 2020) is to use the number of lands to determine s; ,:

zZ.:

Lr

;i = [Si,la oy Sips e Si,R}

s =
"’ Zf:l Ziy
where z;, denotes the number of lands belonging to category r
within a certain distance range of the stations. Taking into
account the varying importance of stations, the distance range for
bus stations is set at 200 meters, while the distance range for
subway stations is set at 500 meters, as presented in Fig. 5b.

As mentioned in “Origin-destination data of urban mobility”,
the taxi OD data represents the mobility between 11,362 distinct
regions within the city. These urban regions have been delineated
with nearly homogeneous land use attributes. Therefore, s;, can
be derived directly:

(18)

=1 (19)

ir

Sids s Sig—1ySirr1r s Sig = 0 (20)

For an urban region with the land use attribute r, the s;, value
corresponds to 1, while the remaining values of the land feature
vector are set to 0.

As each urban land use category can be mapped to an activity,
identifying the most probable land use category corresponds to
determining the most likely activity to be undertaken. To further
analyze the mobility behavior from the origin i to the destination
j» we compute the travel transition matrix:

Siasin SinSi2 SiaSiR
Sisin o SigSi2 Si2SiR

S,»A’j =s; *§; = (21)
SiRSj1 SiRSj2 SiRSjR

The elements in the matrix S;; represent the likelihood of
passengers transitioning from a land use category at the origin
station (region) to a ULU category at the destination station
(region). For instance, s;;s;, in the bus system corresponds to
passengers departing from land use category 1 near bus station i
and arriving at land use category 2 near bus station j. From this,
we can infer the passengers’ mobility behavior and purposes. The
travel transition matrix for the subway and taxi follows the same
principle.

We combine the K clusters of change patterns with the spatial
attractiveness of urban land use. For each cluster, we sum the
corresponding S;; values to obtain a total transition matrix.

12

Considering daily frequency changes in passenger flow, the
passenger flow from station i to station j is approximately equal to
the passenger flow from station j to station i on a daily timescale.
Based on the symmetry of OD passenger flow, we add the lower
and upper triangular parts of the total transition matrix. Finally,
we identify the top values in the matrix that correspond to the
primary OD land pairs and their corresponding proportions of
mobility behavior within each cluster.

Dynamic OD mobility model. We develop a dynamic model to
capture the fine-grained urban mobility changes. The decline in
trips can be attributed to two factors: physiological infection with
viruses and emotional influence. Inspired by the classic epidemic
transmission model SIR (Cooper et al., 2020; Keeling and Eames,
2005), an OD passenger flow model is proposed, comprehensively
considering the spread of the COVID-19 pandemic and the
willingness to travel via public transportation, as shown in Fig. 4.

The model incorporates pandemic transmission and recovery
rates, willingness factors of mobility behavior, urban land use
map, and pre-pandemic OD passenger flow as input. It outputs
the changes in trips for every OD pair during the COVID-19
pandemic with high spatial resolution.

Physiological infection module. Prior to the outbreak of large-scale
infectious diseases, we assume that the daily number of popula-
tion from station i to station j is W;;. Following the epidemic
outbreak, all passengers can be categorized into three states: usual
(U), infected (I) by the virus or panic, and recovered (R). The
relationship among passengers associated with the three states is
shown in the subsequent (22).

Uij.,t + Ii,j,t + Ri,j,t = Wi,j (22)

Specifically, initially uninfected people may become infected with
the virus through contact with infected individuals. Eventually,
the infected people transition to a recovery state. For each citizen,

the probability state transition process of physiological infection
is as follows:

U, I

P(U—>I|t—>t+1):_m @3)
W,

P(I > Rlt > t+1) = =y, (24)

where Uiy, Iij» Rij; denote passenger numbers of usual state,
infected state, and recovery state, respectively on the t day. § and
y represent the transmission and recovery rates, respectively,
which are inherent attributes of the pandemic spread.

Willingness influence module. During the pandemic, urban resi-
dents tend to reduce their travel activities to mitigate the risk of
infection. This tendency is particularly pronounced when there is
a higher reported or perceived number of infections and potential
cases through news outlets, social media, or personal observa-
tions, leading to increased levels of anxiety. During the recovery
phase, mobility gradually rebounds over time, and confidence in
travel is steadily restored. Furthermore, the decline and recovery
of different travel behaviors exhibit heterogeneity. From the
clustering results in the section “Population behavior behind
mobility patterns”, it is evident that the decrease and recovery of
trips are associated with travel purposes.

Willingness factors are proposed to model the willingness
influence. It is assumed that the willingness factors of travel from
ULU type r to ULU type v follow normal distributions:

Ay ™ N(.“r,w Gf,v) (25)
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where r,v=1,2,,...,R. p,,, 02, and ¢/, 07 are distribution

(26)

parameters (mean and variance) of willingness factors for
transmission and recovery, respectively.

In terms of travel mode choices, individuals tend to opt for
modes associated with lower exposure to viral risks. Conse-
quently, the willingness factor for transmission and recovery in
the context of subway, bus, and taxi are denoted as
bt g(q=1,2,3). 3 o

The probability state transition process of emotional influence
on travel is as follows:

_ (‘xi,j + Hq)Ui.jﬁinAj,r

P(U— It > t+1)= -

(27)
ij

P(I — Rt — t+1) = —(¢; +/4’q)tIiJ}t (28)

Put it together. For an OD pair (i,j) of transport mode g, the
travel transition matrix S;; decomposes travel for a given OD pair
into combinations of various trip purposes. Consequently, it
enables the synthesis of willingness factors, thereby generating the
willingness factor for that specific OD pair. The willingness fac-
tors can be estimated by linearly stacking the sampled willingness
factors for travel purposes:

R R
aij = Zl Zl (xr‘vsiﬁsj‘v (29)
r=1v=
/ R
aij= 22 rvSirSiy (30)
J r=lv=1 »

The mobility change for OD pair (i,j) can be determined
through the following equation.

(B + i+ p) Uil

U =U,.  — (31)
ij,t+1 ij,t Wi,j
B+ a;;+p )Uij,zli,j,z , ,
Lijopr =1, + le : —(y+ot+u 0,
(32)
Rijipi =Ry, +(y+ “;’,jt + #/qt)li,];t (33)

The time series of the passenger flow from origin i to destination j
is:

fi.j = [Wi,j - Ii.j,17 Wi,j
W;; is determined by the trips of OD (i, j) prior to the pandemic
outbreak. a;; and «;; denote willingness factors for transmission

and recovery, respectively. These willingness factors depend on
the ULU feature arrays of the origin i and the destination j,
accounting for the diversity of OD passenger flow. The initial
values of Uj s, I R+ are determined by the initial infection rate
in the city.

By obtaining the changes in passenger flow at all OD pairs, we
can also derive the overall change in trips under the impact of the
pandemic. This model characterizes the response of an entire
city’s public transport system to the pandemic and the shifts in
mobility behavior.

—Lijor s Wi = Iijrl (34)

P20

Model validation. The alterations in actual OD passenger flow
within the Shenzhen bus, subway, and taxi systems during the
COVID-19 pandemic serve to verify the effectiveness of the
dynamic model. Research (Cai et al., 2022; Leung et al., 2023; Ren
et al, 2022; Ribeiro Xavier et al, 2022) indicates that the

transmission rate of SARS-CoV-2 ranges from approximately 0.2
to 0.4, while the recovery rate spans from approximately 0.05 to
0.15. These values are determined by the inherent transmission
characteristics of COVID-19. This paper primarily concentrates
on modeling the variations in mobility for different OD stations.
Without loss of generality, we employ 8 =0.3,y=0.1.

When calculating the willingness factor for recovery, we
consider only the main ULU pairs depicted in Fig 3b.
Consequently, the parameter estimation target constitutes the
mean values and standard deviations of willingness factors for
OD ULU pairs. Based on the maximum likelihood estimation
(MLE) method, we find the optimal parameter values of the
willingness factor distributions, enabling the predictive changes in
the mobility model to approximate the actual trend. Specifically,
we employed the grid search method to identify the values of
a,,, o, that correspond to the minimum root mean squared
error (RMSE) between the true trips and predicted trips. These
values of a, ,,, &, , are treated as sampling data for the distribution
of willingness factors to be estimated. Subsequently, we
determined the parameter values that maximize the probability
of sampling data occurrence, resulting in the optimal mean values
and standard deviations of the empirical factors.

The optimization results show that the values of willingness
factors for transmission are similar for all OD station pairs,
whereas the willingness factors for recovery primarily contribute
to the diversity observed in mobility behavior, as displayed in
Supplementary Fig. 1. Under the optimal parameters, we sample
and derive 100 sets of dynamic model parameters. The predictive
trips in Shenzhen during the COVID-19 pandemic are shown in
Fig. 4.

Besides, an analysis is conducted to evaluate the robustness of
the UIR model. The values of 8 and y vary by approximately +
30% and observe the model performance while keeping other
parameters constant. This analysis focused on calculating the
average root mean square error (RMSE) between the actual and
predicted values of passenger flow across various OD pairs in the
city. The RMSE for each trip series provided a daily prediction
error. As shown in Supplementary Fig. 4, our findings indicate
that for every 1% deviation in f3, the prediction error increased by
approximately 0.61%, and for every 1% deviation in y, the
prediction error increased by around 0.77%. These results suggest
a certain level of sensitivity of the model to these parameters.

Data availability

Urban land use categories are available at https://data-starcloud.
pclac.cn/zh. Points of interest (POIs) data can be openly accessed
via the APIs of Gaode Maps (https://Ibs.amap.com/) and Baidu
Maps (https://Ibsyun.baidu.com/). Raw origin-destination (OD)
data of buses and taxis are available with the permission of
Shenzhen Bus Group Co., Ltd. (https://en.szbus.com.cn/) upon
request for academic cooperation. The de-identified data are
available at https://github.com/trainandtest666/OD-Data-in-
Public-Transport-System.git.

Received: 30 August 2023; Accepted: 17 April 2024;
Published online: 08 May 2024

References

Arellana J, Mérquez L, Cantillo V (2020) COVID-19 outbreak in Colombia: an
analysis of its impacts on transport systems. ] Adv Transp 2020:1-16. https://
doi.org/10.1155/2020/8867316

Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding.
Soda 7:1027-1035

| (2024)11:591| https://doi.org/10.1057/s41599-024-03068-4 13


https://data-starcloud.pcl.ac.cn/zh
https://data-starcloud.pcl.ac.cn/zh
https://lbs.amap.com/
https://lbsyun.baidu.com/
https://en.szbus.com.cn/
https://github.com/trainandtest666/OD-Data-in-Public-Transport-System.git
https://github.com/trainandtest666/OD-Data-in-Public-Transport-System.git
https://doi.org/10.1155/2020/8867316
https://doi.org/10.1155/2020/8867316

ARTICLE

Atkinson-Clement C, Pigalle E (2021) What can we learn from COVID-19 pan-
demic’s impact on human behaviour? The case of France’s lockdown. Humanit
Soc Sci Commun 8(1):81. https://doi.org/10.1057/s41599-021-00749-2

Balmford B, Annan JD, Hargreaves JC, Alto¢ M, Bateman IJ (2020) Cross-country
comparisons of COVID-19: policy, politics and the price of life. Environ
Resour Econ 76:525-551. https://doi.org/10.1007/s10640-020-00466-5

Betthauser BA, Bach-Mortensen AM, Engzell P (2023) A systematic review and
meta-analysis of the evidence on learning during the COVID-19 pandemic.
Nat Hum Behav 7:375-385. https://doi.org/10.1038/s41562-022-01506-4

Bholowalia P, Kumar A (2014) EBK-means: a clustering technique based on elbow
method and k-means in WSN. Int ] Comput Appl 105(9):17-24

Birkmeyer JD, Barnato A, Birkmeyer N, Bessler R, Skinner J (2020) The impact of
the COVID-19 pandemic on hospital admissions in the United States: study
examines trends in US hospital admissions during the COVID-19 pandemic.
Health Affairs 39(11):2010-2017. https://doi.org/10.1377/hlthaff.2020.00980

Burki T (2022) Dynamic zero COVID policy in the fight against COVID. Lancet
Respir Med 10(6):e58-e59. https://doi.org/10.1016/S2213-2600(22)00142-4

Cai ], Deng X, Yang J et al. (2022) Modeling transmission of SARS-CoV-2 omicron
in China. Nat Med 28(7):1468-1475. https://doi.org/10.1038/s41591-022-
01855-7

Chang S, Pierson E, Koh P, Gerardin J, Redbird B, Grusky D, Leskovec ] (2021)
Mobility network models of COVID-19 explain inequities and inform
reopening. Nature 589(7840):82-87. https://doi.org/10.1038/s41586-020-2923-3

Chen L, Xu F, Han Z, Tang K, Hui P, Evans J, Li Y (2022) Strategic COVID-19
vaccine distribution can simultaneously elevate social utility and equity. Nat
Hum Behav 6:1503-1514. https://doi.org/10.1038/s41562-022-01429-0

Chen X, Wang H, Li Z et al. (2022) DeliverSense: efficient delivery drone scheduling
for crowdsensing with deep reinforcement learning. In: UbiComp/ISWC’22
Adjunct, Cambridge, United Kingdom, 11-15 September, pp. 403-408

Chen X, Xu S, Fu H, Joe-Wong C, Zhang L, Noh H.Y., Zhang P (2019) Asc:
Actuation system for city-wide crowdsensing with ride-sharing vehicular
platform. In: Proceedings of the Fourth Workshop on International Science
of Smart City Operations and Platforms Engineering, Montreal, Quebec,
Canada, 15 April, pp. 19-24

Chen X, Xu S, Han ] et al. (2020) Pas: prediction-based actuation system for city-
scale ridesharing vehicular mobile crowdsensing. IEEE Internet Things J
7(5):3719-3734. https://doi.org/10.1109/JI0T.2020.2968375

Chen X, Xu S, Liu X, Xu X, Noh HY, Zhang L, Zhang P (2020) Adaptive hybrid
model-enabled sensing system (HMSS) for mobile fine-grained air pollution
estimation. IEEE Trans Mobile Comput 21(6):1927-1944. https://doi.org/10.
1109/TMC.2020.3034270

Chen X, Xu X, Liu X, Pan S, He J, Noh HY, Zhang L, Zhang P (2018) Pga: Physics
guided and adaptive approach for mobile fine-grained air pollution estima-
tion. In: Proceedings of the 2018 ACM International Joint Conference and
2018 International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers, Singapore, 08-12 October, pp. 1321-1330

China Center for Disease Control and Prevention (2022) China Daily Perspectives:
the dynamic COVID-zero strategy in China. https://doi.org/10.46234/
ccdew2022.015. Accessed 24 May, 2023

Chui CK, Chen G et al. (2017) Kalman filtering. Springer

Clark A, Jit M, Warren-Gash C et al. (2020) Global, regional, and national esti-
mates of the population at increased risk of severe covid-19 due to underlying
health conditions in 2020: a modelling study. Lancet Glob Health
8(8):e1003-e1017. https://doi.org/10.1016/52214-109X(20)30264-3

Cooper I, Mondal A, Antonopoulos CG (2020) A SIR model assumption for the
spread of COVID-19 in different communities. Chaos Soliton Fract
139:110057. https://doi.org/10.1016/j.chaos.2020.110057

Forzieri G, Dakos V, McDowell NG, Ramdane A, Cescatti A (2022) Emerging
signals of declining forest resilience under climate change. Nature
608(7923):534-539. https://doi.org/10.1038/s41586-022-04959-9

Gkiotsalitis K, Cats O (2021) Public transport planning adaption under the COVID-
19 pandemic crisis: literature review of research needs and directions. Transp
Rev 41:374-392. https://doi.org/10.1080/01441647.2020.1857886

Gong P, Chen B, Li X et al. (2020) Mapping essential urban land use categories in
China (EULUC-China): preliminary results for 2018. Sci Bull 65(3):182-187.
https://doi.org/10.1016/j.scib.2019.12.007

Guo B, Wang S, Ding Y, Wang G, He S, Zhang D, He T (2021) Concurrent order
dispatch for instant delivery with time-constrained actor-critic reinforcement
learning. In: 2021 IEEE Real-Time Systems Symposium (RTSS), pp. 176-187

Han Z, Fu H, Xu F, Tu Z, Yu Y, Hui P, Li Y (2021) Who will survive and revive
undergoing the epidemic: Analyses about POI visit behavior in Wuhan via
check-in records. In: Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, NY, USA, vol. 5, pp. 1-20

Keeling MJ, Eames KT (2005) Networks and epidemic models. ] R Soc Interface
2(4):295-307. https://doi.org/10.1098/rsif.2005.0051

Kumpfer KL (2002) Factors and processes contributing to resilience: the resilience
framework. Resilience and development: positive life adaptations. 179-224.
https://doi.org/10.1007/0-306-47167-1_9

Leung K, Lau EH, Wong CK, Leung GM, Wu JT (2023) Estimating the trans-
mission dynamics of SARS-CoV-2 Omicron BF. 7 in Beijing after the
adjustment of zero-COVID policy in November-December 2022. Nat Med
29:579-582. https://doi.org/10.1038/s41591-023-02212-y

Levin R, Chao DL, Wenger EA, Proctor JL (2021) Insights into population behavior
during the COVID-19 pandemic from cell phone mobility data and manifold
learning. Nat Comput Sci 1(9):588-597. https://doi.org/10.1038/s43588-021-
00125-9

Li Z, Man F, Chen X, Zhao B, Wu C, Chen X (2022) TRACT: Towards large-scale
crowdsensing with high-efficiency swarm path planning. In: UbiComp/
ISWC22 Adjunct, Cambridge, United Kingdom, 11-15 Sept, pp. 409-414.
https://doi.org/10.1145/2994551.2996714

Liu Y, Yu Y, Zhao Y, He D (2022) Reduction in the infection fatality rate of
Omicron variant compared with previous variants in South Africa. Int |
Infect Dis 120:146-149. https://doi.org/10.1016/j.ijid.2022.04.029

Llet1 R, Ortiz MC, Sarabia LA, Sanchez MS (2004) Selecting variables for k-means
cluster analysis by using a genetic algorithm that optimises the silhouettes.
Anal Chim Acta 515(1):87-100

Ma S, Li S, Zhang ] (2023) Spatial and deep learning analyses of urban recovery
from the impacts of COVID-19. Sci Rep 13(1):2447. https://doi.org/10.1038/
$41598-023-29189-5

Martinez L, Short J (2021) The pandemic city: urban issues in the time of COVID-
19. Sustainability 13(6):3295. https://doi.org/10.3390/su13063295

Menkir TF, Chin T, Hay JA et al. (2021) Estimating internationally imported cases
during the early COVID-19 pandemic. Nat Commun 12(1):311. https://doi.
0rg/10.1038/s41467-020-20219-8

Mulcahey MK, Gianakos AL, Mercurio A, Rodeo S, Sutton KM (2021) Sports
medicine considerations during the COVID-19 pandemic. Am ] Sports Med
49(2):512-521. https://doi.org/10.1177/0363546520975186

Peiffer-Smadja N, Lucet J, Bendjelloul G et al. (2020) Challenges and issues about
organizing a hospital to respond to the COVID-19 outbreak: experience from
a French reference centre. Clin Microbiol Infect 26(6):669-672. https://doi.
0rg/10.1016/j.cmi.2020.04.002

Qian T, Chen X, Xin Y, Tang W, Wang L (2022) Resilient decentralized optimi-
zation of chance constrained electricity-gas systems over lossy communication
networks. Energy 239:122158. https://doi.org/10.1016/j.energy.2021.122158

Ren ], Xu 'Y, Li Z, Hong C, Zhang XP, Chen X (2023) Scheduling UAV swarm with
attention-based graph reinforcement learning for ground-to-air hetero-
geneous data communication. In: UbiComp/ISWC’23 Adjunct, Cancun,
Quintana Roo, Mexico, 08-12 October, pp. 670-675. https://doi.org/10.1145/
3594739.3612905 (2023)

Ren SY, Wang WB, Gao RD, Zhou AM (2022) Omicron variant (B. 1.1. 529) of
SARS-CoV-2: mutation, infectivity, transmission, and vaccine resistance.
World J Clin Cases 10(1):1

Ribeiro XC, Sachetto OR, da FVV et al. (2022) Characterisation of Omicron variant
during COVID-19 pandemic and the impact of vaccination, transmission
rate, mortality, and reinfection in South Africa, Germany, and Brazil. Bio-
Tech 11(2):12. https://doi.org/10.3390/biotech11020012

Schwarz S (2018) Resilience in psychology: a critical analysis of the concept. Theory
Psychol 28(4):528-541. https://doi.org/10.1177/0959354318783584

She J, Liu L, Liu W (2020) COVID-19 epidemic: disease characteristics in children.
] Med Virol 92(7):747-754. https://doi.org/10.1002/jmv.25807

Shen ], Duan H, Zhang B et al. (2020) Prevention and control of COVID-19 in
public transportation: experience from China. Environ Pollut 266(2):115291.
https://doi.org/10.1016/j.envpol.2020.115291

Shenzhen Government (2023) Notice of the Shenzhen municipal people’s gov-
ernment on issuing the overall plan and three year action plan for park city
construction in Shenzhen (2022-2024). http://www.sz.gov.cn/zfgb/2023/
gb1272/content/post_10389162.html. Accessed 3 Aug 2023

Shenzhen Open Data Platform (2022) COVID-19 in Shenzhen—statistics of daily
confirmed cases. https://opendata.sz.gov.cn. Accessed 12 Aug 2023

Sibley C, Greaves L, Satherley N et al. (2020) Effects of the COVID-19 pandemic
and nationwide lockdown on trust, attitudes toward government, and well-
being. Am Psychol 75(5):618-630. https://doi.org/10.1037/amp0000662

Standish RJ, Hobbs R, Mayfield M et al. (2014) Resilience in ecology: Abstraction,
distraction, or where the action is? Biol Conserv 177:43-51. https://doi.org/
10.1016/j.biocon.2014.06.008

Sun H, Forsythe W, Waters N (2007) Modeling urban land use change and urban
sprawl: Calgary, Alberta, Canada. Netw Spat Econ 7:353-376. https://doi.org/
10.1007/511067-007-9030-y

Tabatabaei NM, Ravadanegh SN, Bizon N (2018) Power systems resilience.
Springer

Taskinsoy J (2020) COVID-19: Is the great outbreak a sign of what the future has
stowed for the human race? Available at SSRN 3597434. https://doi.org/10.
2139/ssrn.3597434

Tirachini A, Cats O (2020) COVID-19 and public transportation: current assess-
ment, prospects, and research needs. ] Public Transp 22(1):1-21. https://doi.
org/10.5038/2375-0901.22.1.1

| (2024)11:591 https://doi.org/10.1057/541599-024-03068-4


https://doi.org/10.1057/s41599-021-00749-2
https://doi.org/10.1007/s10640-020-00466-5
https://doi.org/10.1038/s41562-022-01506-4
https://doi.org/10.1377/hlthaff.2020.00980
https://doi.org/10.1016/S2213-2600(22)00142-4
https://doi.org/10.1038/s41591-022-01855-7
https://doi.org/10.1038/s41591-022-01855-7
https://doi.org/10.1038/s41586-020-2923-3
https://doi.org/10.1038/s41562-022-01429-0
https://doi.org/10.1109/JIOT.2020.2968375
https://doi.org/10.1109/TMC.2020.3034270
https://doi.org/10.1109/TMC.2020.3034270
https://doi.org/10.46234/ccdcw2022.015
https://doi.org/10.46234/ccdcw2022.015
https://doi.org/10.1016/S2214-109X(20)30264-3
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1038/s41586-022-04959-9
https://doi.org/10.1080/01441647.2020.1857886
https://doi.org/10.1016/j.scib.2019.12.007
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1007/0-306-47167-1_9
https://doi.org/10.1038/s41591-023-02212-y
https://doi.org/10.1038/s43588-021-00125-9
https://doi.org/10.1038/s43588-021-00125-9
https://doi.org/10.1145/2994551.2996714
https://doi.org/10.1016/j.ijid.2022.04.029
https://doi.org/10.1038/s41598-023-29189-5
https://doi.org/10.1038/s41598-023-29189-5
https://doi.org/10.3390/su13063295
https://doi.org/10.1038/s41467-020-20219-8
https://doi.org/10.1038/s41467-020-20219-8
https://doi.org/10.1177/0363546520975186
https://doi.org/10.1016/j.cmi.2020.04.002
https://doi.org/10.1016/j.cmi.2020.04.002
https://doi.org/10.1016/j.energy.2021.122158
https://doi.org/10.1145/3594739.3612905
https://doi.org/10.1145/3594739.3612905
https://doi.org/10.3390/biotech11020012
https://doi.org/10.1177/0959354318783584
https://doi.org/10.1002/jmv.25807
https://doi.org/10.1016/j.envpol.2020.115291
http://www.sz.gov.cn/zfgb/2023/gb1272/content/post_10389162.html
http://www.sz.gov.cn/zfgb/2023/gb1272/content/post_10389162.html
https://opendata.sz.gov.cn
https://doi.org/10.1037/amp0000662
https://doi.org/10.1016/j.biocon.2014.06.008
https://doi.org/10.1016/j.biocon.2014.06.008
https://doi.org/10.1007/s11067-007-9030-y
https://doi.org/10.1007/s11067-007-9030-y
https://doi.org/10.2139/ssrn.3597434
https://doi.org/10.2139/ssrn.3597434
https://doi.org/10.5038/2375-0901.22.1.1
https://doi.org/10.5038/2375-0901.22.1.1

ARTICLE

Tisdell CA (2020) Economic, social and political issues raised by the COVID-19
pandemic. Econ Anal Policy 68:17-28. https://doi.org/10.1016/j.eap.2020.08.
002

United Nations (2018) 68% of the world population projected to live in urban areas
by 2050, says UN. https://www.un.org/development/desa/en/news/
population/2018-revision-of-world-urbanization-prospects.html.  Accessed
20 Aug 2022

Wang D, Tayarani M, He BY, Gao J, Chow JY]J, Gao HO, Ozbay K (2021) Mobility
in post-pandemic economic reopening under social distancing guidelines:
Congestion, emissions, and contact exposure in public transit. Transp Res
Part A Policy Pract 153:151-170. https://doi.org/10.1016/j.tra.2021.09.005

Wang H, Chen X, Cheng Y et al. (2022) H-SwarmLoc: efficient scheduling for
localization of heterogeneous MAV swarm with deep reinforcement learning.
In: Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems, Boston, Massachusetts, US, November, pp. 1148-1154

Wang J, Huang J, Yang H, Levinson D (2022) Resilience and recovery of public
transport use during COVID-19. npj Urban Sustain 2(1):18. https://doi.org/
10.1038/s42949-022-00061-1

Wang S, He T, Zhang D et al. (2019) Towards efficient sharing: a usage balancing
mechanism for bike sharing systems. In: WWW’19, San Francisco, CA, USA,
13-17 May, pp. 2011-2021

Wei Y, Wang J, Song W, Xiu C, Ma L, Pei T (2021) Spread of COVID-19 in China:
analysis from a city-based epidemic and mobility model. Cities 110:103010.
https://doi.org/10.1016/j.cities.2020.103010

Weiss M, Schwarzenberg A, Nelson R, Sutter K, Sutherland M (2020) Global
economic effects of COVID-19. Congressional Research Service. pp. 21-35

World Health Organization (WHO) (2023) WHO Director-General’s opening
remarks at the media briefing—5 May 2023. https://www.who.int/director-
general/speeches/detail/who-director-general-s-opening-remarks-at-the-
media-briefing---5-may-2023. Accessed 22 Jun 2023

Xia K, Lin L, Wang S, Wang H, Zhang D, He T (2023) A predict-then-optimize
couriers allocation framework for emergency last-mile logistics. In: Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Long Beach, CA, USA, 6-10 August, pp. 5237-5248.
https://doi.org/10.1145/3580305.3599766

Xing Y, Wang K, Lu JJ (2020) Exploring travel patterns and trip purposes of
dockless bike-sharing by analyzing massive bike-sharing data in Shanghai,
China. ] Transp Geogr 87:102787. https://doi.org/10.1016/j.jtrangeo.2020.
102787

Xinhua News Agency (2022) The overall coverage rate of COVID-19 vaccine in
China. http://www.news.cn/politics/2022-07/23/c_1128857426.htm. Accessed
11 Jul 2023

Xu F, Zhang J, Gao C, Feng J, Li Y (2023) Urban generative intelligence (UGI): a
foundational platform for agents in embodied city environment. https://doi.
org/10.48550/arXiv.2312.11813

Zhang A, Zhang K, Li W, Wang Y, Li Y, Zhang L (2022) Optimising self-organised
volunteer efforts in response to the COVID-19 pandemic. Humanit Soc Sci
Commun 9(1):134. https://doi.org/10.1057/s41599-022-01127-2

Zhang ] (2021) People’s responses to the COVID-19 pandemic during its early
stages and factors affecting those responses. Humanit Soc Sci Commun 8:37.
https://doi.org/10.1057/s41599-021-00720-1

Zhao P, Cao Z, Zeng DD, Gu C, Wang Z, Xiang Y, Qadrdan M, Chen X, Yan X, Li
S (2021) Cyber-resilient multi-energy management for complex systems.
IEEE Trans Industr Inform 18(3):2144-2159. https://doi.org/10.1109/TTI.
2021.3097760

Zhu X, Wang S, Guo B et al. (2020) SParking: A win-win data-driven contract
parking sharing system. In: UbiComp/ISWC 20 Adjunct, Virtual Event,
Mexico, 12-16 September, pp. 596-604

Acknowledgements

This paper was supported by the National Key R&D Program of China No.
2022YFC3300703, the Natural Science Foundation of China under Grant No. 62371269.
Guangdong Innovative and Entrepreneurial Research Team Program No.
2021ZT09L197, Shenzhen 2022 Stabilization Support Program No.
WDZC20220811103500001, Tsinghua Shenzhen International Graduate School Cross-
disciplinary Research and Innovation Fund Research Plan No. JC20220011, the Project
from Science and Technology Innovation Committee of Shenzhen (Grant No.
KCXST20221021111201002), the Major Key Project of PCL (Peng Cheng Laboratory)
under Grants PCL2023A09, and Meituan.

Author contributions

Fellow researchers and authors contributed as follows: Conceptualization: BZ, RS, YL, &
XC; methodology: XW, BZ, & TS; formal analysis: RS, FX, & XC; writing/original draft
preparation: BZ, XW, FM, EC, & TZ; writing/review and editing: TS, XW, XC, BZ, & YL;
BZ, XW, & TS contributed equally to this work and share first authorship. Correspon-
dence to XC.

Competing interests
The authors declare no competing interests.

Ethical approval
This article does not contain any studies with human participants performed by any of
the authors.

Informed consent
This article does not contain any studies with human participants performed by any of
the authors.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1057/s41599-024-03068-4.

Correspondence and requests for materials should be addressed to Xinlei Chen.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

37 Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

| (2024)11:591| https://doi.org/10.1057/541599-024-03068-4 15


https://doi.org/10.1016/j.eap.2020.08.002
https://doi.org/10.1016/j.eap.2020.08.002
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://doi.org/10.1016/j.tra.2021.09.005
https://doi.org/10.1038/s42949-022-00061-1
https://doi.org/10.1038/s42949-022-00061-1
https://doi.org/10.1016/j.cities.2020.103010
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing--5-may-2023
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing--5-may-2023
https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing--5-may-2023
https://doi.org/10.1145/3580305.3599766
https://doi.org/10.1016/j.jtrangeo.2020.102787
https://doi.org/10.1016/j.jtrangeo.2020.102787
http://www.news.cn/politics/2022-07/23/c_1128857426.htm
https://doi.org/10.48550/arXiv.2312.11813
https://doi.org/10.48550/arXiv.2312.11813
https://doi.org/10.1057/s41599-022-01127-2
https://doi.org/10.1057/s41599-021-00720-1
https://doi.org/10.1109/TII.2021.3097760
https://doi.org/10.1109/TII.2021.3097760
https://doi.org/10.1057/s41599-024-03068-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Estimating and modeling spontaneous mobility changes during the COVID-19 pandemic without stay-at-home�orders
	Introduction
	Results
	Spatial distributions of urban mobility�level
	Identifying mobility patterns
	Population behavior behind mobility patterns
	Travel purpose
	Travel�mode
	Dynamic model of urban mobility

	Discussion
	Methods
	Datasets
	Origin-destination data of urban mobility
	Point of interest data and urban land use�data
	OD data preprocessing
	Identifying mobility patterns via clustering algorithm
	Measuring of mobility changes
	K-means&#x0002B;&#x0002B; clustering
	Spatial attractiveness of urban land�use
	Dynamic OD mobility�model
	Physiological infection�module
	Willingness influence�module
	Put it together
	Model validation

	Data availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




