Nanoscale materials articles within Nature Communications

Featured

  • Article
    | Open Access

    Topological semimetals offer the potential for new-generation spintronic devices. Here, the authors demonstrate a large out-of-plane damping-like spin–orbit torque efficiency in a heterostructure based on the Weyl semimetal TaIrTe4.

    • Lakhan Bainsla
    • , Bing Zhao
    •  & Saroj P. Dash
  • Article
    | Open Access

    It has long been believed that diffusion as individual atoms is the primary way for carbon to enter Fe crystals from outside. Here, the authors report an unusual mass transport way in solids, through which diamond nanoparticles can enter Fe spontaneously and translate inward for a long distance.

    • Yuecun Wang
    • , Xudong Wang
    •  & Zhiwei Shan
  • Article
    | Open Access

    The authors observe THz emission from Ni/Pt heterostructure due to long-range ballistic orbital transport. The velocity of orbital current can be optically tuned by laser fluence, opening the avenue for future optorbitronic devices.

    • Sobhan Subhra Mishra
    • , James Lourembam
    •  & Ranjan Singh
  • Article
    | Open Access

    Large-scale 2D hexagonal boron nitride (hBN) grown via chemical vapour deposition (CVD) has strategic importance for various applications of 2D materials. Here, the authors analyse the structural and electrical properties of commercially available CVD hBN from 9 popular suppliers and compare the results with mechanically exfoliated hBN and in-house CVD hBN.

    • Yue Yuan
    • , Jonas Weber
    •  & Mario Lanza
  • Article
    | Open Access

    There are now several van der Waals magnets that have been shown to host skyrmions, however, these are typically hampered by a low Curie temperature, restricting the temperature at which the skyrmions can exist. Here, Zhang, Jiang, Jiang and coauthors find a skyrmion lattice in the van der Waals magnet Fe3 − xGaTe2 above room temperature and demonstrate the critical role of symmetry breaking in crystal lattice in the origin of these skyrmions.

    • Chenhui Zhang
    • , Ze Jiang
    •  & Hyunsoo Yang
  • Article
    | Open Access

    Photoluminescence from plasmonic nanostructures exhibits diverse wavelength dependent nonlinear behaviors with debated origins. Here, authors use plasmonic gap mode resonators with precise nanoscale confinement to show this nonlinear emission can become dominated by non-Fermi carrier contributions.

    • Robert Lemasters
    • , Manoj Manjare
    •  & Hayk Harutyunyan
  • Article
    | Open Access

    Electron transfer in solids is a fundamental process in many functional nanomaterials. Here, the authors directly observe this process via x-ray crystallography for incorporating of electron-donor guest molecules in macrocyclic nanotube crystals.

    • Daiji Ogata
    • , Shota Koide
    •  & Junpei Yuasa
  • Article
    | Open Access

    Here, the authors discover the ground and excited state interlayer excitons in bi- and tri-layer 2H-MoSe2 crystals which exhibit electric-field-driven hybridisation with the intralayer A excitons, showing distinct spin, layer and valley characteristics.

    • Shun Feng
    • , Aidan J. Campbell
    •  & Brian D. Gerardot
  • Article
    | Open Access

    2D AMX2 compounds (where A is a monovalent metal ion, M is a trivalent metal, and X is a chalcogen) are a family of materials with coupled ionic-electronic properties. Here, the authors report a chemical vapor deposition strategy to fabricate 20 types of 2D AMX2 flakes, exhibiting superionic conductivity or room temperature ferroelectricity.

    • Xiang Xu
    • , Yunxin Chen
    •  & Tianyou Zhai
  • Article
    | Open Access

    Two-dimensional graphene-based membranes have gained much interest, but they suffer from poor rejection for monovalent salts. Here, the authors develop an electrostatic-induced ion partitioning strategy to suppress anion-cation transmembrane co-transport, improving the desalination performance.

    • Haiguang Zhang
    • , Jiajian Xing
    •  & Xie Quan
  • Article
    | Open Access

    Understanding the microscopic variability of CMOS spin qubits is crucial for developing scalable quantum processors. Here the authors report a combined experimental and numerical study of the effect of interface roughness on variability of quantum dot spin qubits formed at the Si/SiO2 interface.

    • Jesús D. Cifuentes
    • , Tuomo Tanttu
    •  & Andre Saraiva
  • Article
    | Open Access

    Traditional scintillators face challenges in achieving fast response and avoiding afterglow. Guzelturk et al. report colloidal quantum shell heterostructures with bright multiexciton emission, enabling efficient, fast, and robust scintillation for high-resolution and high-speed X-ray imaging.

    • Burak Guzelturk
    • , Benjamin T. Diroll
    •  & Mikhail Zamkov
  • Article
    | Open Access

    The authors observe multiferroicity in a single-layer non van der Waals material, CuCrSe2. The coexistence of room-temperature ferroelectricity and ferromagnetism up to 120 K is corroborated by a set of comprehensive experimental techniques.

    • Zhenyu Sun
    • , Yueqi Su
    •  & Baojie Feng
  • Article
    | Open Access

    Control of correlated excitonic states is a key goal of modern optoelectronic physics. Here, the authors demonstrate filling- and field-tunable exciton valley-pseudospin orders in a moiré heterostructure.

    • Richen Xiong
    • , Samuel L. Brantly
    •  & Chenhao Jin
  • Article
    | Open Access

    Exploring new mechanics regime, researchers created centimeter-long, nanometer-thin resonators, achieving unmatched room temperature mechanical isolation via cutting edge nanoengineering and machine learning design; rivaling cryogenic counterparts.

    • Andrea Cupertino
    • , Dongil Shin
    •  & Richard A. Norte
  • Article
    | Open Access

    Rhombohedral-stacked (R-stacked) transition metal dichalcogenide bilayers exhibit remarkable properties, but their large-area epitaxial growth remains challenging. Here, the authors report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates.

    • Chao Chang
    • , Xiaowen Zhang
    •  & Xiaozhi Xu
  • Article
    | Open Access

    Metals often suffer from reduced strength and ductility after hydrogenation. Here, the authors show hydrogenation can lead to enhancement in strength and ductility accompanied by a large change in magnetic entropy, overcoming the bottlenecks of using amorphous alloys for magnetic refrigerants.

    • Liliang Shao
    • , Qiang Luo
    •  & Weihua Wang
  • Article
    | Open Access

    Traditional methods to incorporate polycrystalline thin film into flexible systems are often complicated and limited by their sizes. Here, the authors introduce flexible amorphous thin film energy harvester, based on perovskite oxides, on a plastic substrate for electromechanical energy harvesting.

    • Ju Han
    • , Sung Hyun Park
    •  & Yong Soo Cho
  • Article
    | Open Access

    Extending magnetic nanostructures into three dimensions offers a vast increase in potential functionalities, but this typically comes at the expense of ease of fabrication and measurement. Here, Dion et al. demonstrate an approach to creating three dimensional magnetic nanostructures while retaining easy fabrication and readout of established two dimensional approaches.

    • Troy Dion
    • , Kilian D. Stenning
    •  & Jack C. Gartside
  • Article
    | Open Access

    The relationship between the structural configurations of M-N-C electrocatalysts and their performances in neutral environments has been insufficiently investigated. Here the authors demonstrate that an ultralow metal-loaded Co-N-C electrocatalyst, featuring the asymmetric Co-C/N/O configuration, exhibit exceptional efficiency in electrochemically producing hydrogen peroxide under neutral conditions.

    • Longxiang Liu
    • , Liqun Kang
    •  & Guanjie He
  • Article
    | Open Access

    Here, the authors demonstrate a wafer-scale, low-temperature process using atomic layer deposition, for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. They further fabricate aBN-encapsulated monolayer MoS2 field-effect transistors.

    • Cindy Y. Chen
    • , Zheng Sun
    •  & Joshua A. Robinson
  • Article
    | Open Access

    Tuning the instabilities of 2D materials can control their wrinkling behavior for interesting physical properties, but still challenging. Here, the authors report a push-to-shear experimental approach to control the wrinkling patterns of monolayer 2D materials and measure their bending stiffness.

    • Yuan Hou
    • , Jingzhuo Zhou
    •  & Yang Lu
  • Article
    | Open Access

    Bristleworms possess dedicated cells that can synthesize highly stereotypical bristles with sub-micrometric precision. Here, Ikeda and colleagues shed light on the underlying dynamics of cellular protrusions, revealing an extension-disassembly cycle that resembles a 3D printer.

    • Kyojiro N. Ikeda
    • , Ilya Belevich
    •  & Florian Raible
  • Article
    | Open Access

    The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li+/Mg2+ separation performance.

    • Zongyao Zhou
    • , Kangning Zhao
    •  & Kumar Varoon Agrawal
  • Article
    | Open Access

    Carbon nanotube-based single photon emitters allow for room-temperature operation, but suffer from vanishing indistinguishability due to strong dephasing. Following a theoretical proposal, the authors tackle the problem experimentally by using a cavity to enhance the photon coherence time and the emission spectral density in the regime of incoherent good cavity-coupling.

    • Lukas Husel
    • , Julian Trapp
    •  & Alexander Högele
  • Article
    | Open Access

    Inspired by fireflies, a bimodal information indication system using a photochemical afterglow material within a photonic crystal matrix is developed to display both static and changing information, such as sample type and degree of degradation.

    • Hanwen Huang
    • , Jiamiao Yin
    •  & Changchun Wang
  • Article
    | Open Access

    Previous work proposed the Berry curvature dipole as the mechanism of the nonlinear Hall effect. Lee et al. establish the sign-changing Berry curvature hot spots from spin-orbit split bands as the origin of the Berry curvature dipole and link it to the nonlinear Hall effect in the topological semimetal NbIrTe4.

    • Ji-Eun Lee
    • , Aifeng Wang
    •  & Hyejin Ryu
  • Article
    | Open Access

    Developing stable water oxidation catalysts is of great importance for proton-exchange membrane water electrolyzers. Here the authors report a bicontinuous nanoreactor composed of multiscale defected RuO2 nanocrystals for robust acidic water oxidation reactivity.

    • Ding Chen
    • , Ruohan Yu
    •  & Shichun Mu
  • Article
    | Open Access

    The self-assembly of nanocrystals into checkerboard lattice patterns is difficult to control. Here, the authors investigate the formation of such patterns from hydrophilic/hydrophobic bifunctionalized Ag nanocubes and use multiscale simulations to understand the effects of physical forces.

    • Yufei Wang
    • , Yilong Zhou
    •  & Andrea R. Tao
  • Article
    | Open Access

    Crystal facets are known to be important in traditional heterogeneous catalysis, yet this effect has not been studied in plasmon-assisted catalysis. Here, the authors investigate the impact facets have on CO2 reduction using plasmonic Au NPs.

    • Yicui Kang
    • , Simão M. João
    •  & Emiliano Cortés
  • Article
    | Open Access

    The synthesis of covalent organic frameworks (COFs) by a soft-template methodology is challenging. Here, the authors attach the soft templates to the COFs backbone via ion bonds, avoiding crystallization incompatibilities and allowing subsequent removal of the template by ion exchange for enhanced U(VI)/Th(IV) adsorption performance.

    • Ningning He
    • , Yingdi Zou
    •  & Lijian Ma
  • Article
    | Open Access

    Terminal hydroxyl groups on γ-Al2O3 surfaces serve as anchoring sites for Ag. Based on the surface energy of different crystal planes of γ-Al2O3 at various temperatures, the authors propose a high-temperature-induced crystal plane transformation method to construct terminal hydroxyl anchoring sites.

    • Jiaxin Li
    • , Kai Li
    •  & Hong He
  • Article
    | Open Access

    Low-dimensional ferroelectric systems are predicted to have topologically nontrivial polar structures, such as vortices or skyrmions. Here authors present atomic-scale 3D topological polar structures in BaTiO3 nanoparticles using atomic electron tomography and revealed their size-dependent transitions.

    • Chaehwa Jeong
    • , Juhyeok Lee
    •  & Yongsoo Yang
  • Article
    | Open Access

    Here, the authors report the observation of an interlayer plasmon polaron in heterostructures composed of graphene and monolayer WS2. This is manifested in the ARPES spectra as a strong quasiparticle peak accompanied by several carrier density-dependent shake-off replicas around the WS2 conduction band minimum.

    • Søren Ulstrup
    • , Yann in ’t Veld
    •  & Jyoti Katoch
  • Article
    | Open Access

    Improving mass transfer through hierarchically porous synthetic materials is a great challenge. Here the authors address this by expanding the original Murray’s law, a biomimetic principle defining the branching of veins in living structures.

    • Binghan Zhou
    • , Qian Cheng
    •  & Tawfique Hasan
  • Article
    | Open Access

    Polarization reversal dynamics in sliding ferroelectrics is important for the application in slidetronics. Here, the authors observe the interlayer directional sliding induced polarization switching with simultaneous hysteresis response in γ-InSe:Y.

    • Fengrui Sui
    • , Haoyang Li
    •  & Chungang Duan
  • Article
    | Open Access

    Molecular switches are ubiquitous in the biochemistry regulatory network. Here, the authors construct synthetic molecular switches controlled by DNA-modifying enzymes such as DNA polymerase and nicking endonuclease to control and cascade assembly and disassembly.

    • Hong Kang
    • , Yuexuan Yang
    •  & Bryan Wei