Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lack of starvation-induced activation of AMP-activated protein kinase in the hypothalamus of the Lou/C rats resistant to obesity

Abstract

Objective:

The AMP-activated protein kinase (AMPK) is involved in the control of food intake by the hypothalamus. The aim of this work was to investigate if modification of hypothalamic AMPK regulation could be related to the spontaneous food restriction of Lou/C rats, a strain resistant to obesity exhibiting a 40% reduction in caloric intake compared with their lean Wistar counterparts.

Design:

Three-month-old male Lou/C rats were compared with age-matched male Wistar rats in both fed ad libitum and 24-h food deprivation state.

Measurements and results:

We first confirmed that starvation activated both isoforms of AMPK catalytic α subunits and enhanced the phosphorylation state of its downstream targets acetyl-CoA carboxylase and elongation factor 2 in the hypothalamus of Wistar rats. These changes were not observed in the hypothalamus of Lou/C rats. Interestingly, the starvation-induced changes in hypothalamic mRNA levels of the main orexigenic and anorexigenic neuropeptides were also blunted in the Lou/C rats. Analysis of the concentrations of circulating substrates and hormones known to regulate hypothalamic AMPK indicated that the starvation-induced changes in ghrelin, adiponectin and leptin were not observed in Lou/C rats. Furthermore, an increased phosphorylation state of signal transducer and activator of transcription 3 (STAT3), which admittedly mediates leptin signaling, was evidenced in the hypothalamus of the starved Lou/C rats, as well as modifications of expression of the leptin-sensitive genes suppressor of cytokine signaling-3 and stearoyl-coenzyme A desaturase 1. In addition, despite reduced leptin level in fed Lou/C rats, the phosphorylation state of hypothalamic STAT3 remained similar to that found in fed Wistar rats, an adaptation that could be explained by the concomitant increase in ObRb leptin receptor mRNA expression.

Conclusion:

Activation of hypothalamic AMPK by starvation, which stimulates food intake through changes in (an)orexigenic neuropeptides in the normal rats, was not observed in the spontaneously hypophagic Lou/C rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Schwartz MW, Porte Jr D . Diabetes, obesity, and the brain. Science 2005; 307: 375–379.

    Article  CAS  PubMed  Google Scholar 

  2. Stanley S, Wynne K, McGowan B, Bloom S . Hormonal regulation of food intake. Physiol Rev 2005; 85: 1131–1158.

    Article  CAS  PubMed  Google Scholar 

  3. Leibowitz SF, Wortley KE . Hypothalamic control of energy balance: different peptides, different functions. Peptides 2004; 25: 473–504.

    Article  CAS  PubMed  Google Scholar 

  4. Wynne K, Stanley S, McGowan B, Bloom S . Appetite control. J Endocrinol 2005; 184: 291–318.

    Article  CAS  PubMed  Google Scholar 

  5. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    Article  CAS  PubMed  Google Scholar 

  6. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR et al. AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 2004; 279: 12005–12008.

    Article  CAS  PubMed  Google Scholar 

  7. Kim EK, Miller I, Aja S, Landree LE, Pinn M, McFadden J et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 2004; 279: 19970–19976.

    Article  CAS  PubMed  Google Scholar 

  8. Kim MS, Park JY, Namkoong C, Jang PG, Ryu JW, Song HS et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 2004; 10: 727–733.

    Article  CAS  PubMed  Google Scholar 

  9. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 2006; 574: 41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardie DG, Hawley SA, Scott JW . AMP-activated protein kinase—development of the energy sensor concept. J Physiol 2006; 574: 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahn BB, Alquier T, Carling D, Hardie DG . AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15–25.

    Article  CAS  PubMed  Google Scholar 

  12. Kim MS, Lee KU . Role of hypothalamic 5′-AMP-activated protein kinase in the regulation of food intake and energy homeostasis. J Mol Med 2005; 83: 514–520.

    Article  CAS  PubMed  Google Scholar 

  13. Lee K, Li B, Xi X, Suh Y, Martin RJ . Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 2005; 146: 3–10.

    Article  CAS  PubMed  Google Scholar 

  14. Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 2007; 6: 55–68.

    Article  CAS  PubMed  Google Scholar 

  15. Martin TL, Alquier T, Asakura K, Furukawa N, Preitner F, Kahn BB . Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J Biol Chem 2006; 281: 18933–18941.

    Article  CAS  PubMed  Google Scholar 

  16. Namkoong C, Kim MS, Jang PG, Han SM, Park HS, Koh EH et al. Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats. Diabetes 2005; 54: 63–68.

    Article  CAS  PubMed  Google Scholar 

  17. Bazin H . The Louvain (Lou) rats. In: Rat Hybridomas and Rat Monoclonal Antibodies. CRC Press: Cleveland, OH, 1990, pp 43–51.

    Google Scholar 

  18. Couturier K, Servais S, Koubi H, Sempore B, Sornay-Mayet MH, Cottet-Emard JM et al. Metabolic characteristics and body composition in a model of anti-obese rats (Lou/C). Obes Res 2002; 10: 188–195.

    Article  CAS  PubMed  Google Scholar 

  19. Couturier K, Servais S, Koubi H, Sempore B, Cottet-Emard JM, Guigas B et al. Metabolic and hormonal responses to exercise in the anti-obese Lou/C rats. Int J Obes Relat Metab Disord 2004; 28: 972–978.

    Article  CAS  PubMed  Google Scholar 

  20. Perrin D, Soulage C, Pequignot JM, Geloen A . Resistance to obesity in Lou/C rats prevents ageing-associated metabolic alterations. Diabetologia 2003; 46: 1489–1496.

    Article  CAS  PubMed  Google Scholar 

  21. Davies SP, Carling D, Hardie DG . Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem 1989; 186: 123–128.

    Article  CAS  PubMed  Google Scholar 

  22. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: New York, 1991.

    Google Scholar 

  23. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  24. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D . Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 2000; 346 (Part 3): 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 2002; 12: 1419–1423.

    Article  CAS  PubMed  Google Scholar 

  26. Kappeler L, Zizzari P, Grouselle D, Epelbaum J, Bluet-Pajot MT . Plasma and hypothalamic peptide-hormone levels regulating somatotroph function and energy balance in fed and fasted states: a comparative study in four strains of rats. J Neuroendocrinol 2004; 16: 980–988.

    Article  CAS  PubMed  Google Scholar 

  27. McCowen KC, Chow JC, Smith RJ . Leptin signaling in the hypothalamus of normal rats in vivo. Endocrinology 1998; 139: 4442–4447.

    Article  CAS  PubMed  Google Scholar 

  28. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002; 297: 240–243.

    Article  CAS  PubMed  Google Scholar 

  29. Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 2003; 144: 1506–1512.

    Article  PubMed  Google Scholar 

  30. Wortley KE, Anderson KD, Garcia K, Murray JD, Malinova L, Liu R et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc Natl Acad Sci USA 2004; 101: 8227–8232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scarpace PJ, Matheny M, Shek EW . Impaired leptin signal transduction with age-related obesity. Neuropharmacology 2000; 39: 1872–1879.

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L . Overfeeding rapidly induces leptin and insulin resistance. Diabetes 2001; 50: 2786–2791.

    Article  CAS  PubMed  Google Scholar 

  33. Sahu A . Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones. J Neuroendocrinol 2002; 14: 796–804.

    Article  CAS  PubMed  Google Scholar 

  34. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC . Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996; 93: 6231–6235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM . Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95–97.

    Article  CAS  PubMed  Google Scholar 

  36. Baskin DG, Breininger JF, Schwartz MW . Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes 1999; 48: 828–833.

    Article  CAS  PubMed  Google Scholar 

  37. Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjoorbaek C et al. Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 2001; 107: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahima RS, Kelly J, Elmquist JK, Flier JS . Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 1999; 140: 4923–4931.

    Article  CAS  PubMed  Google Scholar 

  39. Hu Z, Cha SH, Chohnan S, Lane MD . Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci USA 2003; 100: 12624–12629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu Z, Dai Y, Prentki M, Chohnan S, Lane MD . A role for hypothalamic malonyl-CoA in the control of food intake. J Biol Chem 2005; 280: 39681–39683.

    Article  CAS  PubMed  Google Scholar 

  41. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L . Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002; 51: 271–275.

    Article  CAS  PubMed  Google Scholar 

  42. Morgan K, Obici S, Rossetti L . Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem 2004; 279: 31139–31148.

    Article  CAS  PubMed  Google Scholar 

  43. He W, Lam TK, Obici S, Rossetti L . Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat Neurosci 2006; 9: 227–233.

    Article  CAS  PubMed  Google Scholar 

  44. Hardie DG . Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003; 144: 5179–5183.

    Article  CAS  PubMed  Google Scholar 

  45. Lam TK, Schwartz GJ, Rossetti L . Hypothalamic sensing of fatty acids. Nat Neurosci 2005; 8: 579–584.

    Article  CAS  PubMed  Google Scholar 

  46. Lane MD, Hu Z, Cha SH, Dai Y, Wolfgang M, Sidhaye A . Role of malonyl-CoA in the hypothalamic control of food intake and energy expenditure. Biochem Soc Trans 2005; 33: 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  47. Asilmaz E, Cohen P, Miyazaki M, Dobrzyn P, Ueki K, Fayzikhodjaeva G et al. Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest 2004; 113: 414–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen P, Ntambi JM, Friedman JM . Stearoyl-CoA desaturase-1 and the metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord 2003; 3: 271–280.

    Article  CAS  PubMed  Google Scholar 

  49. Ntambi JM, Miyazaki M . Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 2004; 43: 91–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Liliane Maisin and Martine de Cloedt and to Drs Caroline J Small and Caroline R Abbott for technical assistance. This work was supported by the Belgian Fund for Medical Research, the Belgian Federal Interuniversity Poles of Attraction, the ‘Actions de Recherche Concertées’, the European Union FP6 programme (Exgenesis) and by a French-Belgian INSERM/CFB/FNRS collaborative grant. B Guigas is recipient of the ICP-‘Michel de Visscher’ Fellowship and N Taleux is recipient of a French EURODOC grant of the Région Rhône-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Guigas.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website (http://www.nature.com/ijo)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taleux, N., De Potter, I., Deransart, C. et al. Lack of starvation-induced activation of AMP-activated protein kinase in the hypothalamus of the Lou/C rats resistant to obesity. Int J Obes 32, 639–647 (2008). https://doi.org/10.1038/sj.ijo.0803759

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803759

Keywords

This article is cited by

Search

Quick links