Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity flow over resting-state networks shapes cognitive task activations

Abstract

Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allowed prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity flow mapping over resting-state FC networks allows prediction of held-out task activations.
Figure 2: Activity flow mapping predicts cognitive task activations with empirical fMRI data.
Figure 3: Using multiple regression to estimate resting-state FC increases prediction accuracy.
Figure 4: Predicting voxelwise activation patterns.
Figure 5: Illustration of activity flow mapping of single region.

Similar content being viewed by others

References

  1. Fox, M.D. & Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Power, J.D., Schlaggar, B.L. & Petersen, S.E. Studying brain organization via spontaneous fMRI signal. Neuron 84, 681–696 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biswal, B.B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 4734–4739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saxe, R., Brett, M. & Kanwisher, N. Divide and conquer: a defense of functional localizers. Neuroimage 30, 1088–1096, discussion 1097–1099 (2006).

    Article  PubMed  Google Scholar 

  5. Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  PubMed  Google Scholar 

  7. Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107, 11163–11170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, S.M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tavor, I. et al. Task-free MRI predicts individual differences in brain activity during task performance. Science 352, 216–220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S. & Petersen, S.E. Intrinsic and task-evoked network architectures of the human brain. Neuron 83, 238–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jessell, T.M. & Kandel, E.R. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell 72 (Suppl.), 1–30 (1993).

    Article  PubMed  Google Scholar 

  13. Laughlin, S.B. & Sejnowski, T.J. Communication in neuronal networks. Science 301, 1870–1874 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hodgkin, A.L. & Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  15. Saygin, Z.M. et al. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 15, 321–327 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Osher, D.E. et al. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26, 1668–1683 (2016).

    Article  PubMed  Google Scholar 

  17. Smith, V.A., Yu, J., Smulders, T.V., Hartemink, A.J. & Jarvis, E.D. Computational inference of neural information flow networks. PLoS Comput. Biol. 2, e161 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  PubMed  Google Scholar 

  19. Norman, K.A., Polyn, S.M., Detre, G.J. & Haxby, J.V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article  PubMed  Google Scholar 

  20. Cole, M.W., Etzel, J.A., Zacks, J.M., Schneider, W. & Braver, T.S. Rapid transfer of abstract rules to novel contexts in human lateral prefrontal cortex. Front. Hum. Neurosci. 5, 142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Haynes, J.-D. A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives. Neuron 87, 257–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Cole, M.W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Medaglia, J.D., Lynall, M.-E. & Bassett, D.S. Cognitive network neuroscience. J. Cogn. Neurosci. 27, 1471–1491 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Curtis, C.E. & D'Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7, 415–423 (2003).

    Article  PubMed  Google Scholar 

  25. Mišić, B. et al. Cooperative and competitive spreading dynamics on the human connectome. Neuron 86, 1518–1529 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Gu, S. et al. Controllability of structural brain networks. Nat. Commun. 6, 8414 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Deco, G. et al. Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33, 11239–11252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ritter, P., Schirner, M., McIntosh, A.R. & Jirsa, V.K. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect. 3, 121–145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barch, D.M. et al. Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013).

    Article  PubMed  Google Scholar 

  30. Power, J.D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duncan, J. & Owen, A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Chein, J.M. & Schneider, W. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res. Cogn. Brain Res. 25, 607–623 (2005).

    Article  PubMed  Google Scholar 

  33. Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Shulman, G.L. et al. Common blood flow changes across visual tasks: I. increases in subcortical structures and cerebellum but not in nonvisual cortex. J. Cogn. Neurosci. 9, 624–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Kiebel, S.J., Poline, J.B., Friston, K.J., Holmes, A.P. & Worsley, K.J. Robust smoothness estimation in statistical parametric maps using standardized residuals from the general linear model. Neuroimage 10, 756–766 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Power, J.D. & Petersen, S.E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 23, 223–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Badre, D. Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cogn. Sci. 12, 193–200 (2008).

    Article  PubMed  Google Scholar 

  38. Kannurpatti, S.S., Rypma, B. & Biswal, B.B. Prediction of task-related BOLD fMRI with amplitude signatures of resting-state fMRI. Front. Syst. Neurosci. 6, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mennes, M. et al. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50, 1690–1701 (2010).

    Article  PubMed  Google Scholar 

  40. Heinzle, J., Kahnt, T. & Haynes, J.-D. Topographically specific functional connectivity between visual field maps in the human brain. Neuroimage 56, 1426–1436 (2011).

    Article  PubMed  Google Scholar 

  41. Fox, M.D. et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA 111, E4367–E4375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, J.H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siero, J.C.W. et al. BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101, 177–184 (2014).

    Article  PubMed  Google Scholar 

  44. Friston, K.J. Functional and effective connectivity: a review. Brain Connect. 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  45. Ramsey, J.D. et al. Six problems for causal inference from fMRI. Neuroimage 49, 1545–1558 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Friston, K.J., Harrison, L. & Penny, W. Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, S.M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011).

    Article  PubMed  Google Scholar 

  48. Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).

    Article  CAS  PubMed  Google Scholar 

  49. Handwerker, D.A., Ollinger, J.M. & D'Esposito, M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21, 1639–1651 (2004).

    Article  PubMed  Google Scholar 

  50. Galán, R.F., Ermentrout, G.B. & Urban, N.N. Optimal time scale for spike-time reliability: theory, simulations, and experiments. J. Neurophysiol. 99, 277–283 (2008).

    Article  PubMed  Google Scholar 

  51. Ermentrout, B. Phase-plane analysis of neural activity. in The Handbook of Brain Theory and Neural Networks (ed. Arbib, M.A.) 732–738 (MIT Press, 1998).

  52. Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Essen, D.C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  54. Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res 41, 1149–1160 (2009).

    Article  Google Scholar 

  55. Ugurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, S.M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Glasser, M.F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  58. Cox, R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B. & Bandettini, P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    Article  PubMed  Google Scholar 

  60. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).

    Article  PubMed  Google Scholar 

  61. Wig, G.S., Schlaggar, B.L. & Petersen, S.E. Concepts and principles in the analysis of brain networks. Ann. NY Acad. Sci. 1224, 126–146 (2011).

    Article  PubMed  Google Scholar 

  62. Cohen, A.L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

    Article  PubMed  Google Scholar 

  63. Gordon, E.M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article  PubMed  Google Scholar 

  64. Yeo, B.T.T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  65. Jolliffe, I.T. A note on the use of principal components in regression. Appl. Stat. 31, 300–303 (1982).

    Article  Google Scholar 

  66. Chai, X.J., Castañón, A.N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. Neuroimage 59, 1420–1428 (2012).

    Article  PubMed  Google Scholar 

  67. Fox, M.D., Zhang, D., Snyder, A.Z. & Raichle, M.E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Power, J.D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  69. Smith, S.M. The future of FMRI connectivity. Neuroimage 62, 1257–1266 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Biswal, M. Dixon, T. Braver, S. Petersen and J. Power for helpful conversations during preparation of this manuscript. Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: D. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. M.W.C. was supported by the US National Institutes of Health under award K99-R00 MH096801. D.S.B. acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1-0679, the National Institute of Mental Health (2-R01-DC-009209-11), the National Institute of Child Health and Human Development (1R01HD086888-01), the Office of Naval Research and the National Science Foundation (#BCS-1441502, #BCS-1430087, and #PHY-1554488). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

M.W.C. conceived of the study, developed the activity flow mapping algorithm, developed the computational model, developed the multiple-regression functional connectivity approach, performed the analyses and wrote the manuscript. T.I. developed the computational model and assisted with writing the manuscript. D.S.B. provided feedback on the activity flow mapping algorithm and assisted with writing the manuscript. D.H.S. assisted with writing the manuscript.

Corresponding author

Correspondence to Michael W Cole.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Isolating and predicting task-specific activations using Pearson correlation FC

A) The activation patterns for all 7 tasks are shown (right) relative to rest baseline. Resting-state FC using Pearson correlation was used to predict activation patterns across the 7 tasks (mean activity amplitude of each region for each task). These activation patterns were highly similar to one another, reducing the ability to make inferences at the level of individual tasks. The across-task average activity flow prediction r-value was 0.54. B) We illustrate a framework involving the decomposition of task activation patterns with the motor task as an example. Whole-brain task activation patterns are shown to be composed of a task-general activation pattern common across tasks (the first principal component of the other 6 tasks) and a task-specific activation pattern (the task activation vector with the task-general activation vector regressed out). Each task-specific pattern is equivalent in some ways to a general linear model contrast of that task’s activations versus the activation patterns of the other tasks. Note the task-specific increase in the motor/tactile network (cyan arrow) consistent with the motor task. See Fig. 2C for the result of this procedure for all 7 tasks.

Supplementary Figure 2 Activity-flow-based predictions depend on an accurate FC architecture

We randomized which region’s FC was used for each region’s prediction. A) An example of what happens to the activation prediction matrix when resting-state multiple regression FC is randomized: an across-task average activity flow prediction r-value of 0.002. B) The distribution of Pearson correlation r-values between predicted and actual activity patterns over 10,000 permutations of FC. The highest r-value was 0.024. Resting-state multiple regression FC was used along with task-specific activation patterns.

Supplementary Figure 3 Predicted-to-actual activation pattern similarities by network

A) The correlations between predicted and actual activation patterns for each network are shown separately for each task. Some networks showed negative correlations, such as the motor/tactile (mouth) network. B) The predicted and actual activations are shown for the motor/tactile (mouth) network across all tasks (7 tasks X 5 regions = 25 values) on the left (r=0.91). However, the correlation was negative (r=-0.69) for that network when focusing on task 3, the language task (right side). The red ellipse in the left plot indicates where the language task activations are located, indicating that they are fairly accurate relative to the across-task range of this network’s activations.

Supplementary Figure 4 Predicting voxelwise activation patterns for all seven tasks

Predicted and actual task-specific activation patterns are shown for all 7 tasks. These results are based on principal components multiple regression FC with task-specific activation patterns. Maps correspond to the emotion task (A), gambling task (B), language task (C), motor task (D), relational reasoning task (E), social task (F), and the N-back working memory task (G).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cole, M., Ito, T., Bassett, D. et al. Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci 19, 1718–1726 (2016). https://doi.org/10.1038/nn.4406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing