Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins

Abstract

This protocol is an extension to: Nat. Protoc. 9, 2395–2410 (2014); doi:10.1038/nprot.2014.157; published online 18 September 2014

In recent years, CRISPR/Cas9 has emerged as a powerful tool for improving crop traits. Conventional plant genome editing mainly relies on plasmid-carrying cassettes delivered by Agrobacterium or particle bombardment. Here, we describe DNA-free editing of bread wheat by delivering in vitro transcripts (IVTs) or ribonucleoprotein complexes (RNPs) of CRISPR/Cas9 by particle bombardment. This protocol serves as an extension of our previously published protocol on genome editing in bread wheat using CRISPR/Cas9 plasmids delivered by particle bombardment. The methods we describe not only eliminate random integration of CRISPR/Cas9 into genomic DNA, but also reduce off-target effects. In this protocol extension article, we present detailed protocols for preparation of IVTs and RNPs; validation by PCR/restriction enzyme (RE) and next-generation sequencing; delivery by biolistics; and recovery of mutants and identification of mutants by pooling methods and Sanger sequencing. To use these protocols, researchers should have basic skills and experience in molecular biology and biolistic transformation. By using these protocols, plants edited without the use of any foreign DNA can be generated and identified within 9–11 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of CRISPR/Cas9 IVT- or RNP-mediated genome editing in wheat.
Figure 2: Schematic of PCR strategies for next-generation sequencing of bombarded immature embryos to confirm CRISPR/Cas9 delivery (Steps 38–46).
Figure 3: Anticipated results for mutagenesis by CRISPR/Cas IVTs/RNPs.

Similar content being viewed by others

References

  1. Uauy, C. Wheat genomics comes of age. Curr. Opin. Plant Biol. 36, 142–148 (2017).

    Article  PubMed  Google Scholar 

  2. Weeks, D.P., Spalding, M.H. & Yang, B. Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol. J. 14, 483–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Voytas, D.F. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64, 327–350 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, K. & Gao, C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 33, 575–583 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, H., La Russa, M. & Qi, L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Barrangou, R. & Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sander, J.D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wright, A.V., Nunez, J.K. & Doudna, J. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947–951 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 112, 3570–3575 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang, Z., Zhang, K., Chen, K. & Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 41, 63–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931–945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Char, S.N. et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 15, 257–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z. et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169, 960–970 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. & Parrott, W. A. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. 15, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Butler, N.M., Atkins, P.A., Voytas, D.F. & Douches, D. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE 10, e0144591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brooks, C., Nekrasov, V., Lippman, Z.B. & Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166, 1292–1297 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, D., Li, Z. & Li, J. Targeted gene manipulation in plants using the CRISPR/Cas technology. J. Genet. Genomics 43, 251–262 (2016).

    Article  PubMed  Google Scholar 

  21. Ding, Y., Li, H., Chen, L.L. & Xie, K. Recent advances in genome editing using CRISPR/Cas9. Front. Plant Sci. 7, 703 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. & Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kouranova, E. et al. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 27, 464–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bortesi, L. & Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41–52 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Gorbunova, V. & Levy, A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25, 4650–4657 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J. & Kim, J.S. Bypassing GMO regulations with CRISPR gene editing. Nat. Biotechnol. 34, 1014–1015 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Staahl, B.T. et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35, 431–434 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho, S.W., Lee, J., Carroll, D., Kim, J.S. & Lee, J. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 1177–1180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burger, A. et al. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development 143, 2025–2037 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. DeWitt, M.A. et al. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci. Transl. Med. 8, 360ra134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hultquist, J.F. et al. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep. 17, 1438–1452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl. Acad. Sci. USA 112, 10437–10442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woo, J.W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Subburaj, S. et al. Site-directed mutagenesis in Petunia x hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 35, 1535–1544 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Malnoy, M. et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 7, 1904 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shan, Q., Wang, Y., Li, J. & Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J. et al. Registration of a high-yielding and broad-adaptive winter wheat cultivar-Kenong 199. J. Triticeae Crops 27, 368 (2007).

    Google Scholar 

  42. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. & Mark Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, A. et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30, 1180–1182 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Zuris, J.A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, J. et al. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat. Protoc. 10, 1842–1859 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, H. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797–807 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Kruger, N.J. The Bradford method for protein quantitation. Methods in Molecular Biology Vol. 32 (ed. J.M. Walker) 9–15 (Humana Press, 1994).

  48. Allen, G.C., Flores-Vergara, M.A., Krasynanski, S., Kumar, S. & Thompson, W.F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2016YFD0101804), the National Transgenic Science and Technology Program (2016ZX08010-002), the Chinese Academy of Sciences (QYZDY-SSW-SMC030 and GJHZ1602) and the National Natural Science Foundation of China (31788103, 31420103912 and 31570369).

Author information

Authors and Affiliations

Authors

Contributions

Z.L., K.C. and C.G. designed the experiments for the protocol; Z.L. and Y.Z. performed the experiments with assistance from K.C., J.L., K.Y. and J.-L.Q.; and Z.L., K.C. and C.G. wrote the manuscript.

Corresponding author

Correspondence to Caixia Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Notes 1–3. (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Chen, K., Zhang, Y. et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13, 413–430 (2018). https://doi.org/10.1038/nprot.2017.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.145

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research