Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Detecting long-term Arctic surface water changes

The Original Article was published on 05 October 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Data availability

The analysis in this study relied on datasets from the following sources, all of which are freely available to the public. Webb et al.1 SWI trends are available at: https://arcticdata.io/catalog/view/doi:10.18739/A2NK3665N. Olthof and Rainville3 surface water trends are available at: https://open.canada.ca/data/en/dataset/62de5952-a5eb-4859-b086-22a8ba8024b8. Pickens et al.4 surface water trends are available at: https://glad.umd.edu/dataset/global-surface-water-dynamics. Nitze et al.7 lake area trends are available at: https://doi.pangaea.de/10.1594/PANGAEA.894755. Yao et al.20 lake water storage trends are available at: https://zenodo.org/record/7946043.

Code availability

Google Earth Engine code used to calculate the net changes in surface water in eastern Canada from different data sources is available here: https://code.earthengine.google.com/0edfaa0327c018b68f1ab8aab2e32f98. Google Earth Engine code used to isolate lake water storage trends over Canada and pan-Arctic permafrost zones is available here: https://code.earthengine.google.com/75a7ea6f5b35252e4a55fb4972da1aec.

References

  1. Webb, E. E. et al. Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12, 841–846 (2022).

  2. Olthof, I., Fraser, R. H., van der Sluijs, J. & Travers-Smith, H. Detecting long-term Arctic surface water changes. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01836-9 (2023).

  3. Olthof, I. & Rainville, T. Dynamic surface water maps of Canada from 1984 to 2019 Landsat satellite imagery. Remote Sens. Environ. 279, 113121 (2022).

    Article  Google Scholar 

  4. Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).

    Article  Google Scholar 

  5. Webb, E. & Liljedahl, A. Diminishing lake area across the northern permafrost zone. Nat. Geosci. 16, 202–209 (2023).

  6. Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).

    Article  Google Scholar 

  7. Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

  8. Cooley, S. W., Smith, L. C., Stepan, L. & Mascaro, J. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery. Remote Sens. 9, 1306 (2017).

  9. Olthof, I., Fraser, R. H. & Schmitt, C. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 168, 194–204 (2015).

    Article  Google Scholar 

  10. Muster, S., Heim, B., Abnizova, A. & Boike, J. Water body distributions across scales: a remote sensing based comparison of three arctic tundrawetlands. Remote Sens. 5, 1498–1523 (2013).

    Article  Google Scholar 

  11. Tarasenko, T. V. Interannual variations in the areas of thermokarst lakes in Central Yakutia. Water Resour. 40, 111–119 (2013).

    Article  CAS  Google Scholar 

  12. Cooley, S. W., Smith, L. C., Ryan, J. C., Pitcher, L. H. & Pavelsky, T. M. Arctic-Boreal lake dynamics revealed using CubeSat imagery. Geophys. Res. Lett. 46, 2111–2120 (2019).

    Article  Google Scholar 

  13. Bowling, L. C., Kane, D. L., Gieck, R. E., Hinzman, L. D. & Lettenmaier, D. P. The role of surface storage in a low-gradient Arctic watershed. Water Resour. Res. 39, 1087 (2003).

  14. Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

  15. Li, J., Holmgren, M. & Xu, C. Greening vs browning? Surface water cover mediates how tundra and boreal ecosystems respond to climate warming. Environ. Res. Lett. 16, 104004 (2021).

  16. Travers-Smith, H., Lantz, T. C., Fraser, R. H. & Kokelj, S. V. Changes in surface water dynamics across northwestern Canada are influenced by wildfire and permafrost thaw. Environ. Res. Lett. 17, 114021 (2022).

    Article  Google Scholar 

  17. Lara, M. J., Chipman, M. L. & Hu, F. S. Automated detection of thermoerosion in permafrost ecosystems using temporally dense Landsat image stacks. Remote Sens. Environ. 221, 462–473 (2019).

    Article  Google Scholar 

  18. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

  19. Zolkos, S. et al. Multidecadal declines in particulate mercury and sediment export from Russian rivers in the pan-Arctic basin. Proc. Natl Acad. Sci. 119, e2119857119 (2022).

  20. Yao, F. et al. Satellites reveal widespread decline in global lake water storage. Science 380, 743–749 (2023).

  21. Skakun, R. et al. Extending the National Burned Area Composite time series of wildfires in Canada. Remote Sens. 14, 3050 (2022).

  22. Yu, L. & Leng, G. Identifying the paths and contributions of climate impacts on the variation in land surface albedo over the Arctic. Agric. For. Meteorol. 313, 108772 (2022).

  23. Plekhanova, E. et al. Mid-summer snow-free albedo across the Arctic tundra was mostly stable or increased over the past two decades. Environ. Res. Lett. 17, 124026 (2022).

    Article  Google Scholar 

  24. Webb, E. E., Loranty, M. M. & Lichstein, J. W. Surface water, vegetation, and fire as drivers of the terrestrial Arctic-boreal albedo feedback. Environ. Res. Lett. 16, 084046 (2021).

  25. Juszak, I. et al. Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens. Environ. 193, 86–102 (2017).

    Article  Google Scholar 

  26. Lafleur, P. M., Wurtele, A. B. & Duguay, C. R. Spatial and temporal variations in surface albedo of a subarctic landscape using surface-based measurements and remote sensing. Arct. Alp. Res. 29, 261–269 (1997).

    Article  Google Scholar 

  27. Alaska Fire History Perimeter Polygons. Alaska Interagency Coordination Center https://fire.ak.blm.gov/predsvcs/maps.php (2021).

  28. National Fire Database - Agency Provided Fire Perimeters. Canadian National Forest Service http://cwfis.cfs.nrcan.gc.ca/datamart/metadata/nfdbpoly (2021).

  29. Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006 (dataset). NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/MODIS/MCD64A1.006 (2015).

  30. Talucci, A. Loranty, M. & Alexander, H. Fire perimeters for eastern Siberia taiga and tundra from 2001-2020. Arctic Data Center https://doi.org/10.18739/A2N87311N (2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.E.W. wrote the manuscript with assistance from J.W.L. and all authors provided feedback.

Corresponding author

Correspondence to Elizabeth E. Webb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, E.E., Liljedahl, A.K., Loranty, M.M. et al. Reply to: Detecting long-term Arctic surface water changes. Nat. Clim. Chang. 13, 1194–1196 (2023). https://doi.org/10.1038/s41558-023-01837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01837-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing