Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator

Abstract

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn–Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A−1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: QH-mediated non-reciprocal charge transport in Sn-BSTS device.
Fig. 2: Gate-dependent non-reciprocal charge transport in Sn-BSTS device.
Fig. 3: Magnetic-field-dependent non-reciprocal resistance in Sn-BSTS device.
Fig. 4: Temperature-dependent non-reciprocal charge transport in Sn-BSTS device.
Fig. 5: Origin of non-reciprocal resistance.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from noncentrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ideue, T. & Iwasa, Y. Symmetry breaking and nonlinear electric transport in van der Waals nanostructures. Annu. Rev. Condens. Matter Phys. 12, 201–223 (2021).

    Article  CAS  Google Scholar 

  3. Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, J. X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

    Article  CAS  Google Scholar 

  6. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Kang, K. et al. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. Large magnetoelectric resistance in the topological Dirac semimetal α-Sn. Sci. Adv. 8, eabo0052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Itahashi, Y. M. et al. Nonreciprocal transport in gate-induced polar superconductor SrTiO3. Sci. Adv. 6, eaay9120 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lustikova, J. et al. Vortex rectenna powered by environmental fluctuations. Nat. Commun. 9, 4922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, W. et al. Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge. Nat. Mater. 19, 503–507 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Li, J. et al. Proximity-magnetized quantum spin Hall insulator: monolayer 1 T′ WTe2/Cr2Ge2Te6. Nat. Commun. 13, 5134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lv, Y. et al. Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures. Nat. Commun. 9, 111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yasuda, K. et al. Nonreciprocal charge transport at topological insulator/superconductor interface. Nat. Commun. 10, 2734 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Choe, D. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 10, 4510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, E. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 11, 5634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3(111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Fan, Y. et al. Unidirectional magneto-resistance in modulation-doped magnetic topological insulators. Nano Lett. 19, 692–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Ye, C. et al. Nonreciprocal transport in a bilayer of MnBi2Te4 and Pt. Nano Lett. 22, 1366–1373 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. et al. Gigantic magnetochiral anisotropy in the topological semimetal ZrTe5. Phys. Rev. Lett. 128, 176602 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Legg, H. F. et al. Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires. Nat. Nanotechnol. 17, 696–700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yokouchi, T. et al. Giant magnetochiral anisotropy in Weyl semimetal WTe2 induced by diverging Berry curvature. Phys. Rev. Lett. 130, 136301 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Y. et al. Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe. Nat. Commun. 12, 540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, L. et al. Room-temperature gate-tunable nonreciprocal charge transport in lattice-matched InSb/CdTe heterostructures. Adv. Mater. 35, 2207322 (2023).

    Article  CAS  Google Scholar 

  34. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  35. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    Article  CAS  Google Scholar 

  36. Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).

    Article  PubMed  Google Scholar 

  37. Fu, Y. et al. Bilinear magnetoresistance in HgTe topological insulator: opposite signs at opposite surfaces demonstrated by gate control. Nano Lett. 22, 7867–7873 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Z. et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 13, 6191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu, Y. et al. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963 (2014).

    Article  CAS  Google Scholar 

  41. Xu, Y., Miotkowski, I. & Chen, Y. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators. Nat. Commun. 7, 11434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xie, F. et al. Phase transition and anomalous scaling in the quantum Hall transport of topological-insulator Sn-Bi1.1Sb0.9Te2S devices. Phys. Rev. B 99, 081113(R) (2019).

    Article  Google Scholar 

  43. Kushwaha, S. et al. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties. Nat. Commun. 7, 11456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heremans, J. P. et al. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2, 17049 (2017).

    Article  CAS  Google Scholar 

  45. Breunig, O. & Ando, Y. Opportunities in topological insulator devices. Nat. Rev. Phys. 4, 184–193 (2022).

    Article  Google Scholar 

  46. Zhuo, D. et al. Axion insulator state in hundred-nanometer-thick magnetic topological insulator sandwich heterostructures. Nat. Commun. 14, 7596 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (no. 2022YFA1402404 to F.S. and X.W.), the National Natural Science Foundation of China (grant nos 92161201 to F.S., T2221003 to F.S., 12374043 to S.Z., T2394473 to X.W., T2394470 to X.W., 12322402 to R.W., 62274085 to X.W., 12104220 to Y.Q., 12025404 to F.S. and 61822403 to X.W.) and the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0302800 to R.W.).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., X.W. and F.S. supervised the project. C.L. fabricated the devices. C.L. and S.Z. carried out the transport measurement. R.W. devised the theory. S.Z., R.W., C.L, Y.Q., X.W. and F.S. performed the analysis and wrote the manuscript with contributions from all the authors.

Corresponding authors

Correspondence to Shuai Zhang, Xuefeng Wang or Fengqi Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Michael Fuhrer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10, Figs. 1–13 and Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, R., Zhang, S. et al. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01874-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing