Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metasurface-enabled single-shot and complete Mueller matrix imaging

Abstract

When light scatters off an object, its polarization, in general, changes—a transformation described by the object’s Mueller matrix. Mueller matrix imaging is an important technique in science and technology to image the spatially varying polarization response of an object of interest, to reveal rich information otherwise invisible to traditional imaging. Here we conceptualize, implement and demonstrate a compact Mueller matrix imaging system—composed of a metasurface to produce structured polarization illumination and a metasurface for polarization analysis—that can, in a single shot, acquire all 16 components of an object’s spatially varying Mueller matrix over an image. Our implementation, which is free of any moving parts or bulk polarization optics, should enable and empower applications in real-time medical imaging, material characterization, machine vision, target detection and other important areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conventional polarization optics versus metasurfaces.
Fig. 2: Concept of single-shot and complete MM imaging.
Fig. 3: Experimental implementation.
Fig. 4: MM imaging results for transmission.
Fig. 5: MM imaging results for reflection.

Similar content being viewed by others

Data availability

All data are available in the paper or Supplementary Information.

References

  1. Zernike, F. How I discovered phase contrast. Science 121, 345–349 (1955).

    Article  ADS  Google Scholar 

  2. Snik, F. et al. An overview of polarimetric sensing techniques and technology with applications to different research fields. Proc. SPIE 9099, 90990B (2014).

  3. Damask, J. N. Polarization Optics in Telecommunications (Springer, 2005).

  4. Tyo, J. S., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006).

    Article  ADS  Google Scholar 

  5. Demos, S. G. & Alfano, R. R. Optical polarization imaging. Appl. Opt. 36, 150–155 (1997).

    Article  ADS  Google Scholar 

  6. Tyo, J. S., Rowe, M. P., Pugh, E. N. & Engheta, N. Target detection in optically scattering media by polarization-difference imaging. Appl. Opt. 35, 1855–1870 (1996).

    Article  ADS  Google Scholar 

  7. Lu, S.-Y. & Chipman, R. A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996).

    Article  ADS  Google Scholar 

  8. Azzam, R. M. A. Stokes-vector and Mueller-matrix polarimetry [invited]. J. Opt. Soc. Am. A 33, 1396–1408 (2016).

    Article  ADS  Google Scholar 

  9. Tuchin, V. V., Wang, L. V. & Zimnyakov, D. A. Optical Polarization in Biomedical Applications (Springer, 2006).

  10. Alali, S. & Vitkin, A. Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 20, 061104 (2015).

    Article  ADS  Google Scholar 

  11. Dubreuil, M. et al. Mueller matrix polarimetry for improved liver fibrosis diagnosis. Opt. Lett. 37, 1061–1063 (2012).

    Article  ADS  Google Scholar 

  12. Dreher, A. W., Reiter, K. & Weinreb, R. N. Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl. Opt. 31, 3730–3735 (1992).

    Article  ADS  Google Scholar 

  13. Westphal, P., Kaltenbach, J.-M. & Wicker, K. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring. Biomed. Opt. Express 7, 1160–1174 (2016).

    Article  Google Scholar 

  14. Li, X. et al. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. Appl. Opt. 56, 6520–6530 (2017).

    Article  ADS  Google Scholar 

  15. Ghosh, N. & Vitkin, I. A. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16, 110801 (2011).

    Article  ADS  Google Scholar 

  16. Antonelli, M.-R. et al. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt. Express 18, 10200–10208 (2010).

    Article  ADS  Google Scholar 

  17. Pierangelo, A. et al. Polarimetric imaging of uterine cervix: a case study. Opt. Express 21, 14120–14130 (2013).

    Article  ADS  Google Scholar 

  18. Novikova, T., Pierangelo, A., Martino, A. D., Benali, A. & Validire, P. Polarimetric imaging for cancer diagnosis and staging. Opt. Photon. News 23, 26–33 (2012).

    Article  Google Scholar 

  19. Liu, S., Chen, X. & Zhang, C. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films 584, 176–185 (2015).

    Article  ADS  Google Scholar 

  20. Kokhanovsky, A. A. Parameterization of the Mueller matrix of oceanic waters. J. Geophys. Res. https://doi.org/10.1029/2001jc001222 (2003).

  21. Kattawar, G. W. & Gray, D. J. Mueller matrix imaging of targets in turbid media: effect of the volume scattering function. Appl. Opt. 42, 7225–7230 (2003).

    Article  ADS  Google Scholar 

  22. Andreou, A. & Kalayjian, Z. Polarization imaging: principles and integrated polarimeters. IEEE Sens. J. 2, 566–576 (2002).

    Article  ADS  Google Scholar 

  23. Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 267, 520–541 (2018).

    Article  Google Scholar 

  24. Ratliff, B. M., LaCasse, C. F. & Tyo, J. S. Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. Opt. Express 17, 9112–9125 (2009).

    Article  ADS  Google Scholar 

  25. Davis, J. A. et al. Diffraction gratings generating orders with selective states of polarization. Opt. Express 24, 907–917 (2016).

    Article  ADS  Google Scholar 

  26. Berezhnyy, I. & Dogariu, A. Time-resolved Mueller matrix imaging polarimetry. Opt. Express 12, 4635–4649 (2004).

    Article  ADS  Google Scholar 

  27. Gonzalez, M. et al. Design and implementation of a portable colposcope Mueller matrix polarimeter. J. Biomed. Opt. https://doi.org/10.1117/1.jbo.25.11.116006 (2020).

  28. Tyo, J. S., Rodríguez-Herrera, O. G., Flannery, C., Kurtz, J. & Alenin, A. S. Scene-adaptive spatially channeled imaging Mueller polarimeter. Opt. Express 31, 23678–23692 (2023).

    Article  ADS  Google Scholar 

  29. Angelo, J. P., Germer, T. A. & Litorja, M. Structured illumination Mueller matrix imaging. Biomed. Opt. Express 10, 2861–2868 (2019).

    Article  Google Scholar 

  30. Huang, T. et al. Fast Mueller matrix microscope based on dual DoFP polarimeters. Opt. Lett. 46, 1676–1679 (2021).

    Article  ADS  Google Scholar 

  31. Gao, C. et al. Dual vortex retarder Mueller matrix ellipsometry. Opt. Lasers Eng. 166, 107564 (2023).

    Article  Google Scholar 

  32. Bhattacharyya, K. & Otani, Y. Single shot Mueller matrix polarimetry using axially symmetric quarter wave plate and channeled spectrum. Optik 183, 451–454 (2019).

    Article  ADS  Google Scholar 

  33. Töppel, F., Aiello, A., Marquardt, C., Giacobino, E. & Leuchs, G. Classical entanglement in polarization metrology. New J. Phys. 16, 073019 (2014).

    Article  ADS  Google Scholar 

  34. Pierangeli, D. & Conti, C. Single-shot polarimetry of vector beams by supervised learning. Nat. Commun. 14, 1831 (2023).

    Article  Google Scholar 

  35. Kudenov, M. W., Escuti, M. J., Hagen, N., Dereniak, E. L. & Oka, K. Snapshot imaging Mueller matrix polarimeter using polarization gratings. Opt. Lett. 37, 1367–1369 (2012).

    Article  ADS  Google Scholar 

  36. Cao, Q. et al. Snapshot imaging Mueller matrix polarimeter using modified savart polariscopes. Appl. Opt. 62, 2124–2129 (2023).

    Article  ADS  Google Scholar 

  37. Zaidi, A., McEldowney, S., Lee, Y.-H., Chao, Q. & Lu, L. Towards compact and snapshot channeled Mueller matrix imaging. Opt. Lett. 47, 722–725 (2022).

    Article  ADS  Google Scholar 

  38. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  39. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  40. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  41. Mueller, J. B., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.118.113901 (2017).

  42. Zaidi, A., Rubin, N. A., Dorrah, A. H., Park, J.-S. & Capasso, F. Generalized polarization transformations with metasurfaces. Opt. Express 29, 39065–39078 (2021).

    Article  ADS  Google Scholar 

  43. Rubin, N. A., Zaidi, A., Dorrah, A. H., Shi, Z. & Capasso, F. Jones matrix holography with metasurfaces. Sci. Adv. https://doi.org/10.1126/sciadv.abg7488 (2021).

  44. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science https://doi.org/10.1126/science.aax1839 (2019).

  45. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  Google Scholar 

  46. Rubin, N. A. et al. Polarization state generation and measurement with a single metasurface. Opt. Express 26, 21455–21478 (2018).

    Article  ADS  Google Scholar 

  47. Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photon. 6, 2712–2718 (2019).

    Article  Google Scholar 

  48. Rubin, N. A. et al. Imaging polarimetry through metasurface polarization gratings. Opt. Express 30, 9389–9412 (2022).

    Article  ADS  Google Scholar 

  49. Devlin, R. C., Khorasaninejad, M., Chen, W. T., Oh, J. & Capasso, F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl Acad. Sci. USA 113, 10473–10478 (2016).

    Article  ADS  Google Scholar 

  50. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  51. Li, L. W., Rubin, N. A., Juhl, M., Park, J.-S. & Capasso, F. Evaluation and characterization of imaging polarimetry through metasurface polarization gratings. Appl. Opt. 62, 1704–1722 (2023).

    Article  ADS  Google Scholar 

  52. Li, Q., Song, J., Alenin, A. S. & Tyo, J. S. Spectral–temporal channeled spectropolarimetry using deep-learning-based adaptive filtering. Opt. Lett. 46, 4394–4397 (2021).

    Article  ADS  Google Scholar 

  53. Yang, W. et al. Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21, 3106–3121 (2019).

    Article  Google Scholar 

  54. Goto, A., Otomo, K. & Nemoto, T. Real-time polarization-resolved imaging of living tissues based on two-photon excitation spinning-disk confocal microscopy. Front. Phys. https://doi.org/10.3389/fphy.2019.00056 (2019).

  55. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photon. 12, 540–547 (2018).

    Article  ADS  Google Scholar 

  56. Qi, J. et al. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01018-0 (2023).

  57. Oates, T. W. H., Shaykhutdinov, T., Wagner, T., Furchner, A. & Hinrichs, K. Mid-infrared gyrotropy in split-ring resonators measured by Mueller matrix ellipsometry. Opt. Mater. Express 4, 2646 (2014).

    Article  ADS  Google Scholar 

  58. Schmidt, D. Characterization of highly anisotropic three-dimensionally nanostructured surfaces. Thin Solid Films 571, 364–370 (2014).

    Article  ADS  Google Scholar 

  59. Heinzl, T. et al. On the observation of vacuum birefringence. Opt. Commun. 267, 318–321 (2006).

    Article  ADS  Google Scholar 

  60. Azzam, R. M. A. Three-dimensional polarization states of monochromatic light fields. J. Opt. Soc. Am. A 28, 2279 (2011).

    Article  ADS  Google Scholar 

  61. Marx, B. et al. High-precision X-ray polarimetry. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.110.254801 (2013).

  62. Wiesauer, K. & Jördens, C. Recent advances in birefringence studies at THz frequencies. J. Infrared Millim. Terahertz Waves 34, 663–681 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Air Force Office of Scientific Research (AFOSR) under grant number FA9550-21-1-0312 (F.C.), the Office of Naval Research (ONR) under grant number N00014-20-1-2450 (F.C.) and the National Aeronautics and Space Administration (NASA) under grant numbers 80NSSC21K0799 (F.C.) and 80NSSC20K0318 (F.C.). This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS): a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award number ECCS-2025158.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. conceived the idea and developed the theory with inputs from N.A.R. and F.C. A.Z. designed and optimized the metasurfaces. M.L.M. and N.A.R. fabricated the metasurfaces with assistance from J.-S.P. N.A.R. and L.W.L. performed full-Stokes imaging calibration. A.Z. performed the experiments with assistance from A.H.D. A.Z. analysed the data. F.C. supervised the project. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Aun Zaidi or Federico Capasso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Davide Pierangeli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEM Images of Metasurfaces.

(A) SEM images of the (aperiodic) metasurface hologram - Metasurface 1 - used to produce structured polarization illumination. (B) SEM images of the (periodic) metasurface diffraction grating - Metasurface 2 - used for full-Stokes imaging. (Scale bar: 1 μm).

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Discussion.

Supplementary Video

Video (real-time imaging) of a rotating linear polarizer. The ‘pauses’ in between are due to the experimenter resetting their fingers on the dial of the polarizer. From 35 s onwards, the experimenter is removing the linear polarizer; at the end, we see the identity MM of air.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, A., Rubin, N.A., Meretska, M.L. et al. Metasurface-enabled single-shot and complete Mueller matrix imaging. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01426-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing