Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Severe cutaneous adverse reactions

Abstract

Severe cutaneous adverse reactions (SCARs), which include Stevens–Johnson syndrome and toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms (also known as drug-induced hypersensitivity syndrome), acute generalized exanthematous pustulosis, and generalized bullous fixed drug eruption, are life-threatening conditions. The pathogenesis of SCARs involves T cell receptors recognizing drug antigens presented by human leukocyte antigens, triggering the activation of distinct T cell subsets. These cells interact with keratinocytes and various immune cells, orchestrating cutaneous lesions and systemic manifestations. Genetic predisposition, impaired drug metabolism, viral reactivation or infections, and heterologous immunity influence SCAR development and clinical presentation. Specific genetic associations with distinct SCAR phenotypes have been identified, leading to the implementation of genetic screening before prescription in various countries to prevent SCARs. Whilst systemic corticosteroids and conventional immunomodulators have been the primary therapeutic agents, evolving strategies, including biologics and small molecules targeting tumour necrosis factor, different cytokines, or Janus kinase signalling pathways, signify a shift towards a precision management paradigm that considers individual clinical presentations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiological mechanisms in SCARs.
Fig. 2: Cell death mechanisms in SJS/TEN: pathogenesis of keratinocyte death.
Fig. 3: Mechanistic models for T cell recognition and activation and systemic factors contributing to SCARs.
Fig. 4: Global representation of HLA risk alleles linked to SCARs.
Fig. 5: Cutaneous manifestations of severe cutaneous adverse reactions.
Fig. 6: Treatment strategies for SJS/TEN based on disease stage.
Fig. 7: Treatment strategies for DRESS based on disease stage.

Similar content being viewed by others

References

  1. Duong, T. A., Valeyrie-Allanore, L., Wolkenstein, P. & Chosidow, O. Severe cutaneous adverse reactions to drugs. Lancet 390, 1996–2011 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bellón, T. Mechanisms of severe cutaneous adverse reactions: recent advances. Drug Saf. 42, 973–992 (2019).

    Article  PubMed  Google Scholar 

  3. Gibson, A. et al. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J. Allergy Clin. Immunol. 151, 289–300.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roujeau, J. C. & Stern, R. S. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 331, 1272–1285 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Chu, M.-T., Chang, W.-C., Pao, S.-C. & Hung, S.-I. Delayed drug hypersensitivity reactions: molecular recognition, genetic susceptibility, and immune mediators. Biomedicines 11, 177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bastuji-Garin, S. et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch. Dermatol. 129, 92–96 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Mockenhaupt, M. The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev. Clin. Immunol. 7, 803–813 (2011).

    Article  PubMed  Google Scholar 

  8. Roujeau, J. C. The spectrum of Stevens-Johnson syndrome and toxic epidermal necrolysis: a clinical classification. J. Invest. Dermatol. 102, 28S–30S (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Howland, W. W., Golitz, L. E., Weston, W. L. & Huff, J. C. Erythema multiforme: clinical, histopathologic, and immunologic study. J. Am. Acad. Dermatol. 10, 438–446 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Roujeau, J. C. et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N. Engl. J. Med. 333, 1600–1607 (1995). To our knowledge, the first case–control study of the risk of SJS/TEN following drug use.

    Article  CAS  PubMed  Google Scholar 

  11. Mockenhaupt, M. et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J. Invest. Dermatol. 128, 35–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Pichler, W. J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 139, 683–693 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Chung, W. H. et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat. Med. 14, 1343–1350 (2008). Study reporting that granulysin triggers keratinocyte death in SJS/TEN.

    Article  CAS  PubMed  Google Scholar 

  14. Pan, R. Y., Chu, M. T., Wang, C. W., Lee, Y. S. & Lemonnier, F. Identification of drug-specific public TCR driving severe cutaneous adverse reactions. Nat. Commun. 10, 3569 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pichler, W. J. Immune pathomechanism and classification of drug hypersensitivity. Allergy 74, 1457–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Villani, A. P. et al. Massive clonal expansion of polycytotoxic skin and blood CD8+ T cells in patients with toxic epidermal necrolysis. Sci. Adv. 7, eabe001 (2021).

    Article  Google Scholar 

  17. Jutel, M. et al. Nomenclature of allergic diseases and hypersensitivity reactions: adapted to modern needs: an EAACI position paper. Allergy 78, 2851–2874 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Chung, W. H. et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428, 486 (2004). Study reporting the association between HLA-B*15:02 and carbamazepine SJS/TEN.

    Article  CAS  PubMed  Google Scholar 

  19. Hung, S. I. et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl Acad. Sci. USA 102, 4134–4139 (2005). Study reporting the association between HLA-B*58:01 and risk of allopurinol SCARs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lonjou, C. et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet. Genomics 18, 99–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Chung, W. H. et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA 312, 525–534 (2014). Article discussing impaired drug metabolism and SCARs.

    Article  PubMed  Google Scholar 

  22. Su, S. C. et al. HLA alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin. Pharmacol. Ther. 105, 476–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Viard, I. et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282, 490–493 (1998). Study reporting that FASL-mediated cell apoptosis could be inhibited by IVIg therapy for SJS/TEN.

    Article  CAS  PubMed  Google Scholar 

  24. Nassif, A. et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J. Allergy Clin. Immunol. 114, 1209–1215 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Picard, D. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci. Transl. Med. 2, 46ra62 (2010).

    Article  PubMed  Google Scholar 

  26. Cacoub, P. et al. The DRESS syndrome: a literature review. Am. J. Med. 124, 588–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Kardaun, S. H. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 169, 1071–1080 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Wei, B. M. et al. Drug-induced hypersensitivity syndrome / drug reaction with eosinophilia and systemic symptoms. Part I. Epidemiology, pathogenesis, clinicopathological features, and prognosis. J. Am. Acad. Dermatol. https://doi.org/10.1016/j.jaad.2023.02.072 (2023).

    Article  PubMed  Google Scholar 

  29. Shiohara, T. & Mizukawa, Y. Drug-induced hypersensitivity syndrome (DiHS)/drug reaction with eosinophilia and systemic symptoms (DRESS): an update in 2019. Allergol. Int. 68, 301–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Bluestein, S. B., Yu, R., Stone, C. Jr. & Phillips, E. J. Reporting of drug reaction with eosinophilia and systemic symptoms from 2002 to 2019 in the US Food and Drug Administration Adverse Event Reporting System. J. Allergy Clin. Immunol. Pract. 9, 3208–3211.e1 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hetherington, S. et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Mallal, S. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002). Study reporting an association between HLA-B*57:01 and abacavir hypersensitivity.

    Article  CAS  PubMed  Google Scholar 

  33. Hung, S. I. et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 16, 297–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011). Study reporting an association between HLA-A*31:01 and carbamazepine hypersensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Genin, E. et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics J. 14, 281–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, F. R. et al. HLA-B*13:01 and the dapsone hypersensitivity syndrome. N. Engl. J. Med. 369, 1620–1628 (2013). Study reporting an associaton between HLA-B*13:01 and dapsone hypersensitivity syndrome.

    Article  CAS  PubMed  Google Scholar 

  37. Konvinse, K. C. et al. HLA-A*32:01 is strongly associated with vancomycin-induced drug reaction with eosinophilia and systemic symptoms. J. Allergy Clin. Immunol. 144, 183–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roujeau, J. C. et al. Acute generalized exanthematous pustulosis. Analysis of 63 cases. Arch. Dermatol. 127, 1333–1338 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Sidoroff, A., Halevy, S., Bavinck, J. N., Vaillant, L. & Roujeau, J. C. Acute generalized exanthematous pustulosis (AGEP) — a clinical reaction pattern. J. Cutan. Pathol. 28, 113–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Sidoroff, A. et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br. J. Dermatol. 157, 989–996 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Cho, Y. T. et al. Generalized bullous fixed drug eruption is distinct from Stevens-Johnson syndrome/toxic epidermal necrolysis by immunohistopathological features. J. Am. Acad. Dermatol. 70, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Rzany, B. et al. Epidemiology of erythema exsudativum multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis in Germany (1990-1992): structure and results of a population-based registry. J. Clin. Epidemiol. 49, 769–773 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, M. S. et al. Incidence of Stevens-Johnson syndrome and toxic epidermal necrolysis: a nationwide population-based study using national health insurance database in Korea. PLoS ONE 11, e0165933 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hsu, D. Y., Brieva, J., Silverberg, N. B. & Silverberg, J. I. Morbidity and mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis in United States adults. J. Invest. Dermatol. 136, 1387–1397 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Frey, N. et al. The epidemiology of Stevens-Johnson syndrome and toxic epidermal necrolysis in the UK. J. Invest. Dermatol. 137, 1240–1247 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Mockenhaupt, M. Epidemiology of cutaneous adverse drug reactions. Allergol. Sel. 1, 96–108 (2017).

    Article  CAS  Google Scholar 

  47. Naegele, D., Sekula, P., Paulmann, M. & Mockenhaupt, M. Incidence of epidermal necrolysis: results of the German registry. J. Invest. Dermatol. 140, 2525–2527 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Paulmann, M. & Mockenhaupt, M. Fever in Stevens-Johnson syndrome and toxic epidermal necrolysis in pediatric cases: laboratory work-up and antibiotic therapy. Pediatr. Infect. Dis. J. 36, 513–515 (2017).

    Article  PubMed  Google Scholar 

  49. Mittmann, N. et al. Incidence of toxic epidermal necrolysis and Stevens-Johnson Syndrome in an HIV cohort: an observational, retrospective case series study. Am. J. Clin. Dermatol. 13, 49–54 (2012).

    Article  PubMed  Google Scholar 

  50. Ziemer, M., Kardaun, S. H., Liss, Y. & Mockenhaupt, M. Stevens-Johnson syndrome and toxic epidermal necrolysis in patients with lupus erythematosus: a descriptive study of 17 cases from a national registry and review of the literature. Br. J. Dermatol. 166, 575–600 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Rosen, A. C. et al. Life-threatening dermatologic adverse events in oncology. Anticancer Drugs 25, 225–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Auquier-Dunant, A. et al. Correlations between clinical patterns and causes of erythema multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch. Dermatol. 138, 1019–1024 (2002).

    Article  PubMed  Google Scholar 

  53. Traikia, C. et al. Individual- and hospital-level factors associated with epidermal necrolysis mortality: a nationwide multilevel study, France, 2012-2016. Br. J. Dermatol. 182, 900–906 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Revuz, J. et al. Toxic epidermal necrolysis. Clinical findings and prognosis factors in 87 patients. Arch. Dermatol. 123, 1160–1165 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Weinand, C. et al. 27 years of a single burn centre experience with Stevens-Johnson syndrome and toxic epidermal necrolysis: analysis of mortality risk for causative agents. Burns 39, 1449–1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Wasuwanich, P., So, J. M., Chakrala, T. S., Chen, J. & Motaparthi, K. Epidemiology of Stevens-Johnson syndrome and toxic epidermal necrolysis in the United States and factors predictive of outcome. JAAD Int. 13, 17–25 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Prendiville, J. S., Hebert, A. A., Greenwald, M. J. & Esterly, N. B. Management of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. J. Pediatr. 115, 881–887 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Finkelstein, Y. et al. Recurrence and outcomes of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. Pediatrics 128, 723–728 (2011).

    Article  PubMed  Google Scholar 

  59. Chi, M. H. et al. Clinical features and outcomes in children with Stevens-Johnson syndrome and toxic epidermal necrolysis. J. Dermatol. 49, 895–902 (2022).

    Article  PubMed  Google Scholar 

  60. Halevy, S. et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J. Am. Acad. Dermatol. 58, 25–32 (2008).

    Article  PubMed  Google Scholar 

  61. Diphoorn, J. et al. Incidence, causative factors and mortality rates of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) in northern Italy: data from the REACT registry. Pharmacoepidemiol. Drug Saf. 25, 196–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, E. Y., Knox, C. & Phillips, E. J. Worldwide prevalence of antibiotic-associated Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 159, 384–392 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raschi, E. et al. Serious cutaneous toxicities with immune checkpoint inhibitors in the U.S. Food and Drug Administration Adverse Event Reporting System. Oncologist 24, e1228–e1231 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simonsen, A. B., Kaae, J., Ellebaek, E., Svane, I. M. & Zachariae, C. Cutaneous adverse reactions to anti-PD-1 treatment-a systematic review. J. Am. Acad. Dermatol. 83, 1415–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Satoh, T. K., Neulinger, M. M., Stadler, P. C., Aoki, R. & French, L. E. Immune checkpoint inhibitor-induced epidermal necrolysis: a narrative review evaluating demographics, clinical features, and culprit medications. J. Dermatol. 51, 3–11 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Avakian, R., Flowers, F. P., Araujo, O. E. & Ramos-Caro, F. A. Toxic epidermal necrolysis: a review. J. Am. Acad. Dermatol. 25, 69–79 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Zou, H. & Daveluy, S. Toxic epidermal necrolysis and Stevens-Johnson syndrome after COVID-19 infection and vaccination. Australas. J. Dermatol. 64, e1–e10 (2023).

    Article  PubMed  Google Scholar 

  68. Bocquet, H., Bagot, M. & Roujeau, J. C. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS). Semin. Cutan. Med. Surg. 15, 250–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Chiou, C. C. et al. Clinicopathological features and prognosis of drug rash with eosinophilia and systemic symptoms: a study of 30 cases in Taiwan. J. Eur. Acad. Dermatol. Venereol. 22, 1044–1049 (2008).

    Article  PubMed  Google Scholar 

  70. Hiransuthikul, A. et al. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS): 11 years retrospective study in Thailand. Allergol. Int. 65, 432–438 (2016).

    Article  PubMed  Google Scholar 

  71. Wolfson, A. R. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome identified in the electronic health record allergy module. J. Allergy Clin. Immunol. Pract. 7, 633–640 (2019).

    Article  PubMed  Google Scholar 

  72. Chen, Y. C., Chiu, H. C. & Chu, C. Y. Drug reaction with eosinophilia and systemic symptoms: a retrospective study of 60 cases. Arch. Dermatol. 146, 1373–1379 (2010).

    Article  PubMed  Google Scholar 

  73. Kridin, K. et al. Management and treatment outcome of DRESS patients in Europe: an international multicentre retrospective study of 141 cases. J. Eur. Acad. Dermatol. Venereol. 37, 753–762 (2023).

    Article  PubMed  Google Scholar 

  74. Metterle, L., Hatch, L. & Seminario-Vidal, L. Pediatric drug reaction with eosinophilia and systemic symptoms: a systematic review of the literature. Pediatr. Dermatol. 37, 124–129 (2020).

    Article  PubMed  Google Scholar 

  75. Kim, G. Y., Anderson, K. R., Davis, D. M. R., Hand, J. L. & Tollefson, M. M. Drug reaction with eosinophilia and systemic symptoms (DRESS) in the pediatric population: a systematic review of the literature. J. Am. Acad. Dermatol. 83, 1323–1330 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Miyagawa, F. & Asada, H. Current perspective regarding the immunopathogenesis of drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS). Int. J. Mol. Sci. 22, 2147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mizukawa, Y. et al. Drug-induced hypersensitivity/ drug reaction with eosinophilia and systemic symptoms: predictive score and outcomes. J. Allergy Clin. Immunol. Pract. 11, 3169–3178.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, Y.-C., Chang, C.-Y., Cho, Y.-T., Chiu, H.-C. & Chu, C.-Y. Long-term sequelae of drug reaction with eosinophilia and systemic symptoms: a retrospective cohort study from Taiwan. J. Am. Acad. Dermatol. 68, 459–465 (2013).

    Article  PubMed  Google Scholar 

  79. Kano, Y. et al. Sequelae in 145 patients with drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms: survey conducted by the Asian Research Committee on Severe Cutaneous Adverse Reactions (ASCAR). J. Dermatol. 42, 276–282 (2015).

    Article  PubMed  Google Scholar 

  80. Mizukawa, Y., Aoyama, Y., Takahashi, H., Takahashi, R. & Shiohara, T. Risk of progression to autoimmune disease in severe drug eruption: risk factors and the factor-guided stratification. J. Invest. Dermatol. 142, 960–968.e9 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Ingen-Housz-Oro, S. et al. Drug reactions with eosinophilia and systemic symptoms induced by immune checkpoint inhibitors: an international cohort of 13 cases. Melanoma Res. 33, 155–158 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Nili, A. et al. Acute generalized exanthematous pustulosis with a focus on hydroxychloroquine: a 10-year experience in a skin hospital. Int. Immunopharmacol. 89, 107093 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oh, D. A. Q. et al. Acute generalized exanthematous pustulosis: epidemiology, clinical course, and treatment outcomes of patients treated in an Asian academic medical center. JAAD Int. 3, 1–6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Creadore, A. et al. Clinical characteristics, disease course, and outcomes of patients with acute generalized exanthematous pustulosis in the US. JAMA Dermatol. 158, 176–183 (2022).

    Article  PubMed  Google Scholar 

  85. Soria, A. et al. DRESS and AGEP reactions to iodinated contrast media: a French case series. J. Allergy Clin. Immunol. Pract. 9, 3041–3050 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, P. W., Chiou, M. H., Chien, M. Y., Chen, W. W. & Chu, C. Y. Analysis of severe cutaneous adverse reactions (SCARs) in Taiwan drug-injury relief system: 18-year results. J. Formos. Med. Assoc. 121, 1397–1405 (2022).

    Article  PubMed  Google Scholar 

  87. Loo, C. H., Tan, W. C., Khor, Y. H. & Chan, L. C. A 10-years retrospective study on severe cutaneous adverse reactions (SCARs) in a tertiary hospital in Penang, Malaysia. Med. J. Malays. 73, 73–77 (2018).

    CAS  Google Scholar 

  88. Lipowicz, S. et al. Prognosis of generalized bullous fixed drug eruption: comparison with Stevens-Johnson syndrome and toxic epidermal necrolysis. Br. J. Dermatol. 168, 726–732 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Paulmann, M. & Mockenhaupt, M. Severe drug-induced skin reactions: clinical features, diagnosis, etiology, and therapy. J. Dtsch Dermatol. Ges. 13, 625–645 (2015).

    PubMed  Google Scholar 

  90. Patel, S., John, A. M., Handler, M. Z. & Schwartz, R. A. Fixed drug eruptions: an update, emphasizing the potentially lethal generalized bullous fixed drug eruption. Am. J. Clin. Dermatol. 21, 393–399 (2020).

    Article  PubMed  Google Scholar 

  91. Perron, E. et al. Clinical and histological features of fixed drug eruption: a single-centre series of 73 cases with comparison between bullous and non-bullous forms. Eur. J. Dermatol. 31, 372–380 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Bhanja, D. B., Sil, A., Panigrahi, A. & Chakraborty, S. Ibuprofen-induced generalised bullous fixed drug eruption. Postgrad. Med. J. 96, 706–707 (2020).

    Article  PubMed  Google Scholar 

  93. Anderson, H. J. & Lee, J. B. A review of fixed drug eruption with a special focus on generalized bullous fixed drug eruption. Medicina 57, 925 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ramasamy, S. N. et al. Allopurinol hypersensitivity: a systematic review of all published cases, 1950-2012. Drug Saf. 36, 953–980 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Yang, C. Y. et al. Severe cutaneous adverse reactions to antiepileptic drugs in Asians. Neurology 77, 2025–2033 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Y. H. et al. The medication risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in Asians: the major drug causality and comparison with the US FDA label. Clin. Pharmacol. Ther. 105, 112–120 (2019).

    Article  PubMed  Google Scholar 

  97. Hung, S. I. et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11, 349–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Lehloenya, R. J. & Dheda, K. Cutaneous adverse drug reactions to anti-tuberculosis drugs: state of the art and into the future. Expert Rev. Anti Infect. Ther. 10, 475–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Lehloenya, R. J. & Kgokolo, M. Clinical presentations of severe cutaneous drug reactions in HIV-infected Africans. Dermatol. Clin. 32, 227–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Posadas, S. J. et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J. Allergy Clin. Immunol. 109, 155–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Morel, E. et al. CD94/NKG2C is a killer effector molecule in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. J. Allergy Clin. Immunol. 125, 703–710, 710.e1-710.e8 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. de Araujo, E. et al. Death ligand TRAIL, secreted by CD1a+ and CD14+ cells in blister fluids, is involved in killing keratinocytes in toxic epidermal necrolysis. Exp. Dermatol. 20, 107–112 (2011).

    Article  PubMed  Google Scholar 

  103. Viard-Leveugle, I. et al. TNF-α and IFN-γ are potential inducers of Fas-mediated keratinocyte apoptosis through activation of inducible nitric oxide synthase in toxic epidermal necrolysis. J. Invest. Dermatol. 133, 489–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Su, S. C. et al. Interleukin-15 is associated with severity and mortality in Stevens-Johnson syndrome/toxic epidermal necrolysis. J. Invest. Dermatol. 137, 1065–1073 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Bellón, T. et al. IL-15/IL-15Rα in SJS/TEN: relevant expression of IL15 and IL15RA in affected skin. Biomedicines 10, 1868 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Olsson-Brown, A. et al. TNF-α-mediated keratinocyte expression and release of matrix metalloproteinase 9: putative mechanism of pathogenesis in Stevens-Johnson syndrome/toxic epidermal necrolysis. J. Invest. Dermatol. 143, 1023–1030.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat. Rev. Immunol. 3, 361–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Liu, X. & Lieberman, J. Knocking ‘em dead: pore-forming proteins in immune defense. Annu. Rev. Immunol. 38, 455–485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Saito, N. et al. An annexin A1-FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci. Transl. Med. 6, 245ra295 (2014).

    Article  Google Scholar 

  110. Kim, S. K. et al. Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J. Invest. Dermatol. 135, 2021–2030 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Stadler, P. C. et al. Necroptotic and apoptotic cell death in toxic epidermal necrolysis. J. Dermatol. Sci. 104, 138–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Kinoshita, M. et al. Neutrophils initiate and exacerbate Stevens-Johnson syndrome and toxic epidermal necrolysis. Sci. Trans. Med. 13, eaax2398 (2021).

    Article  CAS  Google Scholar 

  113. Choquet-Kastylevsky, G. et al. Increased levels of interleukin 5 are associated with the generation of eosinophilia in drug-induced hypersensitivity syndrome. Br. J. Dermatol. 139, 1026–1032 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Teraki, Y. & Fukuda, T. Skin-homing IL-13-producing T cells expand in the circulation of patients with drug rash with eosinophilia and systemic symptoms. Dermatology 233, 242–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Mizukawa, Y., Kimishima, M., Aoyama, Y. & Shiohara, T. Predictive biomarkers for cytomegalovirus reactivation before and after immunosuppressive therapy: a single-institution retrospective long-term analysis of patients with drug-induced hypersensitivity syndrome (DiHS)/drug reaction with eosinophilia and systemic syndrome (DRESS). Int. J. Infect. Dis. 100, 239–246 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Mitsui, Y. et al. Serum soluble OX40 as a diagnostic and prognostic biomarker for drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. J. Allergy Clin. Immunol. Pract. 10, 558–565.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Takahashi, R. et al. Defective regulatory T cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J. Immunol. 182, 8071–8079 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Tsai, Y. G. et al. Increased type 2 innate lymphoid cells in patients with drug reaction with eosinophilia and systemic symptoms syndrome. J. Invest. Dermatol. 139, 1722–1731 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Kano, Y., Inaoka, M. & Shiohara, T. Association between anticonvulsant hypersensitivity syndrome and human herpesvirus 6 reactivation and hypogammaglobulinemia. Arch. Dermatol. 140, 183–188 (2004).

    Article  PubMed  Google Scholar 

  120. Ogawa, K. et al. Identification of thymus and activation-regulated chemokine (TARC/CCL17) as a potential marker for early indication of disease and prediction of disease activity in drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). J. Dermatol. Sci. 69, 38–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Descamps, V. et al. Association of human herpesvirus 6 infection with drug reaction with eosinophilia and systemic symptoms. Arch. Dermatol. 137, 301–304 (2001).

    CAS  PubMed  Google Scholar 

  122. Mizukawa, Y., Hirahara, K., Kano, Y. & Shiohara, T. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms severity score: a useful tool for assessing disease severity and predicting fatal cytomegalovirus disease. J. Am. Acad. Dermatol. 80, 670–678.e2 (2019).

    Article  PubMed  Google Scholar 

  123. Stirton, H., Shear, N. H. & Dodiuk-Gad, R. P. Drug reaction with eosinophilia and systemic symptoms (DReSS)/drug-induced hypersensitivity syndrome (DiHS)-readdressing the DReSS. Biomedicines 10, 999 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miyagawa, F. et al. Preferential expression of CD134, an HHV-6 cellular receptor, on CD4T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Dermatol. Sci. 83, 151–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Kabashima, R. et al. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis. J. Eur. Acad. Dermatol. Venereol. 25, 485–488 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Filì, L. et al. Hapten-specific TH17 cells in the peripheral blood of β-lactam-induced AGEP. Allergol. Int. 63, 129–131 (2014).

    Article  PubMed  Google Scholar 

  127. Song, H. S., Kim, S. J., Park, T. I., Jang, Y. H. & Lee, E. S. Immunohistochemical comparison of IL-36 and the IL-23/Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann. Dermatol. 28, 451–456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mizukawa, Y. & Shiohara, T. Fixed drug eruption: a prototypic disorder mediated by effector memory T cells. Curr. Allergy Asthma Rep. 9, 71–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Padovan, E., Mauri-Hellweg, D., Pichler, W. J. & Weltzien, H. U. T cell recognition of penicillin G: structural features determining antigenic specificity. Eur. J. Immunol. 26, 42–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Naisbitt, D. J. et al. Antigenicity and immunogenicity of sulphamethoxazole: demonstration of metabolism-dependent haptenation and T-cell proliferation in vivo. Br. J. Pharmacol. 133, 295–305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Puig, M. et al. Alterations in the HLA-B*57:01 immunopeptidome by flucloxacillin and immunogenicity of drug-haptenated peptides. Front. Immunol. 11, 629399 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Goh, S. J. R. & Tuomisto, J. E. E. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 76, 150–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Zhao, Q. et al. HLA class-II-restricted CD8+ T cells contribute to the promiscuous immune response in dapsone-hypersensitive patients. J. Invest. Dermatol. 141, 2412–2425.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Pichler, W. J. Pharmacological interaction of drugs with antigen-specific immune receptors: the p-i concept. Curr. Opin. Allergy Clin. Immunol. 2, 301–305 (2002). Article discussing the p-i concept to explain the interaction between drug antigens and immune receptors.

    Article  PubMed  Google Scholar 

  135. Pichler, W. J. & Thoo, L. Drug hypersensitivity and eosinophilia: the decisive role of p-i stimulation. Allergy 78, 2596–2605 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Illing, P. T. et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486, 554–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Ostrov, D. A. et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc. Natl Acad. Sci. USA 109, 9959–9964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Redwood, A. J., Pavlos, R. K., White, K. D. & Phillips, E. J. HLAs: key regulators of T-cell-mediated drug hypersensitivity. HLA 91, 3–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, C. W., Divito, S. J., Chung, W. H. & Hung, S. I. Advances in the pathomechanisms of delayed drug hypersensitivity. Immunol. Allergy Clin. North Am. 42, 357–373 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Yang, C. W. et al. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 120, 870–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Wei, C. Y., Chung, W. H., Huang, H. W., Chen, Y. T. & Hung, S. I. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J. Allergy Clin. Immunol. 129, 1562–1569.e5 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Lin, C. H. et al. Immunologic basis for allopurinol-induced severe cutaneous adverse reactions: HLA-B*58:01-restricted activation of drug-specific T cells and molecular interaction. J. Allergy Clin. Immunol. 135, 1063–1065.e5 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Jiang, H. et al. Functional and structural characteristics of HLA-B*13:01-mediated specific T cells reaction in dapsone-induced drug hypersensitivity. J. Biomed. Sci. 29, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yun, J. et al. Oxypurinol directly and immediately activates the drug-specific T cells via the preferential use of HLA-B*58:01. J. Immunol. 192, 2984–2993 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Tassaneeyakul, W. et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population. Pharmacogenet. Genomics 26, 225–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, X., Liu, W. & Zhou, W. Association of CYP2C9*3 with phenytoin-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. J. Clin. Pharm. Ther. 43, 408–413 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Ciccacci, C. et al. Association between CYP2B6 polymorphisms and Nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur. J. Clin. Pharmacol. 69, 1909–1916 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Carr, D. F. et al. CYP2B6 c.983T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J. Antimicrob. Chemother. 69, 3329–3334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ciccacci, C. et al. Impact of glutathione transferases genes polymorphisms in nevirapine adverse reactions: a possible role for GSTM1 in SJS/TEN susceptibility. Eur. J. Clin. Pharmacol. 73, 1253–1259 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Yun, J. et al. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response. Clin. Exp. Allergy 43, 1246–1255 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Chung, W. H. et al. Oxypurinol-specific T cells possess preferential TCR clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J. Invest. Dermatol. 135, 2237–2248 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Chung, W. H. et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann. Rheum. Dis. 74, 2157–2164 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Yang, C. Y. et al. Allopurinol use and risk of fatal hypersensitivity reactions: a nationwide population-based study in Taiwan. JAMA Intern. Med. 175, 1550–1557 (2015).

    Article  PubMed  Google Scholar 

  154. Ng, C. Y. et al. Impact of the HLA-B*58:01 allele and renal impairment on allopurinol-induced cutaneous adverse reactions. J. Invest. Dermatol. 136, 1373–1381 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Day, R., Hung, S. I. & Chung, W. H. Allopurinol dose relative to renal function and risk of hypersensitivity reactions. Ann. Rheum. Dis. 75, e21 (2016).

    Article  PubMed  Google Scholar 

  156. Huan, X., Zhuo, N., Lee, H. Y. & Ren, E. C. Allopurinol non-covalently facilitates binding of unconventional peptides to HLA-B*58:01. Sci. Rep. 13, 9373 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mifsud, N. A. & Illing, P. T. The allopurinol metabolite, oxypurinol, drives oligoclonal expansions of drug-reactive T cells in resolved hypersensitivity cases and drug-naïve healthy donors. Allergy 78, 2980–2993 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Schmid, S. et al. Acute generalized exanthematous pustulosis: role of cytotoxic T cells in pustule formation. Am. J. Pathol. 161, 2079–2086 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Meier-Schiesser, B. et al. Culprit drugs induce specific IL-36 overexpression in acute generalized exanthematous pustulosis. J. Invest. Dermatol. 139, 848–858 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Navarini, A. A. et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J. Invest. Dermatol. 133, 1904–1907 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Navarini, A. A., Simpson, M. A., Borradori, L., Yawalkar, N. & Schlapbach, C. Homozygous missense mutation in IL36RN in generalized pustular dermatosis with intraoral involvement compatible with both AGEP and generalized pustular psoriasis. JAMA Dermatol. 151, 452–453 (2015).

    Article  PubMed  Google Scholar 

  162. Ueta, M. Susceptibility genes and HLA for cold medicine-related SJS/TEN with SOC. Front. Genet. 13, 912478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ueta, M., Matsuoka, T., Narumiya, S. & Kinoshita, S. Prostaglandin E receptor subtype EP3 in conjunctival epithelium regulates late-phase reaction of experimental allergic conjunctivitis. J. Allergy Clin. Immunol. 123, 466–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Ueta, M. et al. Mucocutaneous inflammation in the Ikaros family zinc finger 1-keratin 5-specific transgenic mice. Allergy 73, 395–404 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Chung, W. H. et al. Clinicopathologic analysis of coxsackievirus a6 new variant induced widespread mucocutaneous bullous reactions mimicking severe cutaneous adverse reactions. J. Infect. Dis. 208, 1968–1978 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. White, K. D., Chung, W. H., Hung, S. I., Mallal, S. & Phillips, E. J. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response. J. Allergy Clin. Immunol. 136, 219–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Roujeau, J.-C., Allanore, L., Liss, Y. & Mockenhaupt, M. Severe cutaneous adverse reactions to drugs (SCAR): definitions, diagnostic criteria, genetic predisposition. Dermatol. Sinica 27, 203–209 (2009).

    Google Scholar 

  168. Mockenhaupt, M. Severe drug-induced skin reactions: clinical pattern, diagnostics and therapy. J. Dtsch Dermatol. Ges. 7, 142–162 (2009).

    PubMed  Google Scholar 

  169. Chen, C. B. et al. Disseminated intravascular coagulation in Stevens-Johnson syndrome and toxic epidermal necrolysis. J. Am. Acad. Dermatol. 84, 1782–1791 (2021).

    Article  PubMed  Google Scholar 

  170. Bastuji-Garin, S. et al. SCORTEN: a severity-of-illness score for toxic epidermal necrolysis. J. Invest. Dermatol. 115, 149–153 (2000). Article discussing SCORTEN for mortality risk stratification for SJS/TEN.

    Article  CAS  PubMed  Google Scholar 

  171. Shiohara, T., Iijima, M., Ikezawa, Z. & Hashimoto, K. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br. J. Dermatol. 156, 1083–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Cabañas, R. et al. Spanish guidelines for diagnosis, management, treatment, and prevention of DRESS syndrome. J. Investig. Allergol. Clin. Immunol. 30, 229–253 (2020).

    Article  PubMed  Google Scholar 

  173. Sassolas, B. et al. ALDEN, an algorithm for assessment of drug causality in Stevens-Johnson Syndrome and toxic epidermal necrolysis: comparison with case-control analysis. Clin. Pharmacol. Ther. 88, 60–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Lehloenya, R. J., Peter, J. G., Copascu, A., Trubiano, J. A. & Phillips, E. J. Delabeling delayed drug hypersensitivity: how far can you safely go? J. Allergy Clin. Immunol. Pract. 8, 2878–2895.e6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Cabañas, R. et al. Sensitivity and specificity of the lymphocyte transformation test in drug reaction with eosinophilia and systemic symptoms causality assessment. Clin. Exp. Allergy 48, 325–333 (2018).

    Article  PubMed  Google Scholar 

  176. Bellón, T. et al. Assessment of drug causality in Stevens-Johnson syndrome/toxic epidermal necrolysis: concordance between lymphocyte transformation test and ALDEN. Allergy 75, 956–959 (2020).

    Article  PubMed  Google Scholar 

  177. Phillips, E. J. et al. Controversies in drug allergy: testing for delayed reactions. J. Allergy Clin. Immunol. 143, 66–73 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Khan, D. A. et al. Drug allergy: a 2022 practice parameter update. J. Allergy Clin. Immunol. 150, 1333–1393 (2022).

    Article  PubMed  Google Scholar 

  179. Teo, Y. X., Friedmann, P. S., Polak, M. E. & Ardern-Jones, M. R. Utility and safety of skin tests in drug reaction with eosinophilia and systemic symptoms (DRESS): a systematic review. J. Allergy Clin. Immunol. Pract. 11, 481–491.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Chu, M. T. et al. Granulysin-based lymphocyte activation test for evaluating drug causality in antiepileptics-induced severe cutaneous adverse reactions. J. Invest. Dermatol. 141, 1461–1472.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Weir, C., Li, J., Fulton, R. & Fernando, S. L. Development and initial validation of a modified lymphocyte transformation test (LTT) assay in patients with DRESS and AGEP. Allergy Asthma Clin. Immunol. 18, 90 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Copaescu, A. et al. The role of in vivo and ex vivo diagnostic tools in severe delayed immune-mediated adverse antibiotic drug reactions. J. Allergy Clin. Immunol. Pract. 9, 2010–2015.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Chongpison, Y. et al. IFN-γ ELISpot-enabled machine learning for culprit drug identification in non-immediate drug hypersensitivity. J. Allergy Clin. Immunol. 153, 193–202 (2023).

    Article  PubMed  Google Scholar 

  184. Deshpande, P. et al. Immunopharmacogenomics: mechanisms of HLA-associated drug reactions. Clin. Pharmacol. Ther. 110, 607–615 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Mallal, S. et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 358, 568–579 (2008).

    Article  PubMed  Google Scholar 

  186. Saag, M. et al. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin. Infect. Dis. 46, 1111–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  187. Phillips, E. & Mallal, S. Successful translation of pharmacogenetics into the clinic: the abacavir example. Mol. Diagn. Ther. 13, 1–9 (2009).

    Article  PubMed  Google Scholar 

  188. Garon, S. L. et al. Pharmacogenomics of off-target adverse drug reactions. Br. J. Clin. Pharmacol. 83, 1896–1911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hammond, E. et al. External quality assessment of HLA-B*5701 reporting: an international multicentre survey. Antivir. Ther. 12, 1027–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Stainsby, C. M. et al. Abacavir hypersensitivity reaction reporting rates during a decade of HLA-B*5701 screening as a risk-mitigation measure. Pharmacotherapy 39, 40–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Chen, P. et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364, 1126–1133 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Chen, Z., Liew, D. & Kwan, P. Effects of a HLA-B*15:02 screening policy on antiepileptic drug use and severe skin reactions. Neurology 83, 2077–2084 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Sung, C. et al. Usage pattern of carbamazepine and associated severe cutaneous adverse reactions in Singapore following implementation of HLA-B*15:02 genotyping as standard-of-care. Front. Pharmacol. 11, 527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ko, T. M. et al. Use of HLA-B*58:01 genotyping to prevent allopurinol induced severe cutaneous adverse reactions in Taiwan: national prospective cohort study. BMJ 351, h4848 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sukasem, C. et al. HLA-B*58:01 for allopurinol-induced cutaneous adverse drug reactions: implication for clinical interpretation in Thailand. Front. Pharmacol. 7, 186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ke, C. H. et al. Cost-effectiveness analysis for genotyping before allopurinol treatment to prevent severe cutaneous adverse drug reactions. J. Rheumatol. 44, 835–843 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Ke, C. H. et al. Utility of human leukocyte antigen-B*58: 01 genotyping and patient outcomes. Pharmacogenet. Genomics 29, 1–8 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Lonjou, C. et al. A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics J. 6, 265–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Su, S. C., Hung, S. I., Fan, W. L., Dao, R. L. & Chung, W. H. Severe cutaneous adverse reactions: the pharmacogenomics from research to clinical implementation. Int. J. Mol. Sci. 17, 1890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Chang, C. J., Chen, C. B., Hung, S. I., Ji, C. & Chung, W. H. Pharmacogenetic testing for prevention of severe cutaneous adverse drug reactions. Front. Pharmacol. 11, 969 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chen, C. H. et al. Hypersensitivity and cardiovascular risks related to allopurinol and febuxostat therapy in Asians: a population-based cohort study and meta-analysis. Clin. Pharmacol. Ther. 106, 391–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Manson, L. E. N., Swen, J. J. & Guchelaar, H. J. Diagnostic test criteria for HLA genotyping to prevent drug hypersensitivity reactions: a systematic review of actionable HLA recommendations in CPIC and DPWG guidelines. Front. Pharmacol. 11, 567048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhou, Y., Krebs, K., Milani, L. & Lauschke, V. M. Global frequencies of clinically important HLA alleles and their implications for the cost-effectiveness of preemptive pharmacogenetic testing. Clin. Pharmacol. Ther. 109, 160–174 (2021).

    Article  PubMed  Google Scholar 

  204. Goodman, C. W. & Brett, A. S. Race and pharmacogenomics-personalized medicine or misguided practice? JAMA 325, 625–626 (2021).

    Article  PubMed  Google Scholar 

  205. Phillips, E. J., Bouchard, C. S. & Divito, S. J. Stevens-Johnson syndrome and toxic epidermal necrolysis-coordinating research priorities to move the field forward. JAMA Dermatol. 58, 607–608 (2022).

    Article  Google Scholar 

  206. Garcia-Doval, I., LeCleach, L., Bocquet, H., Otero, X. L. & Roujeau, J. C. Toxic epidermal necrolysis and Stevens-Johnson syndrome: does early withdrawal of causative drugs decrease the risk of death? Arch. Dermatol. 136, 323–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Valeyrie-Allanore, L., Ingen-Housz-Oro, S., Chosidow, O. & Wolkenstein, P. French referral center management of Stevens–Johnson syndrome/toxic epidermal necrolysis. Dermatol. Sin. 31, 191–195 (2013).

    Article  Google Scholar 

  208. Seminario-Vidal, L. et al. Society of Dermatology Hospitalists supportive care guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults. J. Am. Acad. Dermatol. 82, 1553–1567 (2020).

    Article  PubMed  Google Scholar 

  209. Brüggen, M. C. et al. Supportive care in the acute phase of Stevens-Johnson syndrome and toxic epidermal necrolysis: an international, multidisciplinary Delphi-based consensus. Br. J. Dermatol. 185, 616–626 (2021).

    Article  PubMed  Google Scholar 

  210. Lee, H. Y., Walsh, S. A. & Creamer, D. Long-term complications of Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN): the spectrum of chronic problems in patients who survive an episode of SJS/TEN necessitates multidisciplinary follow-up. Br. J. Dermatol. 177, 924–935 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Ingen-Housz-Oro, S. et al. Post-acute phase and sequelae management of epidermal necrolysis: an international, multidisciplinary DELPHI-based consensus. Orphanet J. Rare Dis. 18, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sharma, A. N. et al. Predicting DRESS syndrome recurrence — the ReDRESS score. JAMA Dermatol. 158, 1445–1447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Koh, H. K. et al. Risk factors and diagnostic markers of bacteremia in Stevens-Johnson syndrome and toxic epidermal necrolysis: a cohort study of 176 patients. J. Am. Acad. Dermatol. 81, 686–693 (2019).

    Article  PubMed  Google Scholar 

  214. Mortensen, X. M., Shenkute, N. T., Zhang, A. Y. & Banna, H. Clinical outcome of amniotic membrane transplant in ocular Stevens-Johnson syndrome/toxic epidermal necrolysis at a major burn unit. Am. J. Ophthalmol. 256, 80–89 (2023).

    Article  PubMed  Google Scholar 

  215. Mawri, S., Jain, T., Shah, J., Hurst, G. & Swiderek, J. Vancomycin-induced acute generalized exanthematous pustulosis (AGEP) masquerading septic shock — an unusual presentation of a rare disease. J. Intensive Care 3, 47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Hirahara, K. et al. Methylprednisolone pulse therapy for Stevens-Johnson syndrome/toxic epidermal necrolysis: clinical evaluation and analysis of biomarkers. J. Am. Acad. Dermatol. 69, 496–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Lehloenya, R. J. et al. Early high-dose intravenous corticosteroids rapidly arrest Stevens Johnson syndrome and drug reaction with eosinophilia and systemic symptoms recurrence on drug re-exposure. J. Allergy Clin. Immunol. Pract. 9, 582–584.e1 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Valeyrie-Allanore, L. et al. Open trial of ciclosporin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis. Br. J. Dermatol. 163, 847–853 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Kirchhof, M. G., Miliszewski, M. A., Sikora, S., Papp, A. & Dutz, J. P. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrolysis treatment comparing intravenous immunoglobulin with cyclosporine. J. Am. Acad. Dermatol. 71, 941–947 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. González-Herrada, C. et al. Cyclosporine use in epidermal necrolysis is associated with an important mortality reduction: evidence from three different approaches. J. Invest. Dermatol. 137, 2092–2100 (2017).

    Article  PubMed  Google Scholar 

  221. Zimmermann, S. et al. Systemic immunomodulating therapies for stevens-johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 153, 514–522 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Lee, H. Y., Fook-Chong, S., Koh, H. Y., Thirumoorthy, T. & Pang, S. M. Cyclosporine treatment for Stevens-Johnson syndrome/toxic epidermal necrolysis: retrospective analysis of a cohort treated in a specialized referral center. J. Am. Acad. Dermatol. 76, 106–113 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Tsai, T. Y. et al. Treating toxic epidermal necrolysis with systemic immunomodulating therapies: a systematic review and network meta-analysis. J. Am. Acad. Dermatol. 84, 390–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Torres-Navarro, I., Briz-Redón, Á. & Botella-Estrada, R. Systemic therapies for Stevens-Johnson syndrome and toxic epidermal necrolysis: a SCORTEN-based systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 35, 159–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  225. Miyamoto, Y. et al. Evaluation of plasmapheresis vs immunoglobulin as first treatment after ineffective systemic corticosteroid therapy for patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. JAMA Dermatol. 159, 481–487 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wang, C. W. et al. Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions. J. Clin. Invest. 128, 985–996 (2018). Clinical trial describing the use of a TNF inhibitor for the treatment of SCARs.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Zhang, J. et al. Evaluation of combination therapy with etanercept and systemic corticosteroids for Stevens-Johnson syndrome and toxic epidermal necrolysis: a multicenter observational study. J. Allergy Clin. Immunol. Pract. 10, 1295–1304.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Ao, S. et al. Inhibition of tumor necrosis factor improves conventional steroid therapy for Stevens-Johnson syndrome/toxic epidermal necrolysis in a cohort of patients. J. Am. Acad. Dermatol. 86, 1236–1245 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Gong, T. et al. APOA4 as a novel predictor of prognosis in Stevens-Johnson syndrome/toxic epidermal necrolysis: a proteomics analysis from two prospective cohorts. J. Am. Acad. Dermatol. 89, 45–52 (2023).

    Article  CAS  PubMed  Google Scholar 

  230. Paradisi, A. et al. Etanercept therapy for toxic epidermal necrolysis. J. Am. Acad. Dermatol. 71, 278–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Cao, J., Zhang, X., Xing, X. & Fan, J. Biologic TNF-α inhibitors for Stevens-Johnson syndrome, toxic epidermal necrolysis, and TEN-SJS overlap: a study-level and patient-level meta-analysis. Dermatol. Ther. 13, 1305–1327 (2023).

    Article  Google Scholar 

  232. Kardaun, S. H. & Jonkman, M. F. Dexamethasone pulse therapy for Stevens-Johnson syndrome/toxic epidermal necrolysis. Acta Derm. Venereol. 87, 144–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Mieno, H. et al. Corticosteroid pulse therapy for Stevens-Johnson syndrome and toxic epidermal necrolysis patients with acute ocular involvement. Am. J. Ophthalmol. 231, 194–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  234. Heng, M. C. & Allen, S. G. Efficacy of cyclophosphamide in toxic epidermal necrolysis. Clinical and pathophysiologic aspects. J. Am. Acad. Dermatol. 25, 778–786 (1991).

    Article  CAS  PubMed  Google Scholar 

  235. Kamanabroo, D., Schmitz-Landgraf, W. & Czarnetzki, B. M. Plasmapheresis in severe drug-induced toxic epidermal necrolysis. Arch. Dermatol. 121, 1548–1549 (1985).

    Article  CAS  PubMed  Google Scholar 

  236. Wolkenstein, P. et al. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet 352, 1586–1589 (1998).

    Article  CAS  PubMed  Google Scholar 

  237. Bachot, N., Revuz, J. & Roujeau, J. C. Intravenous immunoglobulin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis: a prospective noncomparative study showing no benefit on mortality or progression. Arch. Dermatol. 139, 33–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  238. Poizeau, F. et al. Cyclosporine for epidermal necrolysis: absence of beneficial effect in a retrospective cohort of 174 patients-exposed/unexposed and propensity score-matched analyses. J. Invest. Dermatol. 138, 1293–1300 (2018).

    Article  CAS  PubMed  Google Scholar 

  239. Tian, C. C. et al. Etanercept treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis. Ann. Allergy Asthma Immunol. 129, 360–365.e1 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Nguyen, E., Yanes, D., Imadojemu, S. & Kroshinsky, D. Evaluation of cyclosporine for the treatment of DRESS syndrome. JAMA Dermatol. 156, 704–706 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Su, H. J., Chen, C. B., Yeh, T. Y. & Chung, W. H. Successful treatment of corticosteroid-dependent drug reaction with eosinophilia and systemic symptoms with cyclosporine. Ann. Allergy Asthma Immunol. 127, 674–681 (2021).

    Article  CAS  PubMed  Google Scholar 

  242. Joly, P. et al. Poor benefit/risk balance of intravenous immunoglobulins in DRESS. Arch. Dermatol. 148, 543–544 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Galvão, V. R., Aun, M. V., Kalil, J., Castells, M. & Giavina-Bianchi, P. Clinical and laboratory improvement after intravenous immunoglobulin in drug reaction with eosinophilia and systemic symptoms. J. Allergy Clin. Immunol. Pract. 2, 107–110 (2014).

    Article  PubMed  Google Scholar 

  244. Marcus, N. et al. Successful intravenous immunoglobulin treatment in pediatric severe DRESS syndrome. J. Allergy Clin. Immunol. Pract. 6, 1238–1242 (2018).

    Article  PubMed  Google Scholar 

  245. Laban, E. et al. Cyclophosphamide therapy for corticoresistant drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome in a patient with severe kidney and eye involvement and Epstein-Barr virus reactivation. Am. J. Kidney Dis. 55, e11–e14 (2010).

    Article  CAS  PubMed  Google Scholar 

  246. Alexander, T. et al. Severe DRESS syndrome managed with therapeutic plasma exchange. Pediatrics 131, e945–e949 (2013).

    Article  PubMed  Google Scholar 

  247. Brin, C. et al. Impact of systemic to topical steroids switch on the outcome of drug reaction with eosinophilia and systemic symptoms (DRESS): a monocenter retrospective study of 20 cases. Ann. Dermatol. Venereol. 148, 168–171 (2021).

    Article  CAS  PubMed  Google Scholar 

  248. Ishida, T., Kano, Y., Mizukawa, Y. & Shiohara, T. The dynamics of herpesvirus reactivations during and after severe drug eruptions: their relation to the clinical phenotype and therapeutic outcome. Allergy 69, 798–805 (2014).

    Article  CAS  PubMed  Google Scholar 

  249. Funck-Brentano, E. et al. Therapeutic management of DRESS: a retrospective study of 38 cases. J. Am. Acad. Dermatol. 72, 246–252 (2015).

    Article  PubMed  Google Scholar 

  250. Ange, N., Alley, S., Fernando, S. L., Coyle, L. & Yun, J. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome successfully treated with mepolizumab. J. Allergy Clin. Immunol. Pract. 6, 1059–1060 (2018).

    Article  PubMed  Google Scholar 

  251. Schmid-Grendelmeier, P. et al. Benralizumab for severe DRESS in two COVID-19 patients. J. Allergy Clin. Immunol. Pract. 9, 481–483.e2 (2021).

    Article  CAS  PubMed  Google Scholar 

  252. Kim, D. et al. Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat. Med. 26, 236–243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Damsky, W. E. et al. Drug-induced hypersensitivity syndrome with myocardial involvement treated with tofacitinib. JAAD Case Rep. 5, 1018–1026 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Chowdhury, M., Azari, B. M., Desai, N. R. & Ahmad, T. A novel treatment for a rare cause of cardiogenic shock. JACC Case Rep. 2, 1461–1465 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Pichler, W. J. & Brüggen, M. C. Viral infections and drug hypersensitivity. Allergy 78, 60–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  256. Leman, R. E. et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) successfully treated with tumor necrosis factor-α inhibitor. JAAD Case Rep. 3, 332–335 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Maximova, N., Maestro, A., Zanon, D. & Marcuzzi, A. Rapid recovery of postnivolumab vemurafenib-induced drug rash with eosinophilia and systemic symptoms (DRESS) syndrome after tocilizumab and infliximab administration. J. Immunother. Cancer 8, e000388 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Dubin, D. P. et al. Dupilumab to treat drug reaction with eosinophilia and systemic symptoms: a case series. J. Allergy Clin. Immunol. Pract. 11, 3789–3791 (2023).

    Article  CAS  PubMed  Google Scholar 

  259. Di Lernia, V., Grenzi, L., Guareschi, E. & Ricci, C. Rapid clearing of acute generalized exanthematous pustulosis after administration of ciclosporin. Clin. Exp. Dermatol. 34, e757–e759 (2009).

    Article  PubMed  Google Scholar 

  260. Yanes, D., Nguyen, E., Imadojemu, S. & Kroshinsky, D. Cyclosporine for treatment of acute generalized exanthematous pustulosis: a retrospective analysis. J. Am. Acad. Dermatol. 83, 263–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Meiss, F. et al. Overlap of acute generalized exanthematous pustulosis and toxic epidermal necrolysis: response to antitumour necrosis factor-alpha antibody infliximab: report of three cases. J. Eur. Acad. Dermatol. Venereol. 21, 717–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  262. Peermohamed, S. & Haber, R. M. Acute generalized exanthematous pustulosis simulating toxic epidermal necrolysis: a case report and review of the literature. Arch. Dermatol. 147, 697–701 (2011).

    Article  PubMed  Google Scholar 

  263. Deng, L., He, B., Ali, K. & Bu, Z. Terbinafine induced acute generalized exanthematous pustulosis treated with adalimumab: recalcitrant to systemic corticosteroid therapy. Clin. Cosmet. Investig. Dermatol. 16, 9–15 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Gualtieri, B. et al. Interleukin 17 as a therapeutic target of acute generalized exanthematous pustulosis (AGEP). J. Allergy Clin. Immunol. Pract. 8, 2081–2084.e2 (2020).

    Article  PubMed  Google Scholar 

  265. Zhang, L. et al. Case report: successful treatment of acute generalized exanthematous pustulosis with secukinumab. Front. Med. 8, 758354 (2021).

    Article  Google Scholar 

  266. Damo, M. et al. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens. Nature 619, 151–159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Dolladille, C. et al. Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol. 6, 865–871 (2020).

    Article  PubMed  Google Scholar 

  268. Nikolaou, V. A. et al. Clinical associations and classification of immune checkpoint inhibitor-induced cutaneous toxicities: a multicentre study from the European Academy of Dermatology and Venereology Task Force of Dermatology for Cancer Patients. Br. J. Dermatol. 187, 962–969 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Reschke, R., Mockenhaupt, M., Simon, J. C. & Ziemer, M. Severe bullous skin eruptions on checkpoint inhibitor therapy — in most cases severe bullous lichenoid drug eruptions. J. Dtsch Dermatol. Ges. 17, 942–948 (2019).

    Article  PubMed  Google Scholar 

  270. Ingen-Housz-Oro, S. et al. Severe blistering eruptions induced by immune checkpoint inhibitors: a multicentre international study of 32 cases. Melanoma Res. 32, 205–210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Tsukamoto, H. et al. Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 78, 5011–5022 (2018).

    Article  CAS  PubMed  Google Scholar 

  272. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Verheijden, R. J., van Eijs, M. J. M., May, A. M., van Wijk, F. & Suijkerbuijk, K. P. M. Immunosuppression for immune-related adverse events during checkpoint inhibition: an intricate balance. NPJ Precis. Oncol. 7, 41 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Barrios, D. M. et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann. Oncol. 32, 736–745 (2021).

    Article  CAS  PubMed  Google Scholar 

  275. Nikolaou, V. et al. Immune checkpoint-mediated psoriasis: a multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) group. J. Am. Acad. Dermatol. 84, 1310–1320 (2021).

    Article  CAS  PubMed  Google Scholar 

  276. Shipman, W. D. et al. Immune checkpoint inhibitor-induced bullous pemphigoid is characterized by interleukin (IL)-4 and IL-13 expression and responds to dupilumab treatment. Br. J. Dermatol. 189, 339–341 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Brahmer, J. R. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 9, e002435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Baiardini, I. et al. Development and validation of the drug hypersensitivity quality of life questionnaire. Ann. Allergy Asthma Immunol. 106, 330–335 (2011).

    Article  PubMed  Google Scholar 

  279. Gastaminza, G., Herdman, M., Baiardini, I., Braido, F. & Corominas, M. Cross-cultural adaptation and linguistic validation of the Spanish version of the drug hypersensitivity quality of life questionnaire. J. Investig. Allergol. Clin. Immunol. 23, 508–510 (2013).

    CAS  PubMed  Google Scholar 

  280. Gastaminza, G., Ruiz-Canela, M., Baiardini, I., Andrés-López, B. & Corominas, M. Psychometric validation of the Spanish version of the DHRQoL questionnaire. J. Investig. Allergol. Clin. Immunol. 26, 322–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  281. Bavbek, S. et al. Turkish version of the drug hypersensitivity quality of life questionnaire: assessment of reliability and validity. Qual. Life Res. 25, 101–109 (2016).

    Article  PubMed  Google Scholar 

  282. Moayeri, M., Van Os-Medendorp, H., Baiardini, I. & Röckmann, H. Assessment of validity and reliability of drug hypersensitivity quality of life questionnaire: the Dutch experience. Eur. Ann. Allergy Clin. Immunol. 49, 129–134 (2017).

    CAS  PubMed  Google Scholar 

  283. Chongpison, Y. et al. Reliability and validity of the Thai drug hypersensitivity quality of life questionnaire: a multi-center study. Int. J. Qual. Health Care 31, 527–534 (2019).

    Article  PubMed  Google Scholar 

  284. Dias de Castro, E. et al. Drug hypersensitivity quality of life questionnaire: validation procedures and first results of the Portuguese version. Health Qual. Life Outcomes 19, 143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Mak, H. W. F. et al. Validation of the Chinese drug hypersensitivity quality of life questionnaire: role of delabeling. Asia Pac. Allergy 13, 3–9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Kridin, K. et al. Assessment of treatment approaches and outcomes in Stevens-Johnson syndrome and toxic epidermal necrolysis: insights from a Pan-European Multicenter Study. JAMA Dermatol. 157, 1182–1190 (2021).

    Article  PubMed  Google Scholar 

  287. Dodiuk‐Gad, R. P. et al. Major psychological complications and decreased health‐related quality of life among survivors of Stevens–Johnson syndrome and toxic epidermal necrolysis. Br. J. Dermatol. 175, 422–424 (2016).

    Article  PubMed  Google Scholar 

  288. Ingen-Housz-Oro, S. et al. Health-related quality of life and long-term sequelae in survivors of epidermal necrolysis: an observational study of 57 patients. Br. J. Dermatol. 182, 916–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  289. Chiu, Y. M. & Chiu, H. Y. Lifetime risk, life expectancy, loss-of-life expectancy, and lifetime healthcare expenditure for Stevens-Johnson syndrome/toxic epidermal necrolysis in Taiwan: follow-up of a nationwide cohort from 2008 to 2019. Br. J. Dermatol. 189, 553–560 (2023).

    Article  PubMed  Google Scholar 

  290. Thorel, D. et al. Ocular sequelae of epidermal necrolysis: French national audit of practices, literature review and proposed management. Orphanet J. Rare Dis. 18, 51 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  291. O’Reilly, P. et al. Patients’, family members’ and healthcare practitioners’ experiences of Stevens-Johnson syndrome and toxic epidermal necrolysis: a qualitative descriptive study using emotional touchpoints. J. Eur. Acad. Dermatol. Venereol. 35, e232–e234 (2021).

    Article  PubMed  Google Scholar 

  292. Coromilas, A. J., Divito, S. J., Phillips, E. J. & Micheletti, R. G. Physical and mental health impact of Stevens-Johnson syndrome/toxic epidermal necrolysis and post-hospital discharge care: identifying practice gaps. JAAD Int. 11, 88–89 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Chen, C. B. et al. Detecting lesional granulysin levels for rapid diagnosis of cytotoxic T lymphocyte-mediated bullous skin disorders. J. Allergy Clin. Immunol. Pract. 9, 1327–1337.e3 (2021).

    Article  PubMed  Google Scholar 

  294. Fujita, Y. et al. Rapid immunochromatographic test for serum granulysin is useful for the prediction of Stevens-Johnson syndrome and toxic epidermal necrolysis. J. Am. Acad. Dermatol. 65, 65–68 (2011).

    Article  CAS  PubMed  Google Scholar 

  295. Martin, M. A. et al. Clinical pharmacogenetics implementation consortium guidelines for HLA-B genotype and abacavir dosing. Clin. Pharmacol. Ther. 91, 734–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Table of Pharmacogenetic Associations. FDA https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations (2022).

  297. Martin, M. A. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Abacavir Dosing https://cpicpgx.org/guidelines/guideline-for-abacavir-and-hla-b/ (CPIC, 2012).

  298. Hershfield, M. S. et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for Human Leukocyte Antigen-B Genotype and Allopurinol Dosing https://cpicpgx.org/guidelines/guideline-for-allopurinol-and-hla-b/ (CPIC, 2013).

  299. Amstutz, U. et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia 55, 496–506 (2014).

    Article  CAS  PubMed  Google Scholar 

  300. Phillips, E. J. et al. Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update https://cpicpgx.org/guidelines/guideline-for-carbamazepine-and-hla-b/ (CPIC, 2017).

  301. Karnes, J. H. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing: 2020 Update https://cpicpgx.org/guidelines/guideline-for-phenytoin-and-cyp2c9-and-hla-b/ (CPIC, 2020).

  302. Sharma, A. et al. The skin as a metabolic and immune-competent organ: implications for drug-induced skin rash. J. Immunotoxicol. 16, 1–12 (2019).

    Article  PubMed  Google Scholar 

  303. Line, J., Saville, E., Meng, X. & Naisbitt, D. Why drug exposure is frequently associated with T-cell mediated cutaneous hypersensitivity reactions. Front. Toxicol. 5, 1268107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Strid, J. & Strobel, S. Skin barrier dysfunction and systemic sensitization to allergens through the skin. Curr. Drug Targets Inflamm. Allergy 4, 531–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  305. Ramírez-González, M. D., Herrera-Enríquez, M., Villanueva-Rodríguez, L. G. & Castell-Rodríguez, A. E. Role of epidermal dendritic cells in drug-induced cutaneous adverse reactions. Handb. Exp. Pharmacol. 188, 137–162 (2009).

    Article  Google Scholar 

  306. Kang, D. Y. et al. A nationwide study of severe cutaneous adverse reactions based on the multicenter registry in Korea. J. Allergy Clin. Immunol. Pract. 9, 929–936.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.-I.H. and W.-H.C. acknowledge C.-C. Lee and S.-L. Lee for their help in preparing Tables 2 and 3, Figs. 13 and 6, and the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (W.-H.C. and S.-I.H.); Epidemiology (M.M., K.G.B. and S.-I.H.); Mechanisms/pathophysiology (S.-I.H., R.A. and M.U.); Diagnosis, screening and prevention (M.M., W.-H.C., S.-I.H. and E.J.P.); Management (W.-H.C.); Quality of life (S.I.-H.-O. and W.-H.C.); Outlook (W.-H.C., S.-I.H., M.M., K.G.B., R.A., M.U. and E.J.P.).

Corresponding author

Correspondence to Wen-Hung Chung.

Ethics declarations

Competing interests

E.J.P. has received royalties from Uptodate and consulting fees from Janssen, Biocryst, Regeneron, Novavax, AstraZeneca and Verve. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks T. Shiohara, L. Naldi & J. H. Lee who co-reviewed with H. R. Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that human research participants provided informed consent for publication of the images in Fig. 5.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, SI., Mockenhaupt, M., Blumenthal, K.G. et al. Severe cutaneous adverse reactions. Nat Rev Dis Primers 10, 30 (2024). https://doi.org/10.1038/s41572-024-00514-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00514-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing