Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Human amplification of secondary earthquake hazards through environmental modifications

Abstract

Anthropogenic climate change and modification of landscapes — such as deforestation, sediment movement, irrigation and sea-level rise — can destabilize natural systems and amplify hazards from earthquake-triggered landslides, liquefaction, tsunami and coastal flooding. In this Perspective, we examine the connections and feedbacks between human environmental modifications and secondary earthquake hazards to identify steps for hazard mitigation. Destabilization of slopes by vegetation removal, agricultural activities, steepening, loading and drainage disruption can amplify landslide hazards. For example, landslides were mainly triggered on deforested slopes after the 2010 and 2021 Haiti earthquakes. Liquefaction hazards are intensified by extensive irrigation and land reclamation, as exemplified by liquefaction causing >15 m of ground displacement in irrigated areas after the 2018 Palu earthquake. Degradation or removal of primary coastal vegetation and coral reefs, destruction of sand dunes, subsidence from groundwater withdrawal, and sea-level rise can increase tsunami inland reach. Restoration of natural coastal habitats could help decrease the maximum inland reach of tsunami, but their effectiveness depends on tsunami size. Sustainable farming practices, such as mixed crop cultivation and drip irrigation, can successfully reduce the saturation of soils and the liquefaction hazard in some situations. Future research should explore the potential of such sustainable practices and nature-based solutions in reducing earthquake-related hazards, in addition to their climate and ecosystem benefits.

Key points

  • Human modification of the environment, both at a local and global scale, can amplify the secondary hazards of earthquakes, such as landslides, liquefaction and tsunami. Understanding the history of landscape modification is helpful to understanding hazard drivers and could thus contribute to future mitigation solutions.

  • Direct human influences on secondary earthquake hazards include vegetation removal, sediment movement, slope modification and hydrological disturbance. Indirect human influences include the impacts of climate change, such as increasing temperatures, extreme weather and sea-level rise.

  • Saturated soils from irrigation and/or deforestation practices can reduce the stability of hillslopes and increase the risks of landslide and liquefaction hazards. Mixed crop cultivation and drip irrigation techniques reduce the saturation of soils and therefore could reduce the liquefaction hazard in some situations, while also reducing water use and greenhouse gas emissions.

  • Restoring natural coastal ecosystems and habitats with sand dunes, beaches, primary coastal forests, coral reefs and seagrass meadows can provide some protection against tsunamis, but there are limitations to their mitigation potential for moderate-to-large tsunamis over a few metres high.

  • Even though biodiverse coastal ecosystems do not provide full protection against tsunamis, their potential for limited hazard reduction along with a host of other ecosystem services and carbon sequestration benefits should be an argument for preserving and restoring them as much as possible.

  • Future research should prioritize exploring the co-benefits of sustainable practices in restoring and stabilizing landscapes so they are less susceptible to failure during earthquakes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anthropogenic influences on landslide hazards.
Fig. 2: Anthropogenic influences on liquefaction hazards.
Fig. 3: Anthropogenic influences on tsunami hazard.
Fig. 4: Interactions between various human environmental modifications and earthquake secondary hazards.

Similar content being viewed by others

References

  1. Daniell, J. E., Schaefer, A. M. & Wenzel, F. Losses associated with secondary effects in earthquakes. Front. Built Environ. 3, 30 (2017).

    Article  Google Scholar 

  2. Telford, J. & Cosgrave, J. Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report (Tsunami Evaluation Coalition, 2006).

  3. Frankenberg, E., Gillespie, T., Preston, S., Sikoki, B. & Thomas, D. Mortality, the family and the Indian Ocean tsunami. Econ. J. 121, F162–F182 (2011).

    Article  Google Scholar 

  4. Kajitani, Y., Chang, S. E. & Tatano, H. Economic impacts of the 2011 Tohoku-Oki earthquake and tsunami. Earthq. Spectra 29, 457–478 (2013).

    Article  Google Scholar 

  5. Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).

    Article  CAS  Google Scholar 

  6. Tarolli, P. & Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 255, 140–161 (2016).

    Article  Google Scholar 

  7. Gill, J. C. & Malamud, B. D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 7, 659–679 (2016).

    Article  Google Scholar 

  8. Gill, J. C. & Malamud, B. D. Anthropogenic processes, natural hazards, and interactions in a multi-hazard framework. Earth-Sci. Rev. 166, 246–269 (2017).

    Article  Google Scholar 

  9. Sidle, R. C. & Ochiai, H. Landslides: Processes, Prediction, and Land Use (American Geophysical Union, 2006).

  10. Barnard, P. L., Owen, L. A., Sharma, M. C. & Finkel, R. C. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40, 21–35 (2001).

    Article  Google Scholar 

  11. Brenning, A., Schwinn, M., Ruiz-Páez, A. P. & Muenchow, J. Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat. Hazards Earth Syst. Sci. 15, 45–57 (2015).

    Article  Google Scholar 

  12. McAdoo, B. G. et al. Roads and landslides in Nepal: how development affects environmental risk. Nat. Hazards Earth Syst. Sci. 18, 3203–3210 (2018).

    Article  Google Scholar 

  13. Bradley, K. et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nat. Geosci. 12, 935–939 (2019).

    Article  CAS  Google Scholar 

  14. Watkinson, I. M. & Hall, R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides. Nat. Geosci. 12, 940–945 (2019).

    Article  CAS  Google Scholar 

  15. Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).

    Article  Google Scholar 

  16. Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami‐affected region of Asia. J. Biogeogr. 35, 519–528 (2008).

    Article  Google Scholar 

  17. IPCC. in Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds The Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  18. Persichillo, M. G., Bordoni, M. & Meisina, C. The role of land use changes in the distribution of shallow landslides. Sci. Total Environ. 574, 924–937 (2017).

    Article  CAS  Google Scholar 

  19. Bordoni, M. et al. in Landslides and Engineered Slopes. Experience, Theory and Practice (eds Aversa, S., Cascini, L., Picarelli, L. & Scavia, C.) 467–475 (Associazione Geotecnica Italiana, 2016).

  20. Dong, L., Cao, J. & Liu, X. Recent developments in sea-level rise and its related geological disasters mitigation: a review. J. Mar. Sci. Eng. 10, 355 (2022).

    Article  Google Scholar 

  21. Wallman, D., Wells, E. C. & Rivera-Collazo, I. C. The environmental legacies of colonialism in the northern neotropics: introduction to the special issue. Environ. Archaeol. 23, 1–3 (2018).

    Article  Google Scholar 

  22. Oetjen, J. et al. A comprehensive review on structural tsunami countermeasures. Nat. Hazards 113, 1419–1449 (2022).

    Article  Google Scholar 

  23. Wisner, B., Blaikie, P., Cannon, T. & Davis, I. At Risk: Natural Hazards, Peoples Vulnerability and Disasters (Routledge, 1994).

  24. Alexander, D. On the causes of landslides: human activities, perception, and natural processes. Environ. Geol. Water Sci. 20, 165–179 (1992).

    Article  Google Scholar 

  25. Crozier, M. J. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124, 260–267 (2010).

    Article  Google Scholar 

  26. Bird, J. F. & Bommer, J. J. Earthquake losses due to ground failure. Eng. Geol. 75, 147–179 (2004).

    Article  Google Scholar 

  27. Keefer, D. K. Rock avalanches caused by earthquakes: source characteristics. Science 223, 1288–1290 (1984).

    Article  CAS  Google Scholar 

  28. Meunier, P., Hovius, N. & Haines, J. A. Topographic site effects and the location of earthquake induced landslides. Earth Planet. Sci. Lett. 275, 221–232 (2008).

    Article  CAS  Google Scholar 

  29. Keefer, D. K. Investigating landslides caused by earthquakes — a historical review. Surv. Geophys. 23, 473–510 (2002).

    Article  Google Scholar 

  30. Rodrıguez, C. E., Bommer, J. J. & Chandler, R. J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. https://doi.org/10.1016/j.epsl.2018.11.005 (1999).

  31. Valagussa, A., Marc, O., Frattini, P. & Crosta, G. B. Seismic and geological controls on earthquake-induced landslide size. Earth Planet. Sci. Lett. 506, 268–281 (2019).

    Article  CAS  Google Scholar 

  32. Parker, R. N. et al. Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand. Earth Surf. Dyn. 3, 501–525 (2015).

    Article  Google Scholar 

  33. Loche, M. et al. Surface temperature controls the pattern of post-earthquake landslide activity. Sci. Rep. 12, 988 (2022).

    Article  CAS  Google Scholar 

  34. Qiu, J. A year after a devastating earthquake triggered killer avalanches and rock falls in Nepal, scientists are wiring up mountainsides to forecast hazards. Nature 532, 428–431 (2016).

    Article  Google Scholar 

  35. Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).

    Article  Google Scholar 

  36. Ewers, R. M. et al. Past and future trajectories of forest loss in New Zealand. Biol. Conserv. 133, 312–325 (2006).

    Article  Google Scholar 

  37. Glade, T. Landslide occurrence as a response to land use change: a review of evidence from New Zealand. CATENA 51, 297–314 (2003).

    Article  Google Scholar 

  38. Borella, J. W., Quigley, M. & Vick, L. Anthropocene rockfalls travel farther than prehistoric predecessors. Sci. Adv. 2, e1600969 (2016).

    Article  Google Scholar 

  39. Borella, J. et al. Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions? Nat. Hazards Earth Syst. Sci. 19, 2249–2280 (2019).

    Article  Google Scholar 

  40. Warner, K., Hamza, M., Oliver-Smith, A., Renaud, F. & Julca, A. Climate change, environmental degradation and migration. Nat. Hazards 55, 689–715 (2010).

    Article  Google Scholar 

  41. Owen, L. A. et al. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94, 1–9 (2008).

    Article  Google Scholar 

  42. Hung, J.-J. Chi-Chi earthquake induced landslides in Taiwan. Earthq. Eng. Eng. Seismol. 2, 25–33 (2000).

    Google Scholar 

  43. Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Article  Google Scholar 

  44. Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).

    Article  CAS  Google Scholar 

  45. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A. & Rama, B.) (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.

  46. Schauwecker, S. et al. Anticipating cascading effects of extreme precipitation with pathway schemes — three case studies from Europe. Environ. Int. 127, 291–304 (2019).

    Article  Google Scholar 

  47. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article  CAS  Google Scholar 

  48. Borella, J. et al. Influence of anthropogenic landscape modifications and infrastructure on the geological characteristics of liquefaction. Anthropocene 29, 100235 (2020).

    Article  Google Scholar 

  49. Townsend, D. et al. Mapping surface liquefaction caused by the September 2010 and February 2011 Canterbury earthquakes: a digital dataset. N. Z. J. Geol. Geophys. 59, 496–513 (2016).

    Article  Google Scholar 

  50. Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: the 2010–2011 Canterbury earthquake sequence. N. Z. Eng. Geol. 237, 181–197 (2018).

    Article  Google Scholar 

  51. Macpherson, J. M. Environmental Geology of the Avon-Heathcote Estuary (University of Canterbury, 1978).

  52. Wotherspoon, L. M., Pender, M. J. & Orense, R. P. Relationship between observed liquefaction at Kaiapoi following the 2010 Darfield earthquake and former channels of the Waimakariri River. Eng. Geol. 125, 45–55 (2012).

    Article  Google Scholar 

  53. Zhu, J. et al. A geospatial liquefaction model for rapid response and loss estimation. Earthq. Spectra 31, 1813–1837 (2015).

    Article  Google Scholar 

  54. Pradel, D., Wartman, J. & Tiwari, B. Impact of anthropogenic changes on liquefaction along the Tone River during the 2011 Tohoku earthquake. Nat. Hazards Rev. 15, 13–26 (2014).

    Article  Google Scholar 

  55. Seed, R. B., Dickenson, S. E. & Idriss, I. M. Principal geotechnical aspects of the 1989 Loma Prieta earthquake. Soils Found. 31, 1–26 (1991).

    Article  Google Scholar 

  56. Cruz-Atienza, V. M. et al. Long duration of ground motion in the paradigmatic Valley of Mexico. Sci. Rep. 6, 38807 (2016).

    Article  CAS  Google Scholar 

  57. Tena-Colunga, A., Hernández-Ramírez, H., Godínez-Domínguez, E. A. & Pérez-Rocha, L. E. Mexico City during and after the September 19, 2017 earthquake: assessment of seismic resilience and ongoing recovery process. J. Civ. Struct. Health Monit. 11, 1275–1299 (2021).

    Article  CAS  Google Scholar 

  58. Díaz del Castillo, B. Historia Verdadera de La Conquista de La Nueva España edn Serés, G. (1632); https://www.rae.es/sites/default/files/Aparato_de_variantes_Historia_verdadera_de_la_conquista_de_la_Nueva_Espana.pdf.

  59. Yasuhara, K., Murakami, S., Mimura, N., Komine, H. & Recio, J. Influence of global warming on coastal infrastructural instability. Sustain. Sci. 2, 13–25 (2007).

    Article  Google Scholar 

  60. Monk, C. B., Van Ballegooy, S., Hughes, M. & Villeneuve, M. Liquefaction vulnerability increase at North New Brighton due to subsidence, sea level rise and reduction in thickness of the non-liquefying layer. Bull. N. Z. Soc. Earthq. Eng. 49, 334–340 (2016).

    Google Scholar 

  61. Li, P., Tian, Z., Bo, J., Zhu, S. & Li, Y. Study on sand liquefaction induced by Songyuan earthquake with a magnitude of M5.7 in China. Sci. Rep. 12, 9588 (2022).

    Article  CAS  Google Scholar 

  62. Barker, R. & Molle, F. Evolution of Irrigation in South and Southeast Asia. Comprehensive Assessment Research Report 5 (International Water Management Institute, 2004).

  63. Li, K. & Xu, Z. Overview of Dujiangyan Irrigation Scheme of ancient China with current theory. Irrig. Drain. 55, 291–298 (2006).

    Article  Google Scholar 

  64. Liu-Zeng, J. et al. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694, 214–238 (2017).

    Article  Google Scholar 

  65. Wang, C., Cheng, L.-H., Chin, C.-V. & Yu, S.-B. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake. Taiwan. Geol. 29, 831 (2001).

    Article  Google Scholar 

  66. Parthasarathi, T., Vanitha, K., Mohandass, S. & Vered, E. Evaluation of drip irrigation system for water productivity and yield of rice. Agron. J. 110, 2378–2389 (2018).

    Article  CAS  Google Scholar 

  67. He, J., Ma, B. & Tian, J. Water production function and optimal irrigation schedule for rice (Oryza sativa L.) cultivation with drip irrigation under plastic film-mulched. Sci. Rep. 12, 17243 (2022).

    Article  CAS  Google Scholar 

  68. Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crop. Res. 203, 173–180 (2017).

    Article  Google Scholar 

  69. Lansing, J. S. et al. Adaptive irrigation management by Balinese farmers reduces greenhouse gas emissions and increases rice yields. Philos. Trans. R. Soc. B Biol. Sci. 378, 20220400 (2023).

    Article  CAS  Google Scholar 

  70. McCaughey, J. W., Daly, P., Mundir, I., Mahdi, S. & Patt, A. Socio-economic consequences of post-disaster reconstruction in hazard-exposed areas. Nat. Sustain. 1, 38–43 (2018).

    Article  Google Scholar 

  71. Boret, S. P. & Gerster, J. Social lives of tsunami walls in Japan: concrete culture, social innovation and coastal communities. IOP Conf. Ser. Earth Environ. Sci. 630, 012029 (2021).

    Article  Google Scholar 

  72. Cochard, R. et al. The 2004 tsunami in Aceh and southern Thailand: a review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant. Ecol. Evol. Syst. 10, 3–40 (2008).

    Article  Google Scholar 

  73. Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    Article  CAS  Google Scholar 

  74. Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. BioScience 51, 807 (2001).

    Article  Google Scholar 

  75. Ilman, M., Dargusch, P., Dart, P. & Onrizal A historical analysis of the drivers of loss and degradation of Indonesia’s mangroves. Land Use Policy 54, 448–459 (2016).

    Article  Google Scholar 

  76. Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article  Google Scholar 

  77. Massel, S. R., Furukawa, K. & Brinkman, R. M. Surface wave propagation in mangrove forests. Fluid Dyn. Res. 24, 219–249 (1999).

    Article  Google Scholar 

  78. Kerr, A. M., Baird, A. H. & Campbell, S. J. Comments on “Coastal mangrove forests mitigated tsunami” by K. Kathiresan and N. Rajendran [Estuar. Coast. Shelf Sci. 65 (2005) 601e606]. Estuar. Coast. Shelf Sci. 67, 539–541 (2006).

  79. Tanaka, N. Vegetation bioshields for tsunami mitigation: review of effectiveness, limitations, construction, and sustainable management. Landsc. Ecol. Eng. 5, 71–79 (2009).

    Article  Google Scholar 

  80. Mukherjee, A. et al. Forest density is more effective than tree rigidity at reducing the onshore energy flux of tsunamis. Coast. Eng. 182, 104286 (2023).

    Article  Google Scholar 

  81. McAdoo, B. G. et al. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa. Earth-Sci. Rev. 107, 147–155 (2011).

    Article  Google Scholar 

  82. Dengler, L. & Preuss, J. Mitigation lessons from the July 17, 1998 Papua New Guinea Tsunami. Pure Appl. Geophys. 160, 2001–2031 (2003).

    Article  Google Scholar 

  83. Kunkel, C. M., Hallberg, R. W. & Oppenheimer, M. Coral reefs reduce tsunami impact in model simulations. Geophys. Res. Lett. 33, L23612 (2006).

    Article  Google Scholar 

  84. Borrero, J. C., Synolakis, C. E. & Fritz, H. Northern sumatra field survey after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthq. Spectra 22, 93–104 (2006).

    Article  Google Scholar 

  85. Dahdouh-Guebas, F. et al. How effective were mangroves as a defence against the recent tsunami? Curr. Biol. 15, R443–R447 (2005).

    Article  CAS  Google Scholar 

  86. Danielsen, F. et al. The Asian tsunami: a protective role for coastal vegetation. Science 310, 643 (2005).

    Article  CAS  Google Scholar 

  87. Chatenoux, B. & Peduzzi, P. Impacts from the 2004 Indian Ocean tsunami: analysing the potential protecting role of environmental features. Nat. Hazards 40, 289–304 (2007).

    Article  Google Scholar 

  88. Laso Bayas, J. C. et al. Influence of coastal vegetation on the 2004 tsunami wave impact in West Aceh. Proc. Natl Acad. Sci. USA 108, 18612–18617 (2011).

    Article  Google Scholar 

  89. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article  CAS  Google Scholar 

  90. Lunghino, B. et al. The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proc. Natl Acad. Sci. USA 117, 10740–10745 (2020).

    Article  CAS  Google Scholar 

  91. Sim, S. Y., Huang, Z. & Switzer, A. D. An experimental study on tsunami inundation over complex coastal topography. Theor. Appl. Mech. Lett. 3, 032006 (2013).

    Article  Google Scholar 

  92. Synolakis, C. E. & Kong, L. Runup measurements of the December 2004 Indian Ocean tsunami. Earthq. Spectra 22, 67–91 (2006).

    Article  Google Scholar 

  93. Parsons, T., Wu, P., Wei, M. (M.). & D’Hondt, S. The weight of New York City: possible contributions to subsidence from anthropogenic sources. Earths Future 11, e2022EF003465 (2023).

    Article  Google Scholar 

  94. Tay, C. et al. Sea-level rise from land subsidence in major coastal cities. Nat. Sustain. 5, 1049–1057 (2022).

    Article  Google Scholar 

  95. Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of West Sumatra. Science 322, 1674–1678 (2008).

    Article  CAS  Google Scholar 

  96. Hayashi, S., Kubo, K. & Nakase, A. Damage to harbour structures by the Niigata earthquake. Soils Found. 6, 89–112 (1966).

    Article  Google Scholar 

  97. Kawasumi, H. General Report on the Niigata Earthquake of 1964 (Tokyo Electrical Engineering College Press, 1968).

  98. Nishimura, T., Munekane, H. & Yarai, H. The 2011 off the Pacific coast of Tohoku earthquake and its aftershocks observed by GEONET. Earth Planets Space 63, 631–363 (2011).

    Article  Google Scholar 

  99. Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. D. & Simons, W. J. F. Vertical motions in Thailand after the 2004 Sumatra–Andaman earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).

    Article  Google Scholar 

  100. Hughes, M. W. The sinking city: earthquakes increase flood hazard in Christchurch, New Zealand. GSA Today https://doi.org/10.1130/GSATG221A.1 (2015).

  101. Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).

    Article  Google Scholar 

  102. Berkes, F. Indigenous ways of knowing and the study of environmental change. J. R. Soc. N. Z. 39, 151–156 (2009).

    Article  Google Scholar 

  103. Usher, P. J. Traditional ecological knowledge in environmental assessment and management. ARCTIC 53, 183–193 (2000).

    Article  Google Scholar 

  104. Whyte, K. P. On the role of traditional ecological knowledge as a collaborative concept: a philosophical study. Ecol. Process. 2, 7 (2013).

    Article  Google Scholar 

  105. Berkes, F. Understanding uncertainty and reducing vulnerability: lessons from resilience thinking. Nat. Hazards 41, 283–295 (2007).

    Article  Google Scholar 

  106. Khalafzai, M. A. K. in Natural Hazards — New Insights (ed Mokhtari, M.) (IntechOpen, 2023).

  107. Tarter, A. M., Freeman, K. K. & Sander, K. A History of Landscape-Level Land Management Efforts in Haiti (World Bank, 2016).

  108. Kurnio, H., Fekete, A., Naz, F., Norf, C. & Jüpner, R. Resilience learning and indigenous knowledge of earthquake risk in Indonesia. Int. J. Disaster Risk Reduct. 62, 102423 (2021).

    Article  Google Scholar 

  109. UN/ISDR. Indigenous Knowledge for Disaster Risk Reduction: Good Practices and Lessons Learned from Experiences in the Asia-Pacific Region (eds Shaw, R., Uy, N. & Baumwoll, J.) (UN/ISDR, 2008).

  110. Hou, L. & Shi, P. Haiti 2010 earthquake — how to explain such huge losses? Int. J. Disaster Risk Sci. 2, 25–33 (2011).

    Article  Google Scholar 

  111. World Bank. What Did We Learn? The Shelter Response and Housing Recovery in the First Two Years after the 2010 Haiti Earthquake (World Bank, 2016); https://doi.org/10.1596/26729.

  112. Havenith, H.-B. et al. Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences. Nat. Hazards Earth Syst. Sci. 22, 3361–3384 (2022).

    Article  Google Scholar 

  113. Poupardin, A. et al. Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami. Nat. Hazards Earth Syst. Sci. 20, 2055–2065 (2020).

    Article  Google Scholar 

  114. Farmer, P. Haiti after the Earthquake (PublicAffairs, 2012).

  115. Dubois, L. Haiti: the Aftershocks of History (Picador, 2013).

  116. Katz, J. The Big Truck That Went by: How the World Came to Save Haiti and Left Behind a Disaster (St. Martin’s Griffin, 2014).

  117. UNU-EHS. Interconnected Disaster Risks (UNU-EHS, 2022).

  118. Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).

    Google Scholar 

  119. Audefroy, J. F. Haiti: post-earthquake lessons learned from traditional construction. Environ. Urban. 23, 447–462 (2011).

    Article  Google Scholar 

  120. Mason, H. B. et al. East Palu Valley flowslides induced by the 2018 M 7.5 Palu-Donggala earthquake. Geomorphology 373, 107482 (2021).

    Article  Google Scholar 

  121. Pelinovsky, E., Yuliadi, D., Prasetya, G. & Hidayat, R. The 1996 Sulawesi tsunami. Nat. Hazards 16, 29–38 (1996).

    Article  Google Scholar 

  122. Martin, S. S., Cummins, P. R. & Meltzner, A. J. Gempa Nusantara: a database of 7380 macroseismic observations for 1200 historical earthquakes in Indonesia from 1546 to 1950. Bull. Seismol. Soc. Am. 112, 2958–2980 (2022).

    Article  Google Scholar 

  123. Paulik, R. et al. Tsunami hazard and built environment damage observations from Palu City after the September 28 2018 Sulawesi earthquake and tsunami. Pure Appl. Geophys. 176, 3305–3321 (2019).

    Article  Google Scholar 

  124. Syamsidik, B., Umar, M., Margaglio, G. & Fitrayansyah, A. Post-tsunami survey of the 28 September 2018 tsunami near Palu Bay in Central Sulawesi, Indonesia: impacts and challenges to coastal communities. Int. J. Disaster Risk Reduct. 38, 101229 (2019).

    Article  Google Scholar 

  125. Omira, R. et al. The September 28th, 2018, tsunami in Palu-Sulawesi, Indonesia: a post-event field survey. Pure Appl. Geophys. 176, 1379–1395 (2019).

    Article  Google Scholar 

  126. Wanger, T. C. et al. Ecosystem-based tsunami mitigation for tropical biodiversity hotspots. Trends Ecol. Evol. 35, 96–100 (2020).

    Article  Google Scholar 

  127. Liu, P. L.-F. et al. Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides 17, 2085–2098 (2020).

    Article  Google Scholar 

  128. Weber, R., Kreisel, W. & Faust, H. Colonial interventions on the cultural landscape of Central Sulawesi by ‘ethical policy’: the impact of the Dutch rule in Palu and Kulawi Valley, 1905–1942. Asian J. Soc. Sci. 31, 398–434 (2003).

    Article  Google Scholar 

  129. Tunas, I. G., Tanga, A. & Oktavia, S. Impact of landslides induced by the 2018 Palu earthquake on flash flood in Bangga River Basin, Sulawesi, Indonesia. J. Ecol. Eng. 21, 190–200 (2020).

    Article  Google Scholar 

  130. Cummins, P. R. Irrigation and the Palu landslides. Nat. Geosci. 12, 881–882 (2019).

    Article  CAS  Google Scholar 

  131. Soloviev, S. L. & Go, C. N. Catalogue of Tsunamis on the Western Shore of the Pacific Ocean (Nauka, 1974).

Download references

Acknowledgements

This work was supported by the Singapore Ministry of Education (MOE) under the Tier 3b project ‘Investigating Volcano and Earthquake Science and Technology (InVEST)’ (award number MOE-MOET32021-0002 to E.M.H.) and by the National Research Foundation (NRF) of Singapore under its NRF Investigatorship Scheme (award number NRF-NRFI05-2019-0009 to E.M.H.). The authors thank C. Garfias for the interesting discussions and K. Bradley for providing data used in Box 2. This is Earth Observatory of Singapore paper number 590.

Author information

Authors and Affiliations

Authors

Contributions

E.M.H. conceptualized the Perspective, coordinated the process and wrote the preliminary draft with the help of J.W.M. All authors contributed to the discussions, planning, writing and review of the manuscript. S.S. developed the graphics.

Corresponding author

Correspondence to Emma M. Hill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks M. d Ruiter, E. Hussain, E. Mortensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, E.M., McCaughey, J.W., Switzer, A.D. et al. Human amplification of secondary earthquake hazards through environmental modifications. Nat Rev Earth Environ (2024). https://doi.org/10.1038/s43017-024-00551-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43017-024-00551-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene