Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Freeze casting

Abstract

When solutions and slurries are directionally solidified, complex dynamics of solvent crystal growth and solvent templating determine the final hierarchical architecture of the freeze-cast material. With continuous X-ray tomoscopy, it is now possible to study in situ intricate and otherwise elusive ice crystal growth and solvent-templating phenomena. Quantifying these phenomena both time-resolved and in three dimensions provides novel insights into the formation of performance-defining features of freeze-cast cellular solids at several length scales: the material’s pore morphology (first hierarchical level), the molecular, fibrillar and particle self-assembly of components in the cell walls (second level) and the cell wall surface structures (third level). The freeze casting process is attractive because the features of the final hierarchical material architecture — which determine the material’s structural, mechanical and physical properties — can be custom designed for a given application. Overall porosity, pore size, geometry, orientation, particle packing in cell walls and cell wall surface features can be tailored for applications in, for example, biomedicine, environmental engineering, catalysis, power conversion, and energy generation and storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the freeze casting process and examples of structural features templated in freeze-cast polymers, ceramics and metals.
Fig. 2: An overview of freeze caster, mould designs, resulting domain shape and lamellar orientation in two and three dimensions.
Fig. 3: Dynamic structural characterization of crystal growth processes with tomoscopy.
Fig. 4: Overview of in situ and post-mortem techniques to characterize the dynamics of ice crystal growth and ice templating during solidification and the hierarchical material architecture that results ordered by length scale.
Fig. 5: Quantitative in situ characterization of the structure evolution, features formation and particle arrangements.
Fig. 6: Structure–property correlations.
Fig. 7: Example sample sectioning schemes for material analysis and mechanical testing.

Similar content being viewed by others

References

  1. Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  ADS  Google Scholar 

  2. Donius, A. E. et al. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite. Mater. Charact. 93, 184–190 (2014). The only cryogenic EBSD and SEM study to date reveals crystallographic orientation and morphology of a directionally solidified ice–polymer composite in the as-frozen state.

    Article  Google Scholar 

  3. Schoof, H., Bruns, L., Fischer, A., Heschel, I. & Rau, G. Dendritic ice morphology in unidirectionally solidified collagen suspensions. J. Cryst. Growth 209, 122–129 (2000).

    Article  ADS  Google Scholar 

  4. Scotti, K. L. & Dunand, D. C. Freeze casting – a review of processing, microstructure and properties via the open data repository, FreezeCasting.net. Prog. Mater. Sci. 94, 243–305 (2018).

    Article  Google Scholar 

  5. Wegst, U. G. K., Schecter, M., Donius, A. E. & Hunger, P. M. Biomaterials by freeze casting. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 368, 2099–2121 (2010).

    ADS  Google Scholar 

  6. Donius, A. E., Liu, A., Berglund, L. A. & Wegst, U. G. K. Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting. J. Mech. Behav. Biomed. Mater. 37, 88–99 (2014).

    Article  Google Scholar 

  7. Hunger, P. M., Donius, A. E. & Wegst, U. G. K. Structure–property–processing correlations in freeze-cast composite scaffolds. Acta Biomater. 9, 6338–6348 (2013).

    Article  Google Scholar 

  8. Hunger, P. M., Donius, A. E. & Wegst, U. G. K. Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013). Report of the discovery of interdendritic shear flow as the mechanism for particle self-assembly and structure formation through the observation of ceramic platelets self-assembling into porous nacre during directional solidification.

    Article  Google Scholar 

  9. Araki, K. & Halloran, J. W. Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. J. Am. Ceram. Soc. 87, 2014–2019 (2004).

    Article  Google Scholar 

  10. Cheng, Q., Huang, C. & Tomsia, A. P. Freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017).

    Article  Google Scholar 

  11. Chino, Y. & Dunand, D. C. Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105–113 (2008).

    Article  ADS  Google Scholar 

  12. Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T. & Kanzaki, S. Synthesis of porous silicon nitride with unidirectionally aligned channels using freeze-drying process. J. Am. Ceram. Soc. 85, 2151–2155 (2002).

    Article  Google Scholar 

  13. Porter, M. M. et al. Magnetic freeze casting inspired by nature. Mater. Sci. Eng. A 556, 741–750 (2012). To our knowledge, this first report on structural control via an externally applied field, here a magnetic one, inspires the use of other externally applied fields, such as electrical and acoustic, to custom design and control the structure and properties of freeze-cast materials.

    Article  Google Scholar 

  14. Weaver, J. S., Kalidindi, S. R. & Wegst, U. G. K. Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Mater. 132, 182–192 (2017).

    Article  ADS  Google Scholar 

  15. Wilke, S. K., Mack, J. B., Kenel, C. & Dunand, D. C. Evolution of directionally freeze-cast Fe2O3 and Fe2O3 + NiO green bodies during reduction and sintering to create lamellar Fe and Fe-20Ni foams. J. Alloy. Compd. 889, 161707 (2021).

    Article  Google Scholar 

  16. Kádár, C. et al. Investigation of the compressive behavior of a freeze-cast Cu foam using acoustic emission measurement. Adv. Eng. Mater. 24, 2100378 (2022).

    Article  Google Scholar 

  17. Picot, O. T. et al. Using graphene networks to build bioinspired self-monitoring ceramics. Nat. Commun. 8, 14425 (2017).

    Article  ADS  Google Scholar 

  18. Qiu, K. & Wegst, U. G. K. Excellent specific mechanical and electrical properties of anisotropic freeze-cast native and carbonized bacterial cellulose-alginate foams. Adv. Funct. Mater. 32, 2105635 (2022).

    Article  Google Scholar 

  19. Qiu, L., Liu, J. Z., Chang, S. L. Y., Wu, Y. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    Article  ADS  Google Scholar 

  20. Wang, C. et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12, 5816–5825 (2018).

    Article  Google Scholar 

  21. Yin, K. et al. Hierarchical structure formation by crystal growth-front instabilities during ice templating. Proc. Natl. Acad. Sci. USA 120, e2210242120 (2023). The fundamental science of ice crystal growth and ice templating is presented with an integrated experimental and phase-field simulation approach.

    Article  Google Scholar 

  22. Lee, E.-J., Koh, Y.-H., Yoon, B.-H., Kim, H.-E. & Kim, H.-W. Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater. Lett. 61, 2270–2273 (2007).

    Article  Google Scholar 

  23. Naviroj, M., Voorhees, P. W. & Faber, K. T. Suspension- and solution-based freeze casting for porous ceramics. J. Mater. Res. 32, 3372–3382 (2017).

    Article  ADS  Google Scholar 

  24. Chen, R., Wang, C.-A., Huang, Y., Ma, L. & Lin, W. Ceramics with special porous structures fabricated by freeze-gelcasting: using tert-butyl alcohol as a template. J. Am. Ceram. Soc. 90, 3478–3484 (2007).

    Article  Google Scholar 

  25. Naviroj, M., Miller, S. M., Colombo, P. & Faber, K. T. Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. J. Eur. Ceram. Soc. 35, 2225–2232 (2015).

    Article  Google Scholar 

  26. Cui, Y., Gong, H., Wang, Y., Li, D. & Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 30, 1706807 (2018). Introduces continuous freeze casting, in this case freeze spinning, for the manufacture of continuous fibres with a controlled and aligned pore architecture.

    Article  Google Scholar 

  27. Zhang, Q. et al. 3D printing of graphene aerogels. Small 12, 1702–1708 (2016).

    Article  Google Scholar 

  28. Caruso, I., Yin, K., Divakar, P. & Wegst, U. G. K. Tensile properties of freeze-cast collagen scaffolds: how processing conditions affect structure and performance in the dry and fully hydrated states. J. Mech. Behav. Biomed. Mater. 144, 105897 (2023).

    Article  Google Scholar 

  29. Divakar, P., Yin, K. & Wegst, U. G. K. Anisotropic freeze-cast collagen scaffolds for tissue regeneration: how processing conditions affect structure and properties in the dry and fully hydrated states. J. Mech. Behav. Biomed. Mater. 90, 350–364 (2019).

    Article  Google Scholar 

  30. Divakar, P., Yin, K. & Wegst, U. G. K. Values and property charts for anisotropic freeze-cast collagen scaffolds for tissue regeneration. Data Brief. 22, 502–507 (2019).

    Article  Google Scholar 

  31. Yin, K., Divakar, P. & Wegst, U. G. K. Plant-derived nanocellulose as structural and mechanical reinforcement of freeze-cast chitosan scaffolds for biomedical applications. Biomacromolecules 20, 3733–3745 (2019).

    Article  Google Scholar 

  32. Yin, K., Divakar, P. & Wegst, U. G. K. Freeze-casting porous chitosan ureteral stents for improved drainage. Acta Biomater. 84, 231–241 (2019).

    Article  Google Scholar 

  33. Yin, K., Divakar, P. & Wegst, U. G. K. Structure-property-processing correlations of longitudinal freeze-cast chitosan scaffolds for biomedical applications. J. Mech. Behav. Biomed. Mater. 121, 104589 (2021).

    Article  Google Scholar 

  34. Kamm, P. H. et al. X-ray tomoscopy reveals the dynamics of ice templating. Adv. Funct. Mater. 33, 2304738 (2023). Introduces X-ray tomoscopy as currently the only technique to image and quantify in three dimensions with high spatial and temporal resolution the dynamics of ice crystal growth, instability formation and ice templating of the hierarchical architecture typical of freeze-cast materials.

    Article  Google Scholar 

  35. García-Moreno, F. et al. Using X-ray tomoscopy to explore the dynamics of foaming metal. Nat. Commun. 10, 3762 (2019).

    Article  ADS  Google Scholar 

  36. García-Moreno, F. et al. Tomoscopy: time-resolved tomography for dynamic processes in materials. Adv. Mater. 33, 2104659 (2021). Several applications for X-ray tomoscopy are presented to illustrate how the dynamics of processes can be visualized and quantified with imaging rates up to 1,000 tps over a period of minutes.

    Article  Google Scholar 

  37. García-Moreno, F., Neu, T. R., Kamm, P. H. & Banhart, J. X-ray tomography and tomoscopy on metals: a review. Adv. Eng. Mater. 25, 2201355 (2023).

    Article  Google Scholar 

  38. Betz, O. et al. Imaging applications of synchrotron X-ray phase-contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre-sized arthropod structure. J. Microsc. 227, 51–71 (2007).

    Article  MathSciNet  Google Scholar 

  39. Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primer 1, 17 (2021).

    Article  Google Scholar 

  40. Yashiro, W., Voegeli, W. & Kudo, H. Exploring frontiers of 4D X-ray tomography. Appl. Sci. 11, 8868 (2021).

    Article  Google Scholar 

  41. Deville, S., Adrien, J., Maire, E., Scheel, M. & Di Michiel, M. Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Mater. 61, 2077–2086 (2013).

    Article  ADS  Google Scholar 

  42. Deville, S. et al. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions. Part I: initial instants. J. Am. Ceram. Soc. 92, 2489–2496 (2009).

    Article  Google Scholar 

  43. Deville, S. et al. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particles suspensions. Part II: steady state. J. Am. Ceram. Soc. 92, 2497–2503 (2009).

    Article  Google Scholar 

  44. Kamm, P. H., Neu, T. R., García-Moreno, F. & Banhart, J. Nucleation and growth of gas bubbles in AlSi8Mg4 foam investigated by X-ray tomoscopy. Acta Mater. 206, 116583 (2021).

    Article  Google Scholar 

  45. Maire, E., Le Bourlot, C., Adrien, J., Mortensen, A. & Mokso, R. 20 Hz X-ray tomography during an in situ tensile test. Int. J. Fract. 200, 3–12 (2016).

    Article  Google Scholar 

  46. Maire, E. & Withers, P. J. Quantitative X-ray tomography. Int. Mater. Rev. 59, 1–43 (2014).

    Article  Google Scholar 

  47. Seitzman, N. et al. Operando X-ray tomography imaging of solid-state electrolyte response to Li evolution under realistic operating conditions. ACS Appl. Energy Mater. 4, 1346–1355 (2021).

    Article  Google Scholar 

  48. Tong, H., Noda, I. & Gryte, C. C. CPS 768 formation of anisotropic ice-agar composites by directional freezing. Colloid Polym. Sci. 262, 589–595 (1984). To our knowledge, the first report to correlate temperature gradient, freezing front velocity and lamellar spacing, and the discovery of birefringence in a freeze-cast bulk sample, implying preferential molecular alignment during the directional solidification of an aqueous binary polymer solution.

    Article  Google Scholar 

  49. Deville, S., Saiz, E. & Tomsia, A. P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480–5489 (2006).

    Article  Google Scholar 

  50. Lloreda-Jurado, P. J. et al. Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment. J. Mater. Res. 35, 2587–2596 (2020).

    Article  ADS  Google Scholar 

  51. Waschkies, T., Oberacker, R. & Hoffmann, M. J. Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Mater. 59, 5135–5145 (2011).

    Article  ADS  Google Scholar 

  52. Waschkies, T., Oberacker, R. & Hoffmann, M. J. Control of lamellae spacing during freeze casting of ceramics using double-side cooling as a novel processing route. J. Am. Ceram. Soc. 92, S79–S84 (2009).

    Article  Google Scholar 

  53. Munch, E., Saiz, E., Tomsia, A. P. & Deville, S. Architectural control of freeze-cast ceramics through additives and templating. J. Am. Ceram. Soc. 92, 1534–1539 (2009).

    Article  Google Scholar 

  54. Naviroj, M., Wang, M. M., Johnson, M. T. & Faber, K. T. Nucleation-controlled freeze casting of preceramic polymers for uniaxial pores in Si-based ceramics. Scr. Mater. 130, 32–36 (2017).

    Article  Google Scholar 

  55. Cline, C. et al. Heterogeneous ice nucleation studied with single-layer graphene. Langmuir 38, 15121–15131 (2022).

    Article  Google Scholar 

  56. Kurz, W. & Fisher, D. J. Fundamentals of Solidification (Trans Tech, 1998).

  57. Deville, S. Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering (Springer, 2017).

  58. Petrenko, V. F. & Whitworth, R. W. Physics of Ice. (Oxford University Press, 2002).

  59. Tiller, W. A., Jackson, K. A., Rutter, J. W. & Chalmers, B. The redistribution of solute atoms during the solidification of metals. Acta Metall. 1, 428–437 (1953).

    Article  Google Scholar 

  60. Mullins, W. W. & Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964).

    Article  ADS  Google Scholar 

  61. Riblett, B. W., Francis, N. L., Wheatley, M. A. & Wegst, U. G. K. Ice-templated scaffolds with microridged pores direct DRG neurite growth. Adv. Funct. Mater. 22, 4920–4923 (2012).

    Article  Google Scholar 

  62. Heschel, I., Lückge, C., Rödder, M., Garberding, C. & Rau, G. in Kittel, P. Advances in Cryogenic Engineering (ed. Kittel, P.) 13–19 (Springer, 1996).

  63. Arai, N. & Faber, K. T. Gradient-controlled freeze casting of preceramic polymers. J. Eur. Ceram. Soc. 43, 1904–1911 (2023).

    Article  Google Scholar 

  64. Bouville, F. et al. Templated grain growth in macroporous materials. J. Am. Ceram. Soc. 97, 1736–1742 (2014).

    Article  Google Scholar 

  65. Pawelec, K. M., Husmann, A., Best, S. M. & Cameron, R. E. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater. Sci. Eng. C. 37, 141–147 (2014).

    Article  Google Scholar 

  66. Bai, H., Chen, Y., Delattre, B., Tomsia, A. P. & Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1, e1500849 (2015).

    Article  ADS  Google Scholar 

  67. Davidenko, N. et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 8, 667–676 (2012).

    Article  Google Scholar 

  68. Harley, B. A., Hastings, A. Z., Yannas, I. V. & Sannino, A. Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials 27, 866–874 (2006).

    Article  Google Scholar 

  69. Su, F. Y., Mok, J. R. & McKittrick, J. Radial-concentric freeze casting inspired by porcupine fish spines. Ceramics 2, 161–179 (2019).

    Article  Google Scholar 

  70. Yin, K., Mylo, M. D., Speck, T. & Wegst, U. G. K. 2D and 3D graphical datasets for bamboo-inspired tubular scaffolds with functional gradients: micrographs and tomograms. Data Brief. 31, 105870 (2020).

    Article  Google Scholar 

  71. Yin, K., Mylo, M. D., Speck, T. & Wegst, U. G. K. Bamboo-inspired tubular scaffolds with functional gradients. J. Mech. Behav. Biomed. Mater. 110, 103826 (2020).

    Article  Google Scholar 

  72. Li, D., Bu, X., Xu, Z., Luo, Y. & Bai, H. Bioinspired multifunctional cellular plastics with a negative poisson’s ratio for high energy dissipation. Adv. Mater. 32, 2001222 (2020).

    Article  Google Scholar 

  73. Tian, L. et al. Tailoring centripetal metamaterial with superelasticity and negative Poisson’s ratio for organic solvents adsorption. Sci. Adv. 8, eabo1014 (2022).

    Article  Google Scholar 

  74. Niksiar, P., Frank, M. B., McKittrick, J. & Porter, M. M. Microstructural evolution of paramagnetic materials by magnetic freeze casting. J. Mater. Res. Technol. 8, 2247–2254 (2019).

    Article  Google Scholar 

  75. Yin, K., Reese, B. A., Sullivan, C. R. & Wegst, U. G. K. Superior mechanical and magnetic performance of highly anisotropic sendust‐flake composites freeze cast in a uniform magnetic field. Adv. Funct. Mater. 31, 2007743 (2020).

    Article  Google Scholar 

  76. Tang, Y., Qiu, S., Miao, Q. & Wu, C. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J. Eur. Ceram. Soc. 36, 1233–1240 (2016).

    Article  Google Scholar 

  77. Tang, Y. F., Zhao, K., Wei, J. Q. & Qin, Y. S. Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. J. Eur. Ceram. Soc. 30, 1963–1965 (2010).

    Article  Google Scholar 

  78. Ogden, T. A., Prisbrey, M., Nelson, I., Raeymaekers, B. & Naleway, S. E. Ultrasound freeze casting: fabricating bioinspired porous scaffolds through combining freeze casting and ultrasound directed self-assembly. Mater. Des. 164, 107561 (2019).

    Article  Google Scholar 

  79. Porter, M. M. et al. Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Compos. Struct. 119, 174–184 (2015).

    Article  Google Scholar 

  80. Moritz, T. & Richter, H.-J. Ice-mould freeze casting of porous ceramic components. J. Eur. Ceram. Soc. 27, 4595–4601 (2007).

    Article  Google Scholar 

  81. Yu, R. et al. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 9, 21809–21819 (2017).

    Article  Google Scholar 

  82. Wu, M. et al. Biomimetic knittable aerogel fiber for thermal insulation textile. Science 382, 1379–1383 (2023).

    Article  ADS  Google Scholar 

  83. Shen, H. et al. Scalable freeze-tape-casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes. ACS Appl. Mater. Interfaces 12, 3494–3501 (2020).

    Article  Google Scholar 

  84. Chen, Y., Bunch, J., Li, T., Mao, Z. & Chen, F. Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. J. Power Sources 213, 93–99 (2012).

    Article  ADS  Google Scholar 

  85. Guo, Y., Jiang, Y., Zhang, Q., Wan, D. & Huang, C. Directional LiFePO4 cathode structure by freeze tape casting to improve lithium ion diffusion kinetics. J. Power Sources 506, 230052 (2021).

    Article  Google Scholar 

  86. Hwa, Y. et al. Three-dimensionally aligned sulfur electrodes by directional freeze tape casting. Nano Lett. 19, 4731–4737 (2019).

    Article  ADS  Google Scholar 

  87. Parikh, D. & Li, J. Bilayer hybrid graphite anodes via freeze tape casting for extreme fast charging applications. Carbon 196, 525–531 (2022).

    Article  Google Scholar 

  88. Sofie, S. W. Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze–tape-casting process. J. Am. Ceram. Soc. 90, 2024–2031 (2007).

    Article  Google Scholar 

  89. Yang, W. et al. Freeze-assisted tape casting of vertically aligned MXene films for high rate performance supercapacitors. Energy Environ. Mater. 3, 380–388 (2020).

    Article  Google Scholar 

  90. Xiong, Z., Yan, Y., Wang, S., Zhang, R. & Zhang, C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scr. Mater. 46, 771–776 (2002).

    Article  Google Scholar 

  91. Song, X. et al. Biomimetic 3D printing of hierarchical and interconnected porous hydroxyapatite structures with high mechanical strength for bone cell culture. Adv. Eng. Mater. 21, 1800678 (2019).

    Article  Google Scholar 

  92. Snyder, J. E. et al. Combined multi-nozzle deposition and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment. Biofabrication 6, 015007 (2014).

    Article  ADS  Google Scholar 

  93. Reed, S. et al. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication 8, 015003 (2016).

    Article  ADS  Google Scholar 

  94. Körber, C., Scheiwe, M.-W. & Wollhöver, K. A cryomicroscope for the analysis of solute polarization during freezing. Cryobiology 21, 68–80 (1984).

    Article  Google Scholar 

  95. Körber, C. et al. Low temperature light microscopy and its application to study freezing in aqueous solutions and biological cell suspensions. J. Microsc. 141, 263–276 (1986).

    Article  Google Scholar 

  96. Rubinsky, B. & Ikeda, M. A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology 22, 55–68 (1985).

    Article  Google Scholar 

  97. Dedovets, D., Monteux, C. & Deville, S. Five-dimensional imaging of freezing emulsions with solute effects. Science 360, 303–306 (2018).

    Article  ADS  Google Scholar 

  98. Dedovets, D., Monteux, C. & Deville, S. A temperature-controlled stage for laser scanning confocal microscopy and case studies in materials science. Ultramicroscopy 195, 1–11 (2018).

    Article  Google Scholar 

  99. Dedovets, D. & Deville, S. Multiphase imaging of freezing particle suspensions by confocal microscopy. J. Eur. Ceram. Soc. 38, 2687–2693 (2018).

    Article  Google Scholar 

  100. Marcellini, M., Noirjean, C., Dedovets, D., Maria, J. & Deville, S. Time-lapse, in situ imaging of ice crystal growth using confocal microscopy. ACS Omega 1, 1019–1026 (2016).

    Article  Google Scholar 

  101. Körber, C., Rau, G., Cosman, M. D. & Cravalho, E. G. Interaction of particles and a moving ice-liquid interface. J. Cryst. Growth 72, 649–662 (1985).

    Article  ADS  Google Scholar 

  102. Lipp, G., Körber, C. & Rau, G. Critical growth rates of advancing ice-water interfaces for particle encapsulation. J. Cryst. Growth 99, 206–210 (1990).

    Article  ADS  Google Scholar 

  103. Fabietti, L. M., Seetharaman, V. & Trivedi, R. The development of solidification microstructures in the presence of lateral constraints. Metall. Trans. A 21, 1299–1310 (1990).

    Article  Google Scholar 

  104. Mota, F. L., Fabietti, L. M., Bergeon, N. & Trivedi, R. The effect of confinement on thermal convection and longitudinal macrosegregation in directionally solidified dilute succinonitrile–camphor alloy. Comptes Rendus Mécanique 351 (Suppl. 2), 249–262 (2023).

    Article  ADS  Google Scholar 

  105. Hoshino, M., Uesugi, K. & Yagi, N. 4D X-ray phase contrast tomography for repeatable motion of biological samples. Rev. Sci. Instrum. 87, 093705 (2016).

    Article  ADS  Google Scholar 

  106. Escauriza, E. M. et al. Ultra-high-speed indirect X-ray imaging system with versatile spatiotemporal sampling capabilities. Appl. Opt. 57, 5004–5010 (2018).

    Article  ADS  Google Scholar 

  107. Vagovič, P. et al. Megahertz X-ray microscopy at X-ray free-electron laser and synchrotron sources. Optica 6, 1106–1109 (2019).

    Article  ADS  Google Scholar 

  108. Bareggi, A., Maire, E., Lasalle, A. & Deville, S. Dynamics of the freezing front during the solidification of a colloidal alumina aqueous suspension: in situ X-ray radiography, tomography, and modeling. J. Am. Ceram. Soc. 94, 3570–3578 (2011).

    Article  Google Scholar 

  109. Yang, G. et al. In situ imaging of three dimensional freeze printing process using rapid X-ray synchrotron radiography. Rev. Sci. Instrum. 93, 013703 (2022).

    Article  ADS  Google Scholar 

  110. Lohse, L. M. et al. A phase-retrieval toolbox for X-ray holography and tomography. J. Synchrotron Radiat. 27, 852–859 (2020).

    Article  Google Scholar 

  111. Paganin, D., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins, S. W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002). Introduces a new phase retrieval method based on the use of only one radiographic projection, which signifantly enhances image contrast and data processing speeds in X-ray tomography and tomoscopy.

    Article  MathSciNet  Google Scholar 

  112. Weitkamp, T., Haas, D., Wegrzynek, D. & Rack, A. ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J. Synchrotron Radiat. 18, 617–629 (2011).

    Article  Google Scholar 

  113. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  Google Scholar 

  114. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  115. Tsai, E. H. R., Marone, F. & Guizar-Sicairos, M. Gridrec-MS: an algorithm for multi-slice tomography. Opt. Lett. 44, 2181–2184 (2019).

    Article  ADS  Google Scholar 

  116. Arganda-Carreras, I. et al. Trainable Weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426 (2017).

    Article  Google Scholar 

  117. Arzt, M. et al. LABKIT: labeling and segmentation toolkit for big image data. Front. Comput. Sci. 4, 777728 (2022).

    Article  Google Scholar 

  118. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015 (eds. Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) Part III. LNCS 9351, 234–241 (Springer, 2015).

  119. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article  Google Scholar 

  120. Ollion, J., Cochennec, J., Loll, F., Escudé, C. & Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29, 1840–1841 (2013).

    Article  Google Scholar 

  121. Van Der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Article  Google Scholar 

  122. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

    Article  Google Scholar 

  123. Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods 17, 5–6 (2020).

    Article  Google Scholar 

  124. Abdullayev, A., Kamm, P. H., Bekheet, M. F. & Gurlo, A. Fabrication and characterization of ice templated membrane supports from Portland cement. Membranes 10, 93 (2020).

    Article  Google Scholar 

  125. Henning, L. M. et al. Manufacturing and characterization of highly porous bioactive glass composite scaffolds using unidirectional freeze casting. Adv. Eng. Mater. 19, 1700129 (2017).

    Article  Google Scholar 

  126. Püspöki, Z., Storath, M., Sage, D. & Unser, M. in Focus on Bio-Image Informatics (eds. De Vos, W. H., Munck, S. & Timmermans, J.-P.) 69–93 (Springer, 2016).

  127. Ashby, M. F. The properties of foams and lattices. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364, 15–30 (2006).

    ADS  MathSciNet  Google Scholar 

  128. Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties (Cambridge Univ. Press, 1997).

  129. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  ADS  Google Scholar 

  130. Delattre, B. et al. Impact of pore tortuosity on electrode kinetics in lithium battery electrodes: study in directionally freeze-cast LiNi0.8Co0.15Al0.05O2 (NCA). J. Electrochem. Soc. 165, A388 (2018).

    Article  Google Scholar 

  131. Miao, S., Wang, Y., Sun, L. & Zhao, Y. Freeze-derived heterogeneous structural color films. Nat. Commun. 13, 4044 (2022).

    Article  ADS  Google Scholar 

  132. Shao, G., Hanaor, D. A. H., Shen, X. & Gurlo, A. Freeze casting: from low-dimensional building blocks to aligned porous structures — a review of novel materials, methods, and applications. Adv. Mater. 32, 1907176 (2020).

    Article  Google Scholar 

  133. Liu, Y., Zhu, W., Guan, K., Peng, C. & Wu, J. Freeze-casting of alumina ultra-filtration membranes with good performance for anionic dye separation. Ceram. Int. 44, 11901–11904 (2018).

    Article  Google Scholar 

  134. Du, Z. et al. The sound absorption performance of the highly porous silica ceramics prepared using freeze casting method. J. Am. Ceram. Soc. 103, 5990–5998 (2020).

    Article  Google Scholar 

  135. Bian, R. et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C. 7, 474–478 (2019).

    Article  Google Scholar 

  136. Li, P.-X. et al. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors. Rare Met. 42, 1249–1260 (2023).

    Article  Google Scholar 

  137. Sani, E., Landi, E., Sciti, D. & Medri, V. Optical properties of ZrB2 porous architectures. Sol. Energy Mater. Sol. Cell 144, 608–615 (2016).

    Article  Google Scholar 

  138. Huang, J. et al. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor. Chem. Eng. J. 364, 28–36 (2019).

    Article  Google Scholar 

  139. Ezekwo, G., Tong, H.-M. & Gryte, C. C. On the mechanism of dewatering colloidal aqueous solutions by freeze-thaw processes. Water Res. 14, 1079–1088 (1980).

    Article  Google Scholar 

  140. Tong, H. & Gryte, C. Mechanism of lamellar spacing adjustment in directionally frozen agar gels. Colloid Polym. Sci. 263, 147–155 (1985).

    Article  Google Scholar 

  141. Campbell, J. J., Husmann, A., Hume, R. D., Watson, C. J. & Cameron, R. E. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 114, 34–43 (2017).

    Article  Google Scholar 

  142. Offeddu, G. S., Ashworth, J. C., Cameron, R. E. & Oyen, M. L. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 42, 19–25 (2015).

    Article  Google Scholar 

  143. Schoof, H., Apel, J., Heschel, I. & Rau, G. Control of pore structure and size in freeze-dried collagen sponges. J. Biomed. Mater. Res. 58, 352–357 (2001).

    Article  Google Scholar 

  144. Kuberka, M., Heschel, I. & Glasmacher, B. Preparation of collagen scaffolds and their applications in tissue engineering. Biomed. Tech. Eng. 47, 485–487 (2002).

    Article  Google Scholar 

  145. Munier, P., Gordeyeva, K., Bergström, L. & Fall, A. B. Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules 17, 1875–1881 (2016).

    Article  Google Scholar 

  146. Bai, H. et al. Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomater. 20, 113–119 (2015).

    Article  Google Scholar 

  147. Bozkurt, A. et al. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials 30, 169–179 (2009).

    Article  Google Scholar 

  148. Meghri, N. W. et al. Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. JOM 62, 71–75 (2010).

    Article  Google Scholar 

  149. Mohan, S. et al. Fluorescent reporter mice for nerve guidance conduit assessment: a high-throughput in vivo model. Laryngoscope 128, E386–E392 (2018).

    Article  Google Scholar 

  150. von Heimburg, D. et al. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials 22, 429–438 (2001).

    Article  Google Scholar 

  151. Möllers, S. et al. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng. Part. A 15, 461–472 (2009).

    Article  Google Scholar 

  152. Bozkurt, A. et al. Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials 75, 112–122 (2016).

    Article  Google Scholar 

  153. Divakar, P. et al. High-plex expression profiling reveals that implants drive spatiotemporal protein production and innate immune activation for tissue repair. Acta Biomater. 138, 342–350 (2022).

    Article  Google Scholar 

  154. Divakar, P., Moodie, K. L., Demidenko, E., Hoopes, P. J. & Wegst, U. G. K. Quantitative evaluation of the in vivo biocompatibility and performance of freeze-cast tissue scaffolds. Biomed. Mater. 15, 055003 (2019).

    Article  Google Scholar 

  155. Divakar, P. et al. Design, manufacture, and in vivo testing of a tissue scaffold for permanent female sterilization by tubal occlusion. MRS Adv. 3, 1685–1690 (2018).

    Article  Google Scholar 

  156. Jiang, S.-J. et al. Radially porous nanocomposite scaffolds with enhanced capability for guiding bone regeneration in vivo. Adv. Funct. Mater. 32, 2110931 (2022).

    Article  Google Scholar 

  157. Yin, K. et al. Freeze-cast porous chitosan conduit for peripheral nerve repair. MRS Adv. 3, 1677–1683 (2018).

    Article  Google Scholar 

  158. Divakar, P., Trembly, B. S., Moodie, K. L., Hoopes, P. J. & Wegst, U. G. K. in SPIE BIOS Proceedings Volume 10066 (ed. Ryan, T. P.) 100660A (2017).

  159. Li, J. et al. Radial sponges facilitate wound healing by promoting cell migration and angiogenesis. Adv. Healthc. Mater. 12, 2202737 (2023).

    Article  Google Scholar 

  160. Fu, Q., Rahaman, M. N., Dogan, F. & Bal, B. S. Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomed. Mater. 3, 025005 (2008).

    Article  ADS  Google Scholar 

  161. Xia, Z. et al. Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 9, 7308–7319 (2013).

    Article  Google Scholar 

  162. Fu, Q., Rahaman, M. N., Dogan, F. & Bal, B. S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 86B, 125–135 (2008).

    Article  Google Scholar 

  163. Fu, Q., Rahaman, M. N., Dogan, F. & Bal, B. S. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. J. Biomed. Mater. Res. B Appl. Biomater. 86B, 514–522 (2008).

    Article  Google Scholar 

  164. Yin, T. J. & Naleway, S. E. Freeze casting with bioceramics for bone graft substitutes. Biomed. Mater. Devices 1, 366–387 (2023).

    Article  Google Scholar 

  165. Jackson, A. P., Vincent, J. F. V., Turner, R. M. & Alexander, R. M. The mechanical design of nacre. Proc. R. Soc. Lond. B Biol. Sci. 234, 415–440 (1988).

    Article  ADS  Google Scholar 

  166. Deville, S., Saiz, E. & Tomsia, A. P. Ice-templated porous alumina structures. Acta Mater. 55, 1965–1974 (2007).

    Article  ADS  Google Scholar 

  167. Launey, M. E. et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Mater. 57, 2919–2932 (2009).

    Article  ADS  Google Scholar 

  168. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  ADS  Google Scholar 

  169. Roy, S., Frohnheiser, J. & Wanner, A. Effect of ceramic preform freeze-casting temperature and melt infiltration technique on the mechanical properties of a lamellar metal/ceramic composite. J. Compos. Mater. 54, 2001–2011 (2020).

    Article  ADS  Google Scholar 

  170. Wegst, U. G. K., Allen, T. & Sridharan, K. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report. DOE/NEUP–10-848, 1154737 (2014).

  171. Zeng, Z., Wu, N., Liu, J. & Nyström, G. Mimicking biological architectures via freeze casting. Matter 5, 2519–2522 (2022).

    Article  Google Scholar 

  172. Huang, L. et al. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater. 68, 223–236 (2018).

    Article  Google Scholar 

  173. Francis, N. L. et al. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J. Biomed. Mater. Res. A 101, 3493–3503 (2013).

    Article  Google Scholar 

  174. Stokols, S. & Tuszynski, M. H. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25, 5839–5846 (2004).

    Article  Google Scholar 

  175. Chen, J. et al. Freeze-casting osteochondral scaffolds: the presence of a nutrient-permeable film between the bone and cartilage defect reduces cartilage regeneration. Acta Biomater. 154, 168–179 (2022).

    Article  Google Scholar 

  176. Stoppel, W. L., Hu, D., Domian, I. J., Kaplan, D. L. & Black, I. I. I. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed. Mater. Bristol Engl. 10, 034105 (2015).

    Article  ADS  Google Scholar 

  177. Cao, S. et al. Shape memory and antibacterial chitosan-based cryogel with hemostasis and skin wound repair. Carbohydr. Polym. 305, 120545 (2023).

    Article  Google Scholar 

  178. Wang, J., Xu, Z., Eloi, J.-C., Titirici, M.-M. & Eichhorn, S. J. Ice-templated, sustainable carbon aerogels with hierarchically tailored channels for sodium- and potassium-ion batteries. Adv. Funct. Mater. 32, 2110862 (2022).

    Article  Google Scholar 

  179. Amin, R., Delattre, B., Tomsia, A. P. & Chiang, Y.-M. Electrochemical characterization of high energy density graphite electrodes made by freeze-casting. ACS Appl. Energy Mater. 1, 4976–4981 (2018).

    Article  Google Scholar 

  180. Sun, H. et al. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 4, 45–60 (2019).

    Article  ADS  Google Scholar 

  181. Dang, D., Wang, Y., Gao, S. & Cheng, Y.-T. Freeze-dried low-tortuous graphite electrodes with enhanced capacity utilization and rate capability. Carbon 159, 133–139 (2020).

    Article  Google Scholar 

  182. Thomas, B. et al. Ice-templating of lignin and cellulose nanofiber-based carbon aerogels: implications for energy storage applications. ACS Appl. Nano Mater. 5, 7954–7966 (2022).

    Article  Google Scholar 

  183. Shao, Y. et al. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 28, 6719–6726 (2016).

    Article  Google Scholar 

  184. Wilke, S. K. & Dunand, D. C. Structural evolution of directionally freeze-cast iron foams during oxidation/reduction cycles. Acta Mater. 162, 90–102 (2019).

    Article  ADS  Google Scholar 

  185. Zhao, Z. et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 29, 1809196 (2019).

    Article  Google Scholar 

  186. Zhang, X. et al. Tunable porous electrode architectures for enhanced Li-Ion storage kinetics in thick electrodes. Nano Lett. 21, 5896–5904 (2021).

    Article  ADS  Google Scholar 

  187. Lee, J. T., Jo, C. & De Volder, M. Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading. Proc. Natl Acad. Sci. USA 117, 21155–21161 (2020).

    Article  ADS  Google Scholar 

  188. Huang, C. & Grant, P. S. Coral-like directional porosity lithium ion battery cathodes by ice templating. J. Mater. Chem. A 6, 14689–14699 (2018).

    Article  Google Scholar 

  189. Azami-Ghadkolai, M., Yousefi, M., Allu, S., Creager, S. & Bordia, R. Effect of isotropic and anisotropic porous microstructure on electrochemical performance of Li ion battery cathodes: an experimental and computational study. J. Power Sources 474, 228490 (2020).

    Article  Google Scholar 

  190. Noël, J. A. & White, M. A. Freeze-cast form-stable phase change materials for thermal energy storage. Sol. Energy Mater. Sol. Cell 223, 110956 (2021).

    Article  Google Scholar 

  191. Andrews, E. W., Gioux, G., Onck, P. & Gibson, L. J. Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701–713 (2001).

    Article  Google Scholar 

  192. Onck, P. R., Andrews, E. W. & Gibson, L. J. Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681–699 (2001).

    Article  Google Scholar 

  193. ASTM E9-09. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (ASTM International, 2018).

  194. Abba, M. T., Hunger, P. M., Kalidindi, S. R. & Wegst, U. G. K. Nacre-like hybrid films: structure, properties, and the effect of relative humidity. J. Mech. Behav. Biomed. Mater. 55, 140–150 (2016).

    Article  Google Scholar 

  195. Offeddu, G. S., Ashworth, J. C., Cameron, R. E. & Oyen, M. L. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds. Acta Biomater. 41, 193–203 (2016).

    Article  Google Scholar 

  196. Liu, Y., Zhai, W. & Zeng, K. Study of the freeze casting process by artificial neural networks. ACS Appl. Mater. Interfaces 12, 40465–40474 (2020).

    Article  Google Scholar 

  197. Ashby, M. F. Materials Selection in Mechanical Design (Elsevier, 2016).

  198. Lao, W., Yin, K., Li, T. & Huang, H. BEANS: Property Chart Plotter. Zenodo https://doi.org/10.5281/zenodo.7261667 (2022).

  199. Carlo, F. D. et al. TomoBank: a tomographic data repository for computational x-ray science. Meas. Sci. Technol. 29, 034004 (2018).

    Article  ADS  Google Scholar 

  200. Liu, H., Jiang, J. & Zhai, W. Bubble freeze casting artificial rattan. Chem. Eng. J. 449, 137870 (2022).

    Article  Google Scholar 

  201. Petersen, A. et al. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018).

    Article  ADS  Google Scholar 

  202. Chen, D. et al. Drilling by light: ice-templated photo-patterning enabled by a dynamically crosslinked hydrogel. Mater. Horiz. 6, 1013–1019 (2019).

    Article  Google Scholar 

  203. Erlandsson, J. et al. On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J. Mater. Chem. A 6, 19371–19380 (2018).

    Article  Google Scholar 

  204. Warburton, L. & Rubinsky, B. Freezing-modulated-crosslinking: a crosslinking approach for 3D cryoprinting. Bioprinting 27, e00225 (2022).

    Article  Google Scholar 

  205. Nelson, I., Gardner, L., Carlson, K. & Naleway, S. E. Freeze casting of iron oxide subject to a tri-axial nested Helmholtz-coils driven uniform magnetic field for tailored porous scaffolds. Acta Mater. 173, 106–116 (2019).

    Article  ADS  Google Scholar 

  206. Jha, P. K., Xanthakis, E., Jury, V. & Le-Bail, A. An overview on magnetic field and electric field interactions with ice crystallisation; application in the case of frozen food. Crystals 7, 299 (2017).

    Article  Google Scholar 

  207. Parkin, K. L. & Fenema, O. R. (eds) Fennema’s Food Chemistry (CRC Press, 2007).

  208. Guan, J., Porter, D., Tian, K., Shao, Z. & Chen, X. Morphology and mechanical properties of soy protein scaffolds made by directional freezing. J. Appl. Polym. Sci. 118, 1658–1665 (2010).

    Article  Google Scholar 

  209. Deville, S. et al. Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS ONE 6, e26474 (2011).

    Article  ADS  Google Scholar 

  210. Deville, S., Meille, S. & Seuba, J. A meta-analysis of the mechanical properties of ice-templated ceramics and metals. Sci. Technol. Adv. Mater. 16, 043501 (2015).

    Article  Google Scholar 

  211. Hautcoeur, D. et al. Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceram. Int. 42, 14077–14085 (2016).

    Article  Google Scholar 

  212. Pawelec, K. M., Husmann, A., Best, S. M. & Cameron, R. E. A design protocol for tailoring ice-templated scaffold structure. J. R. Soc. Interface 11, 20130958 (2014).

    Article  Google Scholar 

  213. Labconco Corporation. A Guide to Freeze Drying for the Laboratory (2010).

  214. Tang, Y., Miao, Q., Qiu, S., Zhao, K. & Hu, L. Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. J. Eur. Ceram. Soc. 34, 4077–4082 (2014).

    Article  Google Scholar 

  215. Barnett, E., Angeles, J., Pasini, D. & Sijpkes, P. Robot-assisted Rapid Prototyping for ice structures. in 2009 IEEE International Conference on Robotics and Automation, 146–151 (2009).

Download references

Acknowledgements

The authors gratefully acknowledge financial support through NASA awards 80NSSC18K0305 and 80NSSC21K0039 (U.G.K.W.) and NSF-CMMI award 1538094 (U.G.K.W.), the DFG Reinhart-Koselleck Project 408321454, Ba 1170/40 (F.G.-M) and BMBF award 05K18KTA (F.G.-M), the Alexander von Humboldt Foundation for a Humboldt Research Fellowship (K.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Experimentation (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Results (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Applications (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Reproducibility and data deposition (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Limitations and optimizations (U.G.K.W., P.H.K., K.Y. and F.G.-M.); Outlook (U.G.K.W., P.H.K., K.Y. and F.G.-M.); overview of the Primer (U.G.K.W., P.H.K., K.Y. and F.G.-M.).

Corresponding authors

Correspondence to Ulrike G. K. Wegst or Francisco García-Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Qunfeng Cheng, Hao Bai, Seog-Young Yoon, Lennart Bergström and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Ansys Granta Selector: https://www.ansys.com/en-gb/products/materials/granta-selector

Avizo: https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html

Dragonfly: https://www.theobjects.com/dragonfly/index.html

Freezecasting.net: http://www.freezecasting.net/

Matricel: https://www.matricel.com/

Tomoscopy experiments database: http://resolution.tomoscopy.net

Tomoscopy.net: http://www.tomoscopy.net/

Supplementary information

Supplementary information

43586_2024_307_MOESM2_ESM.avi

Supplementary Video 1. Unidirectional solidification of a cylindrical freeze-cast specimen. Shown is the unidirectional solidification of a section of the cylindrical sample in a 2 mm diameter polyimide tube observed for 267 s. The video illustrates the dynamics of crystal growth and solution templating during freeze casting. The solidified ice crystals are shown in blue and the ice-templated sucrose phase in yellow. The solidification front advances with an average velocity of ~11 μm s−1. Domains are defined by differences in lamellar orientation. The process was imaged at one tomoscopy per second. The video plays at 10 frames per second. Video is reprinted from ref. 34, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

43586_2024_307_MOESM3_ESM.avi

Supplementary Video 2. Growth of an extracted single ice lamella. The video shows the crystal growth of a single ice lamella from one of the central domains in a unidirectionally solidifying 3% w/v sucrose in water solution. In the 267 s shown, different types of secondary instability form unilaterally on the side of the ice lamella, which faces the cold end of the mould; the sometimes transient nature of the instabilities is noteworthy. The lamella expands in thickness and width with increasing height owing to a decrease in the local cooling rate, \(\dot{C}\). The slight directional changes at about t = 70 s and t = 150 s from 4.4° to 10°, respectively, is paralleled by the formation of secondary instabilities and the lamella splitting into two. The video plays at 10 frames per second. Video is reprinted from ref. 34, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

43586_2024_307_MOESM4_ESM.avi

Supplementary Video 3. Evolution of ice-templated structure. The video shows the structural evolution of the ice-templated sucrose lamella for 160 s. It is noteworthy that the progressing freezing front pushes surface features, in this case a jellyfish cap array along with it parallel to the direction of solidification. Also shown is the formation of first attached, then detached, tentacle-like features. The video plays at nine frames per second. Video is reprinted from ref. 34, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

43586_2024_307_MOESM5_ESM.avi

Supplementary Video 4. Formation of a Jellyfish Cap array with Tentacles. Shown in this video at high magnification is the formation over 30 s of first attached, then detached, tentacle-like surface features extending from the jellyfish cap array parallel to the freezing direction. The video plays at ten frames per second. Video is reprinted from ref. 34, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Glossary

Anisotropy

Anisotropic crystal growth is characterized by growth characteristics that depend on crystallographic direction. Freeze-cast materials tend to be anisotropic. Their solvent-templated structure and, as a result, also their properties vary with the direction of loading. When their properties are unique in three mutually perpendicular directions, the material is called orthotropic.

Applied cooling rate

The rate at which the temperature decreases per unit time, \({\dot{C}}_{\mathrm{app}}\), at the cold source.

Attenuation coefficient

A measure of how easily X-rays can penetrate a material, given by the fraction of incident photons in a mono-energetic beam that are attenuated per unit thickness of that material.

Dendritic ice crystal growth

Branched or tree-like crystal growth.

Directional solidification

Controlled crystal growth in a well-defined direction determined by the applied thermal gradient.

Domain

A volume of solid, akin to a grain, wherein ice crystals and templated lamellae exhibit the same orientation and alignment, respectively.

Extensional shear flow

The 9% volumetric expansion of water upon solidification into ice results in an interdendritic extensional shear flow. An additional thermal mould contraction can enhance this flow when batch processing. The extensional shear flow contributes to the preferential alignments of components during directional solidification.

Field of view

(FOV). The projected area imaged. The FOV corresponds to the region of interest, usually measured in pixels.

Freeze casting

Directional solidification of solvent-based solutions or slurries, followed by the removal of the solvent in its solid state by sublimation or solvent exchange.

Freezing front velocity

The speed of progression of the solid–liquid interface, in dendritic crystal growth defined by the crystal tip array.

Greyscale

A synonym for the range of voxel values within a slice, volume or tomographic data set.

Hierarchical pore architecture

Porosity at different length scales contributed by different levels of the hierarchy. In freeze-cast materials, the hierarchical pore architecture is frequently composed of particle porosity, porosity in the cell walls and porosity defined by the cell walls of the cellular solid.

Ice templating

The shaping of the solute phase by ice crystals growing from an aqueous solution or slurry.

Instability

For example, a crystal instability forms when a planar solid–liquid interface is perturbed and a stable array of dendrites starts to form.

Lamellar spacing

The periodic lamellar spacing defines how coarse or fine the structure of a freeze-cast material is. It is defined as λ = S + w, the sum of the short pore axis, S, and the cell wall thickness, w. The lamellar spacing depends on the local cooling rate, \(\dot{C}\).

Local cooling rate

The rate at which the temperature decreases per unit time, \(\dot{C}\), at a well-defined position within the sample.

Nucleation

Nucleation is the formation of a small cluster (or nucleus) of atoms. Once a critical number of atoms assemble, crystal growth begins. Homogeneous ice nucleation can occur in the liquid phase and heterogeneous nucleation on the cooled mould surface.

Partially faceted crystal growth

Crystal growth that is faceted in some directions and not faceted in others.

Phase contrast

Contrast in a radiograph or tomogram resulting from the difference in phase developed by beams as they pass through an object.

Phase separation

Two or more phases forming from a single phase mixture of components.

Pore size

The pore size is defined by its cross-sectional area, A, the length of the short, S, and long, L, pore axes, their aspect ratio, R, and the cell wall thickness, w.

Principal component analysis

(PCA). A statistical technique used to analyse the variability of a multidimensional data set. PCA is used to identify the dominant patterns in the data and analyse the 3D spatial orientation of the segmented objects. This is typically done by projecting the voxel coordinates of that object onto a lower-dimensional subspace that captures the most significant variations in the data.

Projections

Radiographs of an object acquired at a given angle of illumination that, when combined with many others, provide the data to numerically reconstruct the object. Typically, between 100 and 3,600 projections are used to reconstruct a tomogram.

Thermal gradient

G, the rate at which the temperature varies per unit distance in a well-defined direction, a 3D vector.

Tomogram

Originally, a 2D slice through an object reconstructed computationally from a sinogram. Now often used to refer to the 3D reconstructed sample volume.

Tomograms per second

Unit of temporal resolution, used for the recording speed of continuous full tomograms in a tomoscopic experiment.

Voxel

Abbreviation for volume element; the basic unit of a 3D digital representation of a volume or object. Voxel size should not be confused with spatial resolution.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wegst, U.G.K., Kamm, P.H., Yin, K. et al. Freeze casting. Nat Rev Methods Primers 4, 28 (2024). https://doi.org/10.1038/s43586-024-00307-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00307-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing