Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A domain-relevant framework for the development of face processing

Abstract

Faces are thought to have a privileged status for processing relative to other visual images. Humans use faces to identify people, learn language, and to communicate and understand intentions, meaning and emotions. An enduring debate within the fields of developmental psychology and cognitive neuroscience is whether human face processing is specialized owing to domain-specific neural circuitry driven primarily by evolutionary mechanisms or whether it emerges from a domain-general architecture through experience. In this Perspective, we argue for an experience-based account based on associative and non-associative learning and supported by general neurobiological mechanisms. We posit that face-processing specialization emerges from activity-dependent, self-organizing processes where neuronal connectivity is shaped by the environment and constrained by intrinsic yet malleable neural architecture. This ‘domain-relevant’ framework for face processing reflects a dynamic interaction between the developing brain and the environmental input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A domain-relevant face-processing cascade.
Fig. 2: Acuity constraints and neonate subcortical structures.
Fig. 3: Foveated face processing.
Fig. 4: Cortical development of human face processing.

Similar content being viewed by others

References

  1. Baillargeon, R. & Carey, S. in Early Childhood Development and Later Outcome (ed. Pauen, S. M.) 33–65 (Cambridge Univ. Press, 2012).

  2. Carey, S. Précis of the origin of concepts. Behav. Brain Sci. 34, 113–124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

    Article  PubMed  Google Scholar 

  4. van der Lely, H. K. J. Domain-specific cognitive systems: insight from Grammatical-SLI. Trends Cogn. Sci. 9, 53–59 (2005).

    Article  PubMed  Google Scholar 

  5. Coltheart, M. Modularity and cognition. Trends Cogn. Sci. 3, 115–120 (1999).

    Article  PubMed  Google Scholar 

  6. Madole, K. L. & Oakes, L. M. Making sense of infant categorization: stable processes and changing representations. Dev. Rev. 19, 263–296 (1999).

    Article  Google Scholar 

  7. Quinn, P. C. & Eimas, P. D. A reexamination of the perceptual-to-conceptual shift in mental representations. Rev. Gen. Psychol. 1, 271–287 (1997).

    Article  Google Scholar 

  8. Rakison, D. H. & Lupyan, G. Developing object concepts in infancy: an associative learning perspective. VIII. General discussion. Monogr. Soc. Res. Child Dev. 73, 85–100 (2008).

    Google Scholar 

  9. Rogers, T. T. & McClelland, J. L. Semantic Cognition: A Parallel Distributed Processing Approach (MIT Press, 2004).

  10. Smith, L. B., Jones, S. S. & Landau, B. Naming in young children: a dumb attentional mechanism? Cognition 60, 143–171 (1996).

    Article  PubMed  Google Scholar 

  11. Bates, J. E., Pettit, G. S., Dodge, K. A. & Ridge, B. Interaction of temperamental resistance to control and restrictive parenting in the development of externalizing behavior. Dev. Psychol. 34, 982–995 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karmiloff-Smith, A. An alternative to domain-general or domain-specific frameworks for theorizing about human evolution and ontogenesis. AIMS Neurosci. 2, 91–104 (2015).

    Article  PubMed  Google Scholar 

  13. Farah, M. J., Rabinowitz, C., Quinn, G. E. & Liu, G. T. Early commitment of neural substrates for face recognition. Cogn. Neuropsychol. 17, 117–123 (2000).

    Article  PubMed  Google Scholar 

  14. McKone, E., Crookes, K., Jeffery, L. & Dilks, D. D. A critical review of the development of face recognition: experience is less important than previously believed. Cogn. Neuropsychol. 29, 174–212 (2012).

    Article  PubMed  Google Scholar 

  15. Sugita, Y. Innate face processing. Curr. Opin. Neurobiol. 19, 39–44 (2009).

    Article  PubMed  Google Scholar 

  16. Hildebrandt, A., Wilhelm, O., Schmiedek, F., Herzmann, G. & Sommer, W. On the specificity of face cognition compared with general cognitive functioning across adult age. Psychol. Aging 26, 701–715 (2011).

    Article  PubMed  Google Scholar 

  17. Tanaka, J. W. & Farah, M. J. Parts and wholes in face recognition. Q. J. Exp. Psychol. A 46, 225–245 (1993).

    Article  PubMed  Google Scholar 

  18. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141–145 (1969).

    Article  Google Scholar 

  19. Young, M. P. Objective analysis of the topological organization of the primate cortical visual system. Nature 358, 152–155 (1992).

    Article  PubMed  Google Scholar 

  20. Barton, J. J. Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. J. Neuropsychol. 2, 197–225 (2008).

    Article  PubMed  Google Scholar 

  21. Takahashi, N. et al. Prosopagnosia: a clinical and anatomical study of four patients. Cortex 31, 317–329 (1995).

    Article  PubMed  Google Scholar 

  22. Polk, T. A., Park, J., Smith, M. R. & Park, D. C. Nature versus nurture in ventral visual cortex: a functional magnetic resonance imaging study of twins. J. Neurosci. 27, 13921–13925 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wilmer, J. B. et al. Human face recognition ability is specific and highly heritable. Proc. Natl Acad. Sci. USA 107, 5238–5241 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu, Q. et al. Heritability of the specific cognitive ability of face perception. Curr. Biol. 20, 137–142 (2010).

    Article  PubMed  Google Scholar 

  25. Quinones Sanchez, J. F., Liu, X., Zhou, C. & Hildebrandt, A. Nature and nurture shape structural connectivity in the face processing brain network. Neuroimage 229, 117736 (2021).

    Article  PubMed  Google Scholar 

  26. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 759–763 (2000).

    Article  PubMed  Google Scholar 

  27. Yovel, G. & Kanwisher, N. The neural basis of the behavioral face-inversion effect. Curr. Biol. 15, 2256–2262 (2005).

    Article  PubMed  Google Scholar 

  28. Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 13995 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32, 265–274.e5 (2022).

    Article  PubMed  Google Scholar 

  30. Park, J., Newman, L. I. & Polk, T. A. Face processing: the interplay of nature and nurture. Neuroscientist 15, 445–449 (2009).

    Article  PubMed  Google Scholar 

  31. Morton, J. & Johnson, M. H. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol. Rev. 98, 164–181 (1991).

    Article  PubMed  Google Scholar 

  32. Gauthier, I. & Nelson, C. A. The development of face expertise. Curr. Opin. Neurobiol. 11, 219–224 (2001).

    Article  PubMed  Google Scholar 

  33. Nelson, C. A. in The Development of Face Processing in Infancy and Early Childhood: Current Perspectives (eds Pascalis, O. & Slater, A.) 79–97 (Nova Science, 2003).

  34. Scott, L. S., Pascalis, O. & Nelson, C. A. A domain-general theory of the development of perceptual discrimination. Curr. Dir. Psychol. Sci. 16, 197–201 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Simion, F. & Giorgio, E. D. Face perception and processing in early infancy: inborn predispositions and developmental changes. Front. Psychol. 6, 969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hadley, H., Rost, G., Fava, E. & Scott, L. A mechanistic approach to cross-domain perceptual narrowing in the first year of life. Brain Sci. 4, 613–634 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Livingstone, M. S. et al. Development of the macaque face-patch system. Nat. Commun. 8, 14897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Golarai, G., Ghahremani, D. G., Eberhardt, J. L. & Gabrieli, J. D. E. Distinct representations of configural and part information across multiple face-selective regions of the human brain. Front. Psychol. 6, 1710 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10, F15–F30 (2007).

    Article  PubMed  Google Scholar 

  40. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20, 1404–1412 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith, L. B., Colunga, E. & Yoshida, H. Knowledge as process: contextually-cued attention and early word learning. Cogn. Sci. 34, 1287–1314 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Markant, J. & Scott, L. S. Attention and perceptual learning interact in the development of the other-race effect. Curr. Dir. Psychol. Sci. 27, 163–169 (2018).

    Article  Google Scholar 

  43. Scherf, K. S. & Scott, L. S. Connecting developmental trajectories: biases in face processing from infancy to adulthood. Dev. Psychobiol. 54, 643–663 (2012).

    Article  PubMed  Google Scholar 

  44. Jayaraman, S. & Smith, L. B. in The Cambridge Handbook of Infant Development: Brain, Behavior, and Cultural Context (eds Lockman, J. J. & Tamis-LeMonda, C. S.) 553–579 (Cambridge Univ. Press, 2020).

  45. Bates, E. et al. in A Companion to Cognitive Science Ch. 46 (eds Bechtel, W. & Graham, G.) 590–601 (Blackwell, 1998).

  46. Karmiloff-Smith, A. An alternative to domain-general or domain-specific frameworks for theorizing about human evolution and ontogenesis. AIMS Neurosci. 2, 91–104 (2015).

    Article  PubMed  Google Scholar 

  47. Farroni, T. et al. Newborns’ preference for face-relevant stimuli: effects of contrast polarity. Proc. Natl Acad. Sci. USA 102, 17245–17250 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jayaraman, S., Fausey, C. M. & Smith, L. B. The faces in infant-perspective scenes change over the first year of life. PLoS ONE 10, e0123780 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jayaraman, S., Fausey, C. M. & Smith, L. B. Why are faces denser in the visual experiences of younger than older infants? Dev. Psychol. 53, 38–49 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Flanagan, J. G. Neural map specification by gradients. Curr. Opin. Neurobiol. 16, 59–66 (2006).

    Article  PubMed  Google Scholar 

  51. O’Leary, D. D. M., Yates, P. A. & McLaughlin, T. Molecular development of sensory maps. Cell 96, 255–269 (1999).

    Article  PubMed  Google Scholar 

  52. Rakic, P. Prenatal development of the visual system in rhesus monkey. Phil. Trans. R. Soc. Lond. B 278, 245–260 (1977).

    Article  Google Scholar 

  53. Van Essen, D. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313–318 (1997).

    Article  PubMed  Google Scholar 

  54. Greenough, W. T., Black, J. E. & Wallace, C. S. Experience and brain development. Child Dev. 58, 539–559 (2022).

    Article  Google Scholar 

  55. McKone, E., Kanwisher, N. & Duchaine, B. C. Can generic expertise explain special processing for faces? Trends Cogn. Sci. 11, 8–15 (2007).

    Article  PubMed  Google Scholar 

  56. Sur, M., Garraghty, P. E. & Roe, A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    Article  PubMed  Google Scholar 

  57. von Melchner, L., Pallas, S. L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404, 871–876 (2000).

    Article  Google Scholar 

  58. Finlay, B. L. Endless minds most beautiful. Dev. Sci. 10, 30–34 (2007).

    Article  PubMed  Google Scholar 

  59. Gomez-Robles, A., Hopkins, W. D. & Sherwood, C. C. Increased morphological asymmetry, evolvability and plasticity in human brain evolution. Proc. Biol. Sci. 280, 20130575 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Havighurst, R. J. Developmental Tasks and Education (Univ. Chicago Press, 1948).

  61. Oakes, L.M. & Rakison, D.H. Developmental Cascades: Building The Infant Mind (Oxford Univ. Press, 2020).

  62. Smith, L. B. & Thelen, E. Development as a dynamic system. Trends Cogn. Sci. 7, 343–348 (2003).

    Article  PubMed  Google Scholar 

  63. Cashon, C. H., Ha, O. R., Allen, C. L. & Barna, A. C. A U-shaped relation between sitting ability and upright face processing in infants. Child Dev. 84, 802–809 (2013).

    Article  PubMed  Google Scholar 

  64. Goren, C. C., Sarty, M. & Wu, P. Y. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549 (1975).

    Article  PubMed  Google Scholar 

  65. Johnson, M. H., Dziurawiec, S., Ellis, H. & Morton, J. Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition 40, 1–19 (1991).

    Article  PubMed  Google Scholar 

  66. Valenza, E., Simion, F., Cassia, V. M. & Umiltà, C. Face preference at birth. J. Exp. Psychol. Hum. Percept. Perform. 22, 892–903 (1996).

    Article  PubMed  Google Scholar 

  67. Dobson, V. & Teller, D. Y. Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies. Vis. Res. 18, 1469–1483 (1978).

    Article  PubMed  Google Scholar 

  68. Atkinson, J., Braddick, O. & Braddick, F. Acuity and contrast sensivity of infant vision. Nature 247, 403–404 (1974).

    Article  PubMed  Google Scholar 

  69. Kiorpes, L. The puzzle of visual development: behavior and neural limits. J. Neurosci. 36, 11384–11393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kiorpes, L. & Movshon, J. in The New Visual Neurosciences Ch. 12 (eds Chalupa, L. & Werner, J. S.) 1423–1431 (MIT Press, 2003).

  71. Kleiner, K. A. & Banks, M. S. Stimulus energy does not account for 2-month-olds’ face preferences. J. Exp. Psychol. Hum. Percept. Perform. 13, 594–600 (1987).

    Article  PubMed  Google Scholar 

  72. Morton, J., Johnson, M. H. & Maurer, D. On the reasons for newborns’ responses to faces. Infant Behav. Dev. 13, 99–103 (1990).

    Article  Google Scholar 

  73. Macchi Cassia, V., Turati, C. & Simion, F. Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychol. Sci. 15, 379–383 (2004).

    Article  Google Scholar 

  74. Simion, F., Macchi Cassia, V., Turati, C. & Valenza, E. The origins of face perception: specific versus non-specific mechanisms. Infant Child Dev. 10, 59–65 (2001).

    Article  Google Scholar 

  75. Wagemans, J. Detection of visual symmetries. Spat. Vis. 9, 9–32 (1995).

    Article  PubMed  Google Scholar 

  76. Slater, A. & Sykes, M. Newborn infants’ visual responses to square wave gratings. Child Dev. 48, 545–554 (1977).

    Article  Google Scholar 

  77. Wilkinson, N., Paikan, A., Gredebäck, G., Rea, F. & Metta, G. Staring us in the face? An embodied theory of innate face preference. Dev. Sci. 17, 809–825 (2014).

    Article  PubMed  Google Scholar 

  78. Bushnell, I. W. R. Mother’s face recognition in newborn infants: learning and memory. Infant Child Dev. 10, 67–74 (2001).

    Article  Google Scholar 

  79. Pascalis, O., de Schonen, S., Morton, J., Deruelle, C. & Fabre-Grenet, M. Mother’s face recognition by neonates: a replication and an extension. Infant Behav. Dev. 18, 79–85 (1995).

    Article  Google Scholar 

  80. Sai, F. Z. The role of the mother’s voice in developing mother’s face preference: evidence for intermodal perception at birth. Infant Child Dev. 14, 29–50 (2005).

    Article  Google Scholar 

  81. Lewkowicz, D. J. Infant perception of audio-visual speech synchrony. Dev. Psychol. 46, 66–77 (2010).

    Article  PubMed  Google Scholar 

  82. Lewkowicz, D. J. & Lickliter, R. The development of intersensory perception: comparative perspectives. J. Cogn. Neurosci. 8, 185–187 (1996).

    Article  Google Scholar 

  83. Slater, A., Brown, E. & Badenoch, M. Intermodal perception at birth: newborn infants’ memory for arbitrary auditory–visual pairings. Early Dev. Parent. 6, 99–104 (1997).

    Article  Google Scholar 

  84. Fausey, C. M., Jayaraman, S. & Smith, L. B. From faces to hands: changing visual input in the first two years. Cognition 152, 101–107 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xiao, N. G. et al. Eye tracking reveals a crucial role for facial motion in recognition of faces by infants. Dev. Psychol. 51, 744–757 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Eisenberg, N., Cumberland, A. & Spinrad, T. L. Parental socialization of emotion. Psychol. Inq. 9, 241–273 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dissanayake, E. Motherese is but one part of a ritualized, multimodal, temporally organized, affiliative interaction. Behav. Brain Sci. 27, 491–503 (2004).

    Article  Google Scholar 

  88. Sugden, N. A. & Moulson, M. C. Hey baby, what’s “up”? One- and 3-month-olds experience faces primarily upright but non-upright faces offer the best views. Q. J. Exp. Psychol. 70, 959–969 (2017).

    Article  Google Scholar 

  89. Rennels, J. L. & Davis, R. E. Facial experience during the first year. Infant Behav. Dev. 31, 665–678 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sugden, N. A., Mohamed-Ali, M. I. & Moulson, M. C. I spy with my little eye: typical, daily exposure to faces documented from a first-person infant perspective: infants’ daily exposure to faces. Dev. Psychobiol. 56, 249–261 (2014).

    Article  PubMed  Google Scholar 

  91. Liu, S. et al. Asian infants show preference for own-race but not other-race female faces: the role of infant caregiving arrangements. Front. Psychol. 6, 593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sugita, Y. Face perception in monkeys reared with no exposure to faces. Proc. Natl Acad. Sci. USA 105, 394–398 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Smith, L. B. & Slone, L. K. A developmental approach to machine learning? Front. Psychol. 8, 2124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Abudarham, N., Grosbard, I. & Yovel, G. Face recognition depends on specialized mechanisms tuned to view-invariant facial features: insights from deep neural networks optimized for face or object recognition. Cogn. Sci. 45, e13031 (2021).

    Article  PubMed  Google Scholar 

  95. Földiák, P. Learning invariance from transformation sequences. Neural Comput. 3, 194–200 (1991).

    Article  PubMed  Google Scholar 

  96. Li, N. & DiCarlo, J. J. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321, 1502–1507 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002).

    Article  PubMed  Google Scholar 

  98. Wood, J. N. & Wood, S. M. W. The development of newborn object recognition in fast and slow visual worlds. Proc. R. Soc. B 283, 20160166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Flom, R. Perceptual narrowing: retrospect and prospect: perceptual narrowing. Dev. Psychobiol. 56, 1442–1453 (2014).

    Article  PubMed  Google Scholar 

  100. Lewkowicz, D. J. & Ghazanfar, A. A. The emergence of multisensory systems through perceptual narrowing. Trends Cogn. Sci. 13, 470–478 (2009).

    Article  PubMed  Google Scholar 

  101. Maurer, D. & Werker, J. F. Perceptual narrowing during infancy: a comparison of language and faces: language and faces. Dev. Psychobiol. 56, 154–178 (2014).

    Article  PubMed  Google Scholar 

  102. Pascalis, O. et al. On the links among face processing, language processing, and narrowing during development. Child Dev. Perspect. 8, 65–70 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Simpson, E. A., Jakobsen, K. V., Fragaszy, D. M., Okada, K. & Frick, J. E. The development of facial identity discrimination through learned attention. Dev. Psychobiol. 56, 1083–1101 (2014).

    Article  PubMed  Google Scholar 

  104. Kelly, D. J. et al. Development of the other-race effect during infancy: evidence toward universality? J. Exp. Child Psychol. 104, 105–114 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kelly, D. J. et al. The other-race effect develops during infancy: evidence of perceptual narrowing. Psychol. Sci. 18, 1084–1089 (2007).

    Article  PubMed  Google Scholar 

  106. Pascalis, O. et al. Plasticity of face processing in infancy. Proc. Natl Acad. Sci. USA 102, 5297–5300 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Scott, L. S. & Monesson, A. The origin of biases in face perception. Psychol. Sci. 20, 676–680 (2009).

    Article  PubMed  Google Scholar 

  108. Vogel, M., Monesson, A. & Scott, L. S. Building biases in infancy: the influence of race on face and voice emotion matching. Dev. Sci. 15, 359–372 (2012).

    Article  PubMed  Google Scholar 

  109. Anzures, G., Quinn, P. C., Pascalis, O., Slater, A. M. & Lee, K. Development of own-race biases. Vis. Cogn. 21, 1165–1182 (2013).

    Article  Google Scholar 

  110. Quinn, P. C., Lee, K., Pascalis, O. & Tanaka, J. W. Narrowing in categorical responding to other-race face classes by infants. Dev. Sci. 19, 362–371 (2016).

    Article  PubMed  Google Scholar 

  111. Bar-Haim, Y., Ziv, T., Lamy, D. & Hodes, R. M. Nature and nurture in own-race face processing. Psychol. Sci. 17, 159–163 (2006).

    Article  PubMed  Google Scholar 

  112. Balas, B. & Saville, A. Hometown size affects the processing of naturalistic face variability. Vis. Res. 141, 228–236 (2017).

    Article  PubMed  Google Scholar 

  113. Pickron, C. B., Fava, E. & Scott, L. S. Follow my gaze: face race and sex influence gaze-cued attention in infancy. Infancy 22, 626–644 (2017).

    Article  PubMed  Google Scholar 

  114. Xiao, N. G. et al. Older but not younger infants associate own-race faces with happy music and other-race faces with sad music. Dev. Sci. 21, e12537 (2018).

    Article  Google Scholar 

  115. Groves, P. M. & Thompson, R. F. Habituation: a dual-process theory. Psychol. Rev. 77, 419–450 (1970).

    Article  PubMed  Google Scholar 

  116. Morand-Ferron, J. Why learn? The adaptive value of associative learning in wild populations. Curr. Opin. Behav. Sci. 16, 73–79 (2017).

    Article  Google Scholar 

  117. Rakison, D. H. & Yermolayeva, Y. How to identify a domain-general learning mechanism when you see one. J. Cogn. Dev. 12, 134–153 (2011).

    Article  Google Scholar 

  118. Thelen, E. & Smith, L. B. A Dynamic Systems Approach to The Development of Cognition and Action (MIT Press, 1994).

  119. Little, A. H., Lipsitt, L. P. & Rovee-Collier, C. Classical conditioning and retention of the infant’s eyelid response: effects of age and interstimulus interval. J. Exp. Child Psychol. 37, 512–524 (1984).

    Article  PubMed  Google Scholar 

  120. Mundy, P. & Newell, L. Attention, joint attention, and social cognition. Curr. Dir. Psychol. Sci. 16, 269–274 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pelaez, M. & Monlux, K. Operant conditioning methodologies to investigate infant learning. Eur. J. Behav. Anal. 18, 212–241 (2017).

    Article  Google Scholar 

  122. Pelaez, M. & Monlux, K. Development of communication in infants: implications for stimulus relations research. Perspect. Behav. Sci. 41, 175–188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Peláez-Nogueras, M. et al. Infants’ preference for touch stimulation in face-to-face interactions. J. Appl. Dev. Psychol. 17, 199–213 (1996).

    Article  Google Scholar 

  124. Suarez-Rivera, C., Smith, L. B. & Yu, C. Multimodal parent behaviors within joint attention support sustained attention in infants. Dev. Psychol. 55, 96–109 (2019).

    Article  PubMed  Google Scholar 

  125. Aslin, R. N. Statistical learning: a powerful mechanism that operates by mere exposure. Wiley Interdiscip. Rev. Cogn. Sci. 8, e1373 (2017).

    Article  Google Scholar 

  126. Fiser, J. & Aslin, R. N. Statistical learning of new visual feature combinations by infants. Proc. Natl Acad. Sci. USA 99, 15822–15826 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dotsch, R., Hassin, R. & Todorov, A. Statistical learning shapes face evaluation. Nat. Hum. Behav. 1, 0001 (2016).

    Article  Google Scholar 

  128. Altvater-Mackensen, N., Jessen, S. & Grossmann, T. Brain responses reveal that infants’ face discrimination is guided by statistical learning from distributional information. Dev. Sci. 20, e12393 (2017).

    Article  Google Scholar 

  129. Jessen, S. & Grossmann, T. Exploring the role of spatial frequency information during neural emotion processing in human infants. Front. Hum. Neurosci. 11, 486 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pickron, C. B., Iyer, A., Fava, E. & Scott, L. S. Learning to individuate: the specificity of labels differentially impacts infant visual attention. Child Dev. 89, 698–710 (2018).

    Article  PubMed  Google Scholar 

  131. Scott, L. S. Mechanisms underlying the emergence of object representations during infancy. J. Cogn. Neurosci. 23, 2935–2944 (2011).

    Article  PubMed  Google Scholar 

  132. Scott, L. S. & Monesson, A. Experience-dependent neural specialization during infancy. Neuropsychologia 48, 1857–1861 (2010).

    Article  PubMed  Google Scholar 

  133. Dewar, K. & Xu, F. Do 9-month-old infants expect distinct words to refer to kinds? Dev. Psychol. 43, 1227–1238 (2007).

    Article  PubMed  Google Scholar 

  134. Halberda, J., Mazzocco, M. M. M. & Feigenson, L. Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455, 665–668 (2008).

    Article  PubMed  Google Scholar 

  135. Xu, Y. et al. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article  PubMed  Google Scholar 

  136. Rankin, C. H. et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn. Mem. 92, 135–138 (2009).

    Article  PubMed  Google Scholar 

  137. Kaplan, P. S. & Werner, J. S. Habituation, response to novelty, and dishabituation in human infants: tests of a dual-process theory of visual attention. J. Exp. Child Psychol. 42, 199–217 (1986).

    Article  PubMed  Google Scholar 

  138. Kaplan, P., Werner, J. & Rudy, J. Habituation, sensitization, and infant visual attention. Adv. Infancy Res. 6, 61–109 (1990).

    Google Scholar 

  139. Kavšek, M. The comparator model of infant visual habituation and dishabituation: recent insights: infant visual habituation and dishabituation. Dev. Psychobiol. 55, 793–808 (2013).

    Article  PubMed  Google Scholar 

  140. Colombo, J. Infant attention grows up: the emergence of a developmental cognitive neuroscience perspective. Curr. Dir. Psychol. Sci. 11, 196–200 (2002).

    Article  Google Scholar 

  141. Aslin, R. N. What’s in a look? Dev. Sci. 10, 48–53 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Colombo, J. & Mitchell, D. W. Infant visual habituation. Neurobiol. Learn. Mem. 92, 225–234 (2009).

    Article  PubMed  Google Scholar 

  143. Lipsitt, L. P. Learning, habituation, and classical conditioning processes in the human newborn: sensitization. Ann. NY Acad. Sci. 608, 113–127 (1990).

    Article  PubMed  Google Scholar 

  144. Kavšek, M. & Bornstein, M. H. Visual habituation and dishabituation in preterm infants: a review and meta-analysis. Res. Dev. Disabil. 31, 951–975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Snyder, K., Webb, S. J. & Nelson, C. A. Theoretical and methodological implications of variability in infant brain response during a recognition memory paradigm. Infant Behav. Dev. 25, 466–494 (2002).

    Article  Google Scholar 

  146. Colombo, J., Frick, J. E. & Gorman, S. A. Sensitization during visual habituation sequences: procedural effects and individual differences. J. Exp. Child Psychol. 67, 223–235 (1997).

    Article  PubMed  Google Scholar 

  147. Bell, A. H., Hadj-Bouziane, F., Frihauf, J. B., Tootell, R. B. & Ungerleider, L. G. Object representations in the temporal cortex of monkeys and humans as revealed by functional magnetic resonance imaging. J. Neurophysiol. 101, 688–700 (2009).

    Article  PubMed  Google Scholar 

  148. Clark, V. P. et al. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography. Neuroimage 4, 1–15 (1996).

    Article  PubMed  Google Scholar 

  149. Jacques, C. et al. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 83, 14–28 (2016).

    Article  PubMed  Google Scholar 

  150. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Pinsk, M. A. et al. Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J. Neurophysiol. 101, 2581–2600 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J. Neurosci. 16, 5205–5215 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. H. Faces and objects in macaque cerebral cortex. Nat. Neurosci. 6, 989–995 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Powell, L. J., Kosakowski, H. L. & Saxe, R. Social origins of cortical face areas. Trends Cogn. Sci. 22, 752–763 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Huber, E. et al. A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychol. Sci. 26, 393–401 (2015).

    Article  PubMed  Google Scholar 

  157. Blauch, N. M., Behrmann, M. & Plaut, D. A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. Proc. Natl Acad. Sci. USA 119, 1–12 (2022).

    Article  Google Scholar 

  158. Butts, D. A. Retinal waves: implications for synaptic learning rules during development. Neuroscientist 8, 243–253 (2002).

    Article  PubMed  Google Scholar 

  159. Hebb, D. O. The organization of behavior: a neuropsychological theory (John Wiley and Sons, 1949). Sci. Educ. 34, 336–337 (1950).

    Article  Google Scholar 

  160. Arcaro, M. J., Schade, P. F. & Livingstone, M. S. Universal mechanisms and the development of the face network: what you see is what you get. Annu. Rev. Vis. Sci. 5, 341–372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

    Article  PubMed  Google Scholar 

  162. Li, J., Osher, D. E., Hansen, H. A. & Saygin, Z. M. Innate connectivity patterns drive the development of the visual word form area. Sci. Rep. 10, 18039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Goldman-Rakic, P. S. Development of cortical circuitry and cognitive function. Child Dev. 58, 601–622 (1987).

    Article  PubMed  Google Scholar 

  164. Garcia, K. E. et al. Dynamic patterns of cortical expansion during folding of the preterm human brain. Proc. Natl Acad. Sci. USA 115, 3156–3161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hilgetag, C. C. & Barbas, H. Developmental mechanics of the primate cerebral cortex. Anat. Embryol. 210, 411–417 (2005).

    Article  Google Scholar 

  166. Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Arcaro, M. J., Schade, P. F. & Livingstone, M. S. Body map proto-organization in newborn macaques. Proc. Natl Acad. Sci. USA 116, 24861–24871 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Ellis, C. T. et al. Retinotopic organization of visual cortex in human infants. Neuron 109, 2616–2626.e6 (2021).

    Article  PubMed  Google Scholar 

  169. Souther, A., & Banks, M. The human face: a view from the infant’s eye. Presented at the meeting of the Society for Research in Child Development (1979).

  170. Kleiner, K. A. & Banks, M. S. Stimulus energy does not account for 2-month-olds’ face preferences. J. Exp. Psychol. Hum. Percept. Perform. 13, 594–600 (1987).

    Article  PubMed  Google Scholar 

  171. Simion, F., Valenza, E., Cassia, V. M., Turati, C. & Umilta, C. Newborns’ preference for up-down asymmetrical configurations. Dev. Sci. 5, 427–434 (2002).

    Article  Google Scholar 

  172. Turati, C., Simion, F., Milani, I. & Umiltà, C. Newborns’ preference for faces: what is crucial? Dev. Psychol. 38, 875–882 (2002).

    Article  PubMed  Google Scholar 

  173. Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. 357, 219–240 (1984).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Liu, C.-S. J. et al. Magnocellular and parvocellular visual pathways have different blood oxygen level-dependent signal time courses in human primary visual cortex. Am. J. Neuroradiol. 27, 1628–1634 (2006).

    PubMed  PubMed Central  Google Scholar 

  175. Bourne, J. A. & Rosa, M. G. P. Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb. Cortex 16, 405–414 (2006).

    Article  PubMed  Google Scholar 

  176. Rakic, P. Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J. Comp. Neurol. 176, 23–52 (1977).

    Article  PubMed  Google Scholar 

  177. Hammarrenger, B. et al. Magnocellular and parvocellular developmental course in infants during the first year of life. Doc. Ophthalmol. 107, 225–233 (2003).

    Article  PubMed  Google Scholar 

  178. Atkinson, J. Early visual development: differential functioning of parvocellular and magnocellular pathways. Eye 6, 129–135 (1992).

    Article  PubMed  Google Scholar 

  179. Rodman, H. R., Skelly, J. P. & Gross, C. G. Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys. Proc. Natl Acad. Sci. USA 88, 7572–7575 (1991).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Rodman, H. R., Scalaidhe, S. P. & Gross, C. G. Response properties of neurons in temporal cortical visual areas of infant monkeys. J. Neurophysiol. 70, 1115–1136 (1993).

    Article  PubMed  Google Scholar 

  181. Distler, C., Bachevalier, J., Kennedy, C., Mishkin, M. & Ungerleider, L. G. Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. Cereb. Cortex 6, 184–195 (1996).

    Article  PubMed  Google Scholar 

  182. Pitti, A., Kuniyoshi, Y., Quoy, M. & Gaussier, P. Modeling the minimal newborn’s intersubjective mind: the visuotopic-somatotopic alignment hypothesis in the superior colliculus. PLoS ONE 8, e69474 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Robinson, D. L. & Petersen, S. E. The pulvinar and visual salience. Trends Neurosci. 15, 127–132 (1992).

    Article  PubMed  Google Scholar 

  184. Stepniewska, I., Qi, H.-X. & Kaas, J. H. Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis. Neurosci. 17, 529–549 (2000).

    Article  PubMed  Google Scholar 

  185. Homman-Ludiye, J., Kwan, W. C., de Souza, M. J. & Bourne, J. A. Full: Ontogenesis and development of the nonhuman primate pulvinar. J. Comp. Neurol. 526, 2870–2883 (2018).

    Article  PubMed  Google Scholar 

  186. Nguyen, M. N. et al. Population coding of facial information in the monkey superior colliculus and pulvinar. Front. Neurosci. 10, 583 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Arcaro, M. J. & Livingstone, M. S. On the relationship between maps and domains in inferotemporal cortex. Nat. Rev. Neurosci. 22, 573–583 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwon, M.-K., Setoodehnia, M., Baek, J., Luck, S. J. & Oakes, L. M. The development of visual search in infancy: attention to faces versus salience. Dev. Psychol. 52, 537–555 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    Article  PubMed  Google Scholar 

  190. Lafer-Sousa, R. & Conway, B. R. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16, 1870–1878 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kamps, F. S., Hendrix, C. L., Brennan, P. A. & Dilks, D. D. Connectivity at the origins of domain specificity in the cortical face and place networks. Proc. Natl Acad. Sci. USA 117, 6163–6169 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Xu, R., Bichot, N. P., Takahashi, A. & Desimone, R. The cortical connectome of primate lateral prefrontal cortex. Neuron 110, 312–327.e7 (2022).

    Article  PubMed  Google Scholar 

  193. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  194. Groen, I. I. A., Dekker, T. M., Knapen, T. & Silson, E. H. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn. Sci. 26, 81–96 (2022).

    Article  PubMed  Google Scholar 

  195. Triplett, J. W., Phan, A., Yamada, J. & Feldheim, D. A. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism. J. Neurosci. 32, 5264–5271 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tomasello, R., Wennekers, T., Garagnani, M. & Pulvermüller, F. Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning. Sci. Rep. 9, 3579 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Murty, R. N. A. et al. Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. Proc. Natl Acad. Sci. USA 117, 23011–23020 (2020).

    Article  Google Scholar 

  198. van den Hurk, J., Van Baelen, M. & Op de Beeck, H. P. Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc. Natl Acad. Sci. USA 114, E4501–E4510 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Tzourio-Mazoyer, N. et al. Neural correlates of woman face processing by 2-month-old infants. Neuroimage 15, 454–461 (2002).

    Article  PubMed  Google Scholar 

  200. Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17, 1776–1783 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Yue, X., Robert, S. & Ungerleider, L. G. Curvature processing in human visual cortical areas. Neuroimage 222, 117295 (2020).

    Article  PubMed  Google Scholar 

  202. Long, B., Yu, C.-P. & Konkle, T. Mid-level visual features underlie the high-level categorical organization of the ventral stream. Proc. Natl Acad. Sci. USA 115, E9015–E9024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8, 551–565 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Caldara, R. et al. Face versus non-face object perception and the ‘other-race’ effect: a spatio-temporal event-related potential study. Clin. Neurophysiol. 114, 515–528 (2003).

    Article  PubMed  Google Scholar 

  205. Itier, R. J., Latinus, M. & Taylor, M. J. Face, eye and object early processing: what is the face specificity? Neuroimage 29, 667–676 (2006).

    Article  PubMed  Google Scholar 

  206. Conte, S., Richards, J. E., Guy, M. W., Xie, W. & Roberts, J. E. Face-sensitive brain responses in the first year of life. Neuroimage 211, 116602 (2020).

    Article  PubMed  Google Scholar 

  207. Guy, M. W., Zieber, N. & Richards, J. E. The cortical development of specialized face processing in infancy. Child Dev. 87, 1581–1600 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. de Haan, M., Pascalis, O. & Johnson, M. H. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14, 199–209 (2002).

    Article  PubMed  Google Scholar 

  209. Halit, H., de Haan, M. & Johnson, M. H. Cortical specialisation for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage 19, 1180–1193 (2003).

    Article  PubMed  Google Scholar 

  210. Balas, B., Westerlund, A., Hung, K. & Nelson Iii, C. A. Shape, color and the other-race effect in the infant brain. Dev. Sci. 14, 892–900 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Scott, L. S. & Nelson, C. A. Featural and configural face processing in adults and infants: a behavioral and electrophysiological investigation. Perception 35, 1107–1128 (2006).

    Article  PubMed  Google Scholar 

  212. Righi, G., Westerlund, A., Congdon, E. L., Troller-Renfree, S. & Nelson, C. A. Infants’ experience-dependent processing of male and female faces: insights from eye tracking and event-related potentials. Dev. Cogn. Neurosci. 8, 144–152 (2014).

    Article  PubMed  Google Scholar 

  213. Aylward, E. H. et al. Brain activation during face perception: evidence of a developmental change. J. Cogn. Neurosci. 17, 308–319 (2005).

    Article  PubMed  Google Scholar 

  214. Passarotti, A. M. et al. The development of face and location processing: an fMRI study. Dev. Sci. 6, 100–117 (2003).

    Article  Google Scholar 

  215. Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

    Article  PubMed  Google Scholar 

  216. Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. The invariance hypothesis implies domain-specific regions in visual cortex. PLoS Comput. Biol. 11, e1004390 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10, 512–522 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Bukach, C. M., Gauthier, I. & Tarr, M. J. Beyond faces and modularity: the power of an expertise framework. Trends Cogn. Sci. 10, 159–166 (2006).

    Article  PubMed  Google Scholar 

  219. Carey, S. & Diamond, R. Are faces perceived as configurations more by adults than by children? Vis. Cogn. 1, 253–274 (1994).

    Article  Google Scholar 

  220. Bate, S. & Bennetts, R. J. The rehabilitation of face recognition impairments: a critical review and future directions. Front. Hum. Neurosci. 8, 491 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Scott, L. S. & Brito, N. H. Supporting healthy brain and behavioral development during infancy. Policy Insights Behav. Brain Sci. 9, 129–136 (2022).

    Article  Google Scholar 

  222. Grill-Spector, K., Weiner, K. S., Kay, K. & Gomez, J. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3, 167–196 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Gruart, A., Leal-Campanario, R., López-Ramos, J. C. & Delgado-García, J. M. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: lessons from studies in behaving mammals. Neurobiol. Learn. Mem. 124, 3–18 (2015).

    Article  PubMed  Google Scholar 

  224. Zeithamova, D. et al. Brain mechanisms of concept learning. J. Neurosci. 39, 8259–8266 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Turk-Browne, N. B., Scholl, B. J. & Chun, M. M. Babies and brains: habituation in infant cognition and functional neuroimaging. Front. Hum. Neurosci. 2, 16 (2008).

    PubMed  PubMed Central  Google Scholar 

  226. Grill-Spector, K., Henson, R. & Martin, A. Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn. Sci. 10, 14–23 (2006).

    Article  PubMed  Google Scholar 

  227. Krekelberg, B., Boynton, G. M. & van Wezel, R. J. A. Adaptation: from single cells to BOLD signals. Trends Neurosci 29, 250–256 (2006).

    Article  PubMed  Google Scholar 

  228. Wheatley, T., Weisberg, J., Beauchamp, M. S. & Martin, A. Automatic priming of semantically related words reduces activity in the fusiform gyrus. J. Cogn. Neurosci. 17, 1871–1885 (2005).

    Article  PubMed  Google Scholar 

  229. Webster, M. A. & MacLeod, D. I. A. Visual adaptation and face perception. Phil. Trans. R. Soc. B 366, 1702–1725 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Jiang, F., Blanz, V. & O’Toole, A. J. Three-dimensional information in face representations revealed by identity aftereffects. Psychol. Sci. 20, 318–325 (2009).

    Article  PubMed  Google Scholar 

  231. Leopold, D. A., O’Toole, A. J., Vetter, T. & Blanz, V. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. 4, 89–94 (2001).

    Article  PubMed  Google Scholar 

  232. Barry-Anwar, R., Riggins, T. & Scott, L. S. in The Oxford Handbook of Developmental Cognitive Neuroscience (ed. Cohen Kadosh, K.) (Oxford Univ. Press, 2020).

  233. Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Hoehl, S., Michel, C., Reid, V. M., Parise, E. & Striano, T. Eye contact during live social interaction modulates infants’ oscillatory brain activity. Soc. Neurosci. 9, 300–308 (2014).

    Article  PubMed  Google Scholar 

  235. Michel, C. et al. Theta- and alpha-band EEG activity in response to eye gaze cues in early infancy. Neuroimage 118, 576–583 (2015).

    Article  PubMed  Google Scholar 

  236. Snyder, K. A. & Keil, A. Repetition suppression of induced gamma activity predicts enhanced orienting toward a novel stimulus in 6-month-old infants. J. Cogn. Neurosci. 20, 2137–2152 (2008).

    Article  PubMed  Google Scholar 

  237. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiforrn gyms. J. Cogn. Neurosci. 9, 605–610 (1997).

    Article  PubMed  Google Scholar 

  238. Allison, T. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex 9, 415–430 (1999).

    Article  PubMed  Google Scholar 

  239. Rossion, B. et al. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395 (2003).

    Article  PubMed  Google Scholar 

  240. Behrmann, M. & Plaut, D. C. A vision of graded hemispheric specialization. Ann. NY Acad. Sci. 1359, 30–46 (2015).

    Article  PubMed  Google Scholar 

  241. Dehaene, S. & Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 15, 254–262 (2011).

    Article  PubMed  Google Scholar 

  242. Dundas, E. M., Plaut, D. C. & Behrmann, M. The joint development of hemispheric lateralization for words and faces. J. Exp. Psychol. Gen. 142, 348–358 (2013).

    Article  PubMed  Google Scholar 

  243. Hildesheim, F. E. et al. The trajectory of hemispheric lateralization in the core system of face processing: a cross-sectional functional magnetic resonance imaging pilot study. Front. Psychol. 11, 507199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Scott, L. S., Shannon, R. W. & Nelson, C. A. Neural correlates of human and monkey face processing in 9-month-old infants. Infancy 10, 171–186 (2006).

    Article  Google Scholar 

  245. de Haan, M. & Nelson, C. A. Brain activity differentiates face and object processing in 6-month-old infants. Dev. Psychol. 35, 1113–1121 (1999).

    Article  PubMed  Google Scholar 

  246. Gliga, T. & Dehaene-Lambertz, G. Development of a view-invariant representation of the human head. Cognition 102, 261–288 (2007).

    Article  PubMed  Google Scholar 

  247. Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R. & Rossion, B. The steady-state visual evoked potential in vision research: a review. J. Vis. 15, 4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Barry-Anwar, R., Hadley, H., Conte, S., Keil, A. & Scott, L. S. The developmental time course and topographic distribution of individual-level monkey face discrimination in the infant brain. Neuropsychologia 108, 25–31 (2018).

    Article  PubMed  Google Scholar 

  249. de Heering, A. & Rossion, B. Rapid categorization of natural face images in the infant right hemisphere. eLife 4, e06564 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Farzin, F., Hou, C. & Norcia, A. M. Piecing it together: infants’ neural responses to face and object structure. J. Vis. 12, 6–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Peykarjou, S., Hoehl, S., Pauen, S. & Rossion, B. Rapid categorization of human and ape faces in 9-month-old infants revealed by fast periodic visual stimulation. Sci. Rep. 7, 12526 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the University of Florida’s Brain, Cognition and Developmental Laboratory for relevant discussions. Funding for this work was provided by the National Science Foundation to L.S.S. (BCS-1728133 and BCS-1056805/BCS-1560810).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lisa S. Scott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Margaret Moulson, Marlene Behrmann and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, L.S., Arcaro, M.J. A domain-relevant framework for the development of face processing. Nat Rev Psychol 2, 183–195 (2023). https://doi.org/10.1038/s44159-023-00152-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00152-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing