Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design and enantioselective synthesis of 3D π-extended carbohelicenes for circularly polarized luminescence

Abstract

Circularly polarized luminescence (CPL) of chiral organic molecules has attracted attention as next-generation optoelectronic technology, including applications in biotechnology. Higher-order 3D π-extended carbohelicenes would be superb CPL emitters, combining high circular polarization, brightness and stability, but their highly distorted structure has hindered their synthesis and enantiocontrol. Here we report the design of 3D π-extended carbo[11] and [13]helicenes for the CPL emitters and their enantioselective synthesis (up to 87:13 enantiomeric ratio), overcoming high distortions. These helicenes are synthesized via the enantioselective triple [2 + 2 + 2] cycloaddition to construct low-distortion expanded carbo[13] and [15]helicene skeletons and the subsequent π-extension/helix diameter reduction by the Scholl reaction. X-ray crystallographic analyses demonstrate that the 3D π-extended carbo[11] and [13]helicenes with rigid molecular backbones are conglomerates, favouring preferential crystallization, and reveal van der Waals interactions throughout the hexa-peri-hexabenzocoronene layers. Furthermore, their CPL brightness reaches a maximum of 513 M1 cm1, the highest value among helicene derivatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of longitudinally and laterally π-extended carbohelicenes.
Fig. 2: The synthesis of nonaynes.
Fig. 3: The enantioselective synthesis of 3D π-extended carbohelicenes.
Fig. 4: X-ray crystal structures of (±)-2b, (±)-17b and (±)-3b.
Fig. 5: Absorption, fluorescence, ECD and CPL spectra of 2a, 16a and 3a in CHCl3 at 25 °C.
Fig. 6: Absorption, fluorescence, ECD and CPL spectra of 2b, 17b and 3b in CHCl3 at 25 °C.
Fig. 7: Calculated electric (blue arrow, μe) and magnetic (red arrow, μm) transition dipole moments at the B3LYP/6-31G(d) level of theory.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this paper and Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this paper have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2303728 [(±)-2a], CCDC 2303729 [(±)-2b], CCDC 2303730 [(M)-3a], CCDC 2303731 [(±)-3b], CCDC 2303732 [(±)-17b], CCDC 2303733 [(±)-23], CCDC 2303737 [(±)-24] and CCDC 2336973 [(±)-16a]. Copies of the data can be obtained free of charge via Cambridge Crystallographic Data Centre at https://www.ccdc.cam.ac.uk/structures/ (ref. 66).

References

  1. Wang, X., Ma, S., Zhao, B. & Deng, J. Frontiers in circularly polarized phosphorescent materials. Adv. Funct. Mater. 33, 2214364 (2023).

    Article  CAS  Google Scholar 

  2. Xu, H., Ma, C.-S., Yu, C.-Y., Tong, F. & Qu, D.-H. Reversible inversion of circularly polarized luminescence in a coassembly supramolecular structure with achiral sulforhodamine b dyes. ACS Appl. Mater. Interfaces 15, 25201–25211 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Schadt, M. Liquid crystal materials and liquid crystal displays. Annu. Rev. Mater. Sci. 27, 305–379 (1997).

    Article  CAS  Google Scholar 

  4. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez-Carnerero, E. M. et al. Circularly polarized luminescence from simple organic molecules. Chem. Eur. J. 21, 13488–13500 (2015).

    Article  PubMed  Google Scholar 

  6. Arrico, L., Di Bari, L. & Zinna, F. Quantifying the overall efficiency of circularly polarized emitters. Chem. Eur. J. 27, 2920–2934 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Nakai, Y., Mori, T. & Inoue, Y. Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. J. Phys. Chem. A 116, 7372–7385 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Mori, K., Murase, T. & Fujita, M. One-step synthesis of [16]helicene. Angew. Chem. Int. Ed. 54, 6847–6851 (2015).

    Article  CAS  Google Scholar 

  9. Liu, W., Qin, T., Xie, W. & Yang, X. Catalytic enantioselective synthesis of helicenes. Chem. Eur. J. 28, e202202369 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y., Wu, Z.-G. & Shi, F. Advances in catalytic enantioselective synthesis of chiral helicenes and helicenoids. Chem. Catal. 2, 3077–3111 (2022).

    Article  CAS  Google Scholar 

  11. Grandbois, A. & Collins, S. K. Enantioselective synthesis of [7]helicene: dramatic effects of olefin additives and aromatic solvents in asymmetric olefin metathesis. Chem. Eur. J. 14, 9323–9329 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Jančařík, A. et al. Rapid access to dibenzohelicenes and their functionalized derivatives. Angew. Chem. Int. Ed. 52, 9970–9975 (2013).

    Article  Google Scholar 

  13. González-Fernández, E. et al. Enantioselective synthesis of [6]carbohelicenes. J. Am. Chem. Soc. 139, 1428–1431 (2017).

    Article  PubMed  Google Scholar 

  14. Yamano, R., Shibata, Y. & Tanaka, K. Synthesis of single and double dibenzohelicenes by rhodium-catalyzed intramolecular [2+2+2] and [2+1+2+1] cycloaddition. Chem. Eur. J. 24, 6364–6370 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Satoh, M., Shibata, Y. & Tanaka, K. Enantioselective synthesis of fully benzenoid single and double carbohelicenes via gold-catalyzed intramolecular hydroarylation. Chem. Eur. J. 24, 5434–5438 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Jia, S., Li, S., Liu, Y., Qin, W. & Yan, H. Enantioselective control of both helical and axial stereogenic elements though an organocatalytic approach. Angew. Chem. Int. Ed. 58, 18496–18501 (2019).

    Article  CAS  Google Scholar 

  17. Yubuta, A. et al. Enantioselective synthesis of triple helicenes by cross-cyclotrimerization of a helicenyl aryne and alkynes via dynamic kinetic resolution. J. Am. Chem. Soc. 142, 10025–10033 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Guo, S.-M. et al. A C–H activation-based enantioselective synthesis of lower carbo[n]helicenes. Nat. Chem. 15, 872–880 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rulíšek, L. et al. On the convergence of the physicochemical properties of [n]helicenes. J. Phys. Chem. C 111, 14948–14955 (2007).

    Article  Google Scholar 

  20. Sehnal, P. et al. An organometallic route to long helicenes. Proc. Natl Acad. Sci. USA 106, 13169–13174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shoji, Y. et al. Boron-mediated sequential alkyne insertion and C–C coupling reactions affording extended π-conjugated molecules. Nat. Commun. 7, 12704 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kiel, G. R. et al. Expanded helicenes: a general synthetic strategy and remarkable supramolecular and solid-state behavior. J. Am. Chem. Soc. 139, 18456–18459 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Nakakuki, Y., Hirose, T. & Matsuda, K. Synthesis of a helical analogue of kekulene: a flexible π-expanded helicene with large helical diameter acting as a soft molecular spring. J. Am. Chem. Soc. 140, 15461–15469 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Fujise, K., Tsurumaki, E., Wakamatsu, K. & Toyota, S. Construction of helical structures with multiple fused anthracenes: structures and properties of long expanded helicenes. Chem. Eur. J. 27, 4548–4552 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Suárez-Pantiga, S. et al. In-Fjord substitution in expanded helicenes: effects of the Insert on the inversion barrier and helical pitch. Chem. Eur. J. 27, 13358–13366 (2021).

    Article  PubMed  Google Scholar 

  26. Zheng, W., Ikai, T., Oki, K. & Yashima, E. Consecutively fused single-, double-, and triple-expanded helicenes. Nat. Sci. 2, e20210047 (2022).

    Article  CAS  Google Scholar 

  27. Kiel, G. R. et al. Expanded [23]-helicene with exceptional chiroptical properties via an iterative ring-fusion strategy. J. Am. Chem. Soc. 144, 23421–23427 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Huo, G.-F. et al. Facile synthesis and chiral resolution of expanded helicenes with up to 35 cata-fused benzene rings. Angew. Chem. Int. Ed. 62, e202218090 (2023).

    Article  CAS  Google Scholar 

  29. Toya, M. et al. Expanded [2,1][n]carbohelicenes with 15- and 17-benzene rings. J. Am. Chem. Soc. 145, 11553–11565 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Kubo, H. et al. Tuning transition electric and magnetic dipole moments: [7]helicenes showing intense circularly polarized luminescence. J. Phys. Chem. Lett. 12, 686–695 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Donckt, E. V., Nasielski, J., Greenleaf, J. R. & Birks, J. B. Fluorescence of the helicenes. Chem. Phys. Lett. 2, 409–410 (1968).

    Article  Google Scholar 

  32. Sapir, M. & Donckt, E. V. Intersystem crossing in the helicenes. Chem. Phys. Lett. 36, 108–110 (1975).

    Article  CAS  Google Scholar 

  33. Dhbaibi, K., Favereau, L. & Crassous, J. Enantioenriched helicenes and helicenoids containing main-group elements (B, Si, N, P). Chem. Rev. 119, 8846–8953 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev. 121, 2373–2412 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, X.-Y., Li, J.-K. & Wang, X.-Y. Recent advances in the syntheses of helicene-based molecular nanocarbons via the Scholl reaction. Chin. J. Org. Chem. 41, 4105–4137 (2021).

    Article  CAS  Google Scholar 

  36. Zhang, Y., Pun, S. H. & Miao, Q. The Scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics. Chem. Rev. 122, 14554–14593 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, J., Xu, X., Mao, R. & Miao, Q. Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene. J. Am. Chem. Soc. 134, 13796–13803 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fujikawa, T., Segawa, Y. & Itami, K. Synthesis, structures, and properties of π-extended double helicene: a combination of planar and nonplanar π-systems. J. Am. Chem. Soc. 137, 7763–7768 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Hu, Y. et al. Benzo-fused double [7]carbohelicene: synthesis, structures, and physicochemical properties. Angew. Chem. Int. Ed. 56, 3374–3378 (2017).

    Article  CAS  Google Scholar 

  40. Zhu, Y. et al. Synthesis and characterization of hexapole [7]helicene, a circularly twisted chiral nanographene. J. Am. Chem. Soc. 140, 4222–4226 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Nakakuki, Y., Hirose, T., Sotome, H., Miyasaka, H. & Matsuda, K. Hexa-peri-hexabenzo[7]helicene: homogeneously π-extended helicene as a primary substructure of helically twisted chiral graphenes. J. Am. Chem. Soc. 140, 4317–4326 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Cruz, C. M., Castro-Fernández, S., Maçôas, E., Cuerva, J. M. & Campaña, A. G. Undecabenzo[7]superhelicene: a helical nanographene ribbon as a circularly polarized luminescence emitter. Angew. Chem. Int. Ed. 57, 14782–14786 (2018).

    Article  CAS  Google Scholar 

  43. Zhu, Y., Guo, X., Li, Y. & Wang, J. Fusing of seven HBCs toward a green nanographene propeller. J. Am. Chem. Soc. 141, 5511–5517 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Cruz, C. M. et al. A triskelion-shaped saddle-helix hybrid nanographene. Angew. Chem. Int. Ed. 58, 8068–8072 (2019).

    Article  CAS  Google Scholar 

  45. Hu, Y. et al. π-Extended pyrene-fused double [7]carbohelicene as a chiral polycyclic aromatic hydrocarbon. J. Am. Chem. Soc. 141, 12797–12803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo, X. et al. A nitrogen-doped hexapole [7]helicene versus its all-carbon analogue. Angew. Chem. Int. Ed. 58, 16966–16972 (2019).

    Article  CAS  Google Scholar 

  47. Chen, Y. et al. Double π-extended undecabenzo[7]helicene. Angew. Chem. Int. Ed. 60, 7796–7801 (2021).

    Article  CAS  Google Scholar 

  48. Yao, X. et al. Synthesis of nonplanar graphene nanoribbon with fjord edges. J. Am. Chem. Soc. 143, 5654–5658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pun, S. H. et al. A near-infrared absorbing and emissive quadruple helicene enabled by the Scholl reaction of perylene. Angew. Chem. Int. Ed. 61, e202113203 (2022).

    Article  CAS  Google Scholar 

  50. Xu, X. et al. Synthesis of bioctacene-incorporated nanographene with near-infrared chiroptical properties. Angew. Chem. Int. Ed. 62, e202218350 (2023).

    Article  CAS  Google Scholar 

  51. Evans, P. J. et al. Synthesis of a helical bilayer nanographene. Angew. Chem. Int. Ed. 57, 6774–6779 (2018).

    Article  CAS  Google Scholar 

  52. Wang, Y. et al. Hexapole [9]helicene. Angew. Chem. Int. Ed. 58, 587–591 (2019).

    Article  CAS  Google Scholar 

  53. Liu, B., Bockmann, M., Jiang, W., Doltsinis, N. L. & Wang, Z. Perylene diimide-embedded double [8]helicenes. J. Am. Chem. Soc. 142, 7092–7099 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Qiu, Z. et al. Amplification of dissymmetry factors in π-extended [7]- and [9]helicenes. J. Am. Chem. Soc. 143, 4661–4667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shen, C. et al. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat. Commun. 12, 2786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakakuki, Y. et al. Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length. Nat. Commun. 13, 1475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, L. et al. Helical bilayer nonbenzenoid nanographene bearing a [10]helicene with two embedded heptagons. Angew. Chem. Int. Ed. 62, e202216193 (2023).

    Article  CAS  Google Scholar 

  58. Ju, Y.-Y. et al. Helical trilayer nanographenes with tunable interlayer overlaps. J. Am. Chem. Soc. 145, 2815–2821 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, Y.-J. et al. A π-extended pentadecabenzo[9]helicene. Angew. Chem. Int. Ed. 62, e202300840 (2023).

    Article  CAS  Google Scholar 

  60. Izquierdo-García, P. et al. Helical bilayer nanographenes: impact of the helicene length on the structural, electrochemical, photophysical, and chiroptical properties. J. Am. Chem. Soc. 145, 11599–11610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Morita, F. et al. Regiodivergent synthesis and π-stacking-induced chiral self-recognition of hexabenzocoronene-based [6]helicenes. Eur. J. Org. Chem. 2022, e202200690 (2022).

    Article  CAS  Google Scholar 

  62. Stará, I. G. & Starý, I. Helically chiral aromatics: the synthesis of helicenes by [2 + 2 + 2] cycloisomerization of π-electron systems. Acc. Chem. Res. 53, 144–158 (2020).

    Article  PubMed  Google Scholar 

  63. Tsurusaki, A. & Kamikawa, K. Multiple helicenes featuring synthetic approaches and molecular structures. Chem. Lett. 50, 1913–1932 (2021).

    Article  CAS  Google Scholar 

  64. Ding, X.-H. et al. Halogen bonding in the co-crystallization of potentially ditopic diiodotetrafluorobenzene: a powerful tool for constructing multicomponent supramolecular assemblies. Natl Sci. Rev. 7, 1906–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Duong, S. T. & Fujiki, M. The origin of bisignate circularly polarized luminescence (CPL) spectra from chiral polymer aggregates and molecular camphor: anti-Kasha’s rule revealed by CPL excitation (CPLE) spectra. Polym. Chem. 8, 4673–4679 (2017).

    Article  CAS  Google Scholar 

  66. Access structures. Cambridge Crystallographic Data Centre https://www.ccdc.cam.ac.uk/structures/.

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grant numbers JP19H00893, JP21K18949 and JP24H00005 to K.T., JP20H04661 and JP22K05032 to H.U., JP23H04020 to G.F. and JP22H00320 and JP22H05125 to M.U. and JST CREST grant number JPMJCR19R2 to M.U. This work was supported by JST, the establishment of university fellowships towards the creation of science and technology innovation, grant number JPMJFS2112 to F.M. We thank Takasago International Corporation for the gift of Segphos and H8-BINAP. A generous allotment of computational resources from TSUBAME (Tokyo Institute of Technology) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

F.M. designed the project, conducted experimental works and computational studies, and wrote a draft paper. X-ray crystallographic analyses were performed by Y.K., H.S., M.A. and H.U. for (±)-2b, (M)-3a, (±)-3b, (±)-16a and (±)-17b, and Y.S. and J.N. for (±)-2a, (±)-23 and (±)-24. N.T., F.M., Y.N. and M.U. performed CPL measurements. T.K. and G.F. performed fluorescence lifetime measurements. K.T. designed, advised and directed the project, and wrote the paper. All authors edited the paper.

Corresponding author

Correspondence to Ken Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jeanne Crassous, Xiaoyu Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthetic experiments, 1H and 13C NMR spectra, chiral high-performance liquid chromatography charts, photophysical and chiroptical properties, crystal data, theoretical calculations and Supplementary Figs. 1–77 and Tables 1–39.

Supplementary Data 1

Crystal data for compound 2a, CCDC 2303728.

Supplementary Data 2

Crystal data for compound 2b, CCDC 2303729.

Supplementary Data 3

Crystal data for compound 3a, CCDC 2303730.

Supplementary Data 4

Crystal data for compound 3b, CCDC 2303731.

Supplementary Data 5

Crystal data for compound 17b, CCDC 2303732.

Supplementary Data 6

Crystal data for compound 23, CCDC 2303733.

Supplementary Data 7

Crystal data for compound 24, CCDC 2303737.

Supplementary Data 8

Crystal data for compound 16a, CCDC 2336973.

Source data

Source Data Fig. 5

Statistical source data. Raw data (.txt) of ultraviolet–visible absorption, fluorescence, ECD and CPL spectra of compounds 2a, 16a and 3a.

Source Data Fig. 6

Statistical source data. Raw data (.txt) of ultraviolet–visible absorption, fluorescence, ECD and CPL spectra of compounds 2b, 17b and 3b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, F., Kishida, Y., Sato, Y. et al. Design and enantioselective synthesis of 3D π-extended carbohelicenes for circularly polarized luminescence. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00527-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00527-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing