Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantiodivergent synthesis of isoindolones catalysed by a Rh(III)-based artificial metalloenzyme

Abstract

Combining enzyme and transition-metal catalysis within artificial metalloenzymes has broadened the scope of new-to-nature reactions and efficiently solved several problems in asymmetric organometallic catalysis through compartmentalization of the catalytic centre within a protein active site and by providing easy access to cooperative catalysis and unparalleled selectivity via protein engineering. Streptavidin, a homotetrameric protein, along with a biotinylated metal complex is a promising artificial metalloenzyme for its application in diverse non-natural reactions. However, the use of engineered streptavidin-based artificial metalloenzymes for the synthesis of enantioenriched isoindolones has remained elusive. Here we report a streptavidin–biotin–Rh(III) system to synthesize chiral isoindolones from N-(pivaloyloxy)benzamides and aromatic diazoesters with up to 95:5 e.r. This hybrid catalytic platform can accommodate a diverse range of diazoesters and yields chiral isoindolones with several useful functionalities such as biphenyl, thioether, selenoether, amine, olefin and alkyne. Mechanistic studies reveal that the process involves a directed inner-sphere C–H activation followed by diazo insertion. A high-resolution crystal structure of streptavidin with the biotinylated Rh(III) cofactor allowed us to rationally engineer mutants at the N49 position for enantiodivergence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metalloenzyme-catalysed asymmetric synthesis of isoindolones.
Fig. 2: Reaction substrate scope.
Fig. 3: Additional reaction substrate scope.
Fig. 4: Rational engineering of tSav for enantiodivergence.
Fig. 5: Mechanistic studies.

Similar content being viewed by others

Data availability

All the data related to this work are available in the main text or the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2189656 ((R)-3e, from a sample with e.r. 86:14), 2313156 ((R)-3e, pure enantiomer obtained through preparative chiral HPLC), 2299915 ((S)-3e, pure enantiomer obtained through preparative chiral HPLC) and 2168680 ((±)-3ad). The atomic coordinates of the streptavidin–ligand complex have been deposited in the Protein Data Bank (PDB) with the accession code 8GOG.

References

  1. Topliss, J. G., Konzelman, L. M., Sperber, N. & Roth, F. E. Antihypertensive agents. III.1 3-Hydroxy-3-phenylphthalimidines. J. Med. Chem. 7, 453–456 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Mertens, A. et al. Selective non-nucleoside HIV-1 reverse transcriptase inhibitors. New 2,3-dihydrothiazolo[2,3-a]isoindol-5(9bH)-ones and related compounds with anti-HIV-1 activity. J. Med. Chem. 36, 2526–2535 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Norman, M. H., Minick, D. J. & Rigdon, G. C. Effect of linking bridge modifications on the antipsychotic profile of some phthalimide and isoindolinone derivatives. J. Med. Chem. 39, 149–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Honma, T. et al. A novel approach for the development of selective Cdk4 inhibitors: library design based on locations of Cdk4 specific amino acid residues. J. Med. Chem. 44, 4628–4640 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Wacker, D. A. et al. Discovery of (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one, a selective, orally active agonist of the 5-HT2C receptor. J. Med. Chem. 50, 1365–1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bai, Y. et al. Electroselective and controlled reduction of cyclic imides to hydroxylactams and lactams. Org. Lett. 23, 2298–2302 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Cui, W.-J., Wu, Z.-J., Gu, Q. & You, S.-L. Divergent synthesis of tunable cyclopentadienyl ligands and their application in Rh-catalyzed enantioselective synthesis of isoindolinone. J. Am. Chem. Soc. 142, 7379–7385 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Thapa, P., Corral, E., Sardar, S., Pierce, B. S. & Foss, F. W. Isoindolinone synthesis: selective dioxane-mediated aerobic oxidation of isoindolines. J. Org. Chem. 84, 1025–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Savela, R. & Méndez-Gálvez, C. Isoindolinone synthesis via one-pot type transition metal catalyzed C–C bond forming reactions. Chemistry (Eur. J) 27, 5344–5378 (2021).

    CAS  Google Scholar 

  10. Hyster, T. K., Ruhl, K. E. & Rovis, T. A coupling of benzamides and donor/acceptor diazo compounds to form γ-lactams via Rh(III)-catalyzed C–H activation. J. Am. Chem. Soc. 135, 5364–5367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guimond, N., Gorelsky, S. I. & Fagnou, K. Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: improved reactivity and mechanistic studies. J. Am. Chem. Soc. 133, 6449–6457 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Rakshit, S., Grohmann, C., Besset, T. & Glorius, F. Rh(III)-catalyzed directed C–H olefination using an oxidizing directing group: mild, efficient, and versatile. J. Am. Chem. Soc. 133, 2350–2353 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Guimond, N., Gouliaras, C. & Fagnou, K. Rhodium(III)-catalyzed isoquinolone synthesis: the N–O bond as a handle for C–N bond formation and catalyst turnover. J. Am. Chem. Soc. 132, 6908–6909 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Baldwin, J. J. et al. Renin inhibitors. Patent WO2008156816A2 (2008).

  15. Björe, A. et al. Isoindoline derivatives for the treatment of arrhythmias. Patent WO2008008022A1 (2007).

  16. Li, E. et al. Antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorganic Med. Chem. 16, 7894–7899 (2008).

    Article  CAS  Google Scholar 

  17. Huang, W. et al. Asymmetric synthesis of 3-benzyl and allyl Iisoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org. Chem. Front. 8, 4106–4111 (2021).

    Article  CAS  Google Scholar 

  18. Li, T., Zhou, C., Yan, X. & Wang, J. Solvent-dependent asymmetric synthesis of alkynyl and monofluoroalkenyl isoindolinones by CpRhIII-catalyzed C–H activation. Angew. Chem. Int. Ed. 57, 4048–4052 (2018).

    Article  CAS  Google Scholar 

  19. Gao, W., Chen, M. W., Ding, Q. & Peng, Y. Catalytic asymmetric synthesis of isoindolinones. Chemistry (Asian J.) 14, 1306–1322 (2019).

    Article  CAS  Google Scholar 

  20. Romano, F. et al. Synthesis and organocatalytic asymmetric nitro-aldol initiated cascade reactions of 2-acylbenzonitriles leading to 3,3-disubstituted isoindolinones. Catalysts 9, 327 (2019).

    Article  Google Scholar 

  21. Glavač, D. & Gredičak, M. Organocatalytic asymmetric transformations of 3-substituted 3-hydroxyisoindolinones. Synlett 28, 889–897 (2017).

    Article  Google Scholar 

  22. Min, C., Lin, Y. & Seidel, D. Catalytic enantioselective synthesis of mariline A and related isoindolinones through a biomimetic approach. Angew. Chem. Int. Ed. 56, 15353–15357 (2017).

    Article  CAS  Google Scholar 

  23. Shao, Y.-D. & Cheng, D.-J. Chiral phosphoric acid: a powerful organocatalyst for the asymmetric synthesis of heterocycles with chiral atropisomerism. ChemCatChem 13, 1271–1289 (2021).

    Article  CAS  Google Scholar 

  24. Ye, B. & Cramer, N. Asymmetric synthesis of isoindolones by chiral cyclopentadienyl-rhodium(III)-catalyzed C–H functionalizations. Angew. Chem. Int. Ed. 53, 7896–7899 (2014).

    Article  CAS  Google Scholar 

  25. Ren, X., Chandgude, A. L. & Fasan, R. Highly stereoselective synthesis of fused cyclopropane–γ-lactams via biocatalytic iron-catalyzed intramolecular cyclopropanation. ACS Catal. 10, 2308–2313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyser, J. B., Chakrabarty, S., Romero, E. O. & Narayan, A. R. H. State-of-the-art biocatalysis. ACS Cent. Sci. 7, 1105–1116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 1–21 (2021).

    Article  Google Scholar 

  28. Hollmann, F. & Fernandez‐Lafuente, R. Grand challenges in biocatalysis. Front. Catal. 1, 1 (2021).

    Article  Google Scholar 

  29. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, K., Huang, X., Jennifer Kan, S. B., Zhang, R. K. & Arnold, F. H. Enzymatic construction of highly strained carbocycles. Science 360, 71–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature 565, 67–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Vargas, D. A., Tinoco, A., Tyagi, V. & Fasan, R. Myoglobin-catalyzed C–H functionalization of unprotected indoles. Angew. Chem. Int. Ed. 57, 9911–9915 (2018).

    Article  CAS  Google Scholar 

  34. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of Iron. Nature 534, 534–537 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H. Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron–haem enzyme. Nat. Chem. 9, 629–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F. Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)–PIX cofactor. J. Am. Chem. Soc. 139, 1750–1753 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Rudolf, J. D. et al. Cytochrome P450-catalyzed hydroxylation initiating ether formation in platensimycin biosynthesis. J. Am. Chem. Soc. 140, 12349–12353 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davis, H. J. & Ward, T. R. Artificial metalloenzymes: challenges and opportunities. ACS Cent. Sci. 5, 1120–1136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hyster, T. K., Knörr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Hassan, I. S. et al. Asymmetric δ-lactam synthesis with a monomeric streptavidin artificial metalloenzyme. J. Am. Chem. Soc. 141, 4815–4819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kato, S., Onoda, A., Taniguchi, N., Schwaneberg, U. & Hayashi, T. Directed evolution of a Cp*RhIII-linked biohybrid catalyst based on a screening platform with affinity purification. ChemBioChem 22, 679–685 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Kato, S. et al. Incorporation of a Cp*Rh(III)-dithiophosphate cofactor with latent activity into a protein scaffold generates a biohybrid catalyst promoting C(sp2)–H bond functionalization. Inorg. Chem. 59, 14457–14463 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ohata, J., Miller, M. K., Mountain, C. M., Vohidov, F. & Ball, Z. T. A three-component organometallic tyrosine bioconjugation. Angew. Chem. Int. Ed. 57, 2827–2830 (2018).

    Article  CAS  Google Scholar 

  44. Ohata, J. & Ball, Z. T. Rhodium at the chemistry–biology interface. Dalt. Trans. 47, 14855–14860 (2018).

    Article  CAS  Google Scholar 

  45. Tantipanjaporn, A., Kung, K. K.-Y. & Wong, M.-K. Fluorogenic protein labeling by generation of fluorescent quinoliziniums using [Cp*RhCl2]2. Org. Lett. 24, 5835–5839 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J.Am. Chem. Soc. 100, 306–307 (1978).

    Article  CAS  Google Scholar 

  47. Stein, A. et al. A dual anchoring strategy for the directed evolution of improved artificial transfer hydrogenases based on carbonic anhydrase. ACS Cent. Sci. 7, 1874–1884 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Christoffel, F. et al. Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nat. Catal. 4, 643–653 (2021).

    Article  CAS  Google Scholar 

  49. Rumo, C. et al. An artificial metalloenzyme based on a copper heteroscorpionate enables sp3 C–H functionalization via intramolecular carbene insertion. J. Am. Chem. Soc. 144, 11676–11684 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeung, N. et al. Rational design of a structural and functional nitric oxide reductase. Nature 462, 1079–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zimbron, J. M. et al. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin–streptavidin technology. J. Am. Chem. Soc. 135, 5384–5388 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. & Glorius, F. Mild rhodium(III)-catalyzed C–H activation and intermolecular annulation with allenes. Angew. Chem. Int. Ed. 51, 7318–7322 (2012).

    Article  CAS  Google Scholar 

  53. Bayer, E. A., Ben-Hur, H. & Wilchek, M. Isolation and properties of streptavidin. Methods Enzymol. 184, 80–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Klehr, J., Zhao, J., Kron, A. S., Ward, T. R. & Köhler, V. in Peptide and Protein Engineering. Springer Protocols Handbooks (eds Iranzo, O. and Roque, A.) 213–235 (Humana, 2020); https://doi.org/10.1007/978-1-0716-0720-6_12

Download references

Acknowledgements

D.M. thanks T. R. Ward (University of Basel) for his generous offering of Sav plasmids and kind help in setting up our facilities. We thank the SERB for financial support. H.J.D. thanks the PMRF for financial support. The Protein Crystallography Facility at IIT Bombay is also acknowledged. We thank Syngenta Biosciences Pvt Ltd Goa for their generous help with chiral preparatory HPLC to determine the absolute configuration of the major isomer.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and D.M. conceived the initial idea. P.M., A.S., P.B. and D.M. designed the overall project. P.M. synthesized the starting materials, cofactor, iminobiotin Sepharose resin and racemic standards. P.M. investigated the optimization of reaction conditions and substrate scope, and performed the mechanistic study. A.S. and P.B. designed the mutants for enantiodivergence. A.S. performed site-directed mutagenesis, and expression and purification of all the streptavidin mutants. A.S. optimized the crystallization conditions, collected the diffraction data and solved the protein crystal structure under the supervision of P.B. H.J.D. performed the replica reactions and contributed to synthesizing the starting materials and determining the substrate scope. S.J. and S.K.M. contributed to the optimization study, substrate scope and synthesis of racemic standards. S.R. helped with synthesis of the starting materials. P.M., A.S., P.B. and D.M. wrote the manuscript. P.B. and D.M. supervised the entire study.

Corresponding authors

Correspondence to Prasenjit Bhaumik or Debabrata Maiti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Takashi Hayashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–8, experimental procedures and X-ray crystallographic analysis.

Reporting Summary

Supplementary Data 1

Crystallographic data for compound (R)-3e, from a sample with e.r. 86:14. CCDC 2189656.

Supplementary Data 2

Crystallographic data for compound (R)-3e, pure enantiomer obtained through preparative chiral HPLC. CCDC 2313156.

Supplementary Data 3

Crystallographic data for compound (S)-3e, pure enantiomer obtained through preparative chiral HPLC. CCDC 2299915.

Supplementary Data 4

Crystallographic data for compound (±)-3ad, CCDC 2168680.

Supplementary Data 5

Crystallographic data for the streptavidin–ligand complex [PDB:8GOG].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Sairaman, A., Deka, H.J. et al. Enantiodivergent synthesis of isoindolones catalysed by a Rh(III)-based artificial metalloenzyme. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00533-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing