Metamaterials articles within Nature Communications

Featured

  • Article
    | Open Access

    Lee et al. developed ultrathin metallic (metal filling ratios of > 70 %) metamaterials that exhibit perfect transmission at a specific radar frequency. These characteristics enable microwave transparent, low-sheet-resistance radar heaters for safe autonomous driving in extreme weather.

    • Eun-Joo Lee
    • , Jun-Young Kim
    •  & Sun-Kyung Kim
  • Article
    | Open Access

    Researchers demonstrate that image-processing metasurfaces can be dynamically reconfigured by using phase-change materials. The work might lead to novel tunable devices for compact optical computing for applications in AR/VR and bio-medical imaging.

    • Michele Cotrufo
    • , Shaban B. Sulejman
    •  & Andrea Alù
  • Article
    | Open Access

    Photoluminescence from plasmonic nanostructures exhibits diverse wavelength dependent nonlinear behaviors with debated origins. Here, authors use plasmonic gap mode resonators with precise nanoscale confinement to show this nonlinear emission can become dominated by non-Fermi carrier contributions.

    • Robert Lemasters
    • , Manoj Manjare
    •  & Hayk Harutyunyan
  • Article
    | Open Access

    Metasurface-based architectures enhance light-matter interactions between a terahertz photonic mode and glucose vibrational resonance. This platform allows new physical and chemical properties of hybrid light-matter states to be exploited.

    • Ahmed Jaber
    • , Michael Reitz
    •  & Jean-Michel Ménard
  • Article
    | Open Access

    In this work, authors synthesize transparent radiative cooling cover windows for flexible and foldable electronic devices. Besides demonstrated enhanced mechanical and moisture-impermeable properties, these mitigate temperature rise of devices under solar irradiation and improve overall thermal management.

    • Kang Won Lee
    • , Jonghun Yi
    •  & Dong Rip Kim
  • Article
    | Open Access

    Exploring new mechanics regime, researchers created centimeter-long, nanometer-thin resonators, achieving unmatched room temperature mechanical isolation via cutting edge nanoengineering and machine learning design; rivaling cryogenic counterparts.

    • Andrea Cupertino
    • , Dongil Shin
    •  & Richard A. Norte
  • Article
    | Open Access

    Extending magnetic nanostructures into three dimensions offers a vast increase in potential functionalities, but this typically comes at the expense of ease of fabrication and measurement. Here, Dion et al. demonstrate an approach to creating three dimensional magnetic nanostructures while retaining easy fabrication and readout of established two dimensional approaches.

    • Troy Dion
    • , Kilian D. Stenning
    •  & Jack C. Gartside
  • Article
    | Open Access

    Caustics, as a unique type of singularity in wave phenomena, occur in diverse physical systems. Here, the authors realize multi-dimensional customization of caustics with 3D-printed metasurfaces. This arbitrary caustic engineering is poised to bring new revolutions to many domains.

    • Xiaoyan Zhou
    • , Hongtao Wang
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    The researchers showcase a flexible meta-sensor array based on classical Mie resonance, enabling precise detection of in-plane strain direction and magnitude using dynamically transmitted terahertz (THz) signals. The sensor array holds immense promise for the real-life applications as it possesses high sensor density and has a very large size up to (110 ×130 mm2).

    • Xueguang Lu
    • , Feilong Zhang
    •  & Qiang Cheng
  • Article
    | Open Access

    Achieving a wide angular response in single layer acoustic metalenses is challenging. By leveraging perfect acoustic symmetry conversion, the authors realize an aberration free metalens with a wide field-of-hearing, up to 140 degrees.

    • Dongwoo Lee
    • , Beomseok Oh
    •  & Junsuk Rho
  • Article
    | Open Access

    Authors present an adaptive underwater optical communication (UWOC) technology based on multi-wavelength lasers and a full-color metasurface for converting visible-band Gaussian to circular autofocusing Airy beams. The potential of Airy beams to mitigate optical power degradation is demonstrated, enabling stable data rate transmission via 4 K video transmission for these systems.

    • Junhui Hu
    • , Zeyuan Guo
    •  & Chao Shen
  • Article
    | Open Access

    High-contrast ultrasonic imaging holds significant importance in biomedical and engineering applications. Here, the authors present a compact spatial differentiator tailored for underwater isotropic edge-enhanced imaging, facilitating the realization of high-contrast ultrasonic imaging.

    • Yurou Jia
    • , Suying Zhang
    •  & Xiaojun Liu
  • Article
    | Open Access

    The researchers showcased a negative Goos-Hänchen effect in film samples across the entire visible spectrum and discovered an amber rainbow ribbon and an optical black hole where little light leaks out due to perfect back reflection.

    • Jing Zhao
    • , Xianfeng Wu
    •  & Xiaopeng Zhao
  • Article
    | Open Access

    Enhancing the data encoding into the orbital angular momentum of light beams could enable faster and more efficient optical communications. This work demonstrates complex control of the second harmonic wavefront with dynamics solely limited by the pulse duration.

    • Artem Sinelnik
    • , Shiu Hei Lam
    •  & Isabelle Staude
  • Article
    | Open Access

    Fermi arcs show unpredictable diffraction features resulting from their long-range scattering order in aperiodic systems. Here, authors continuously twist a bi-block Weyl meta-crystal and experimentally observe the twisted Fermi arc reconstruction.

    • Hanyu Wang
    • , Wei Xu
    •  & Biao Yang
  • Article
    | Open Access

    Polarization serves as an excellent information encoding carrier. Here, authors expand the metasurface encoding dimensionality of polarization information by engineering the Poincaré Sphere trajectory with generalized Malus’ law, unveiling new opportunities for advanced polarization optics.

    • Zi-Lan Deng
    • , Meng-Xia Hu
    •  & Andrea Alù
  • Article
    | Open Access

    Here the authors experimentally demonstrate the anomalous and Chern topological phases in a hyperbolic non-reciprocal scattering network, establishing unidirectional channels to induce new and exciting wave transport properties in curved spaces.

    • Qiaolu Chen
    • , Zhe Zhang
    •  & Romain Fleury
  • Article
    | Open Access

    Metasurfaces processing incoming images have been proposed in the context of real space operations. Here, the authors demonstrate mathematical operations, such as differentiation, on the angular spectrum of an image using metasurfaces, which can be used to enhance spectral features of an image.

    • Ming Deng
    • , Michele Cotrufo
    •  & Lin Chen
  • Article
    | Open Access

    Authors control heat transfer through twisting moiré conductive thermal metasurface, showcasing the potential for manipulating thermal conductivity and temperature gradients with imitated magic angles, thereby realizing multifunctional thermal metadevices.

    • Huagen Li
    • , Dong Wang
    •  & Cheng-Wei Qiu
  • Article
    | Open Access

    Principal optical axes define light-matter interactions in crystals and they are usually assumed to be stationary. Here, the authors report the observation of wavelength-dependent principal optical axes in ternary van der Waals crystals (ReS2 and ReSe2), leading to wavelength-switchable propagation directions of their waveguide modes.

    • Georgy A. Ermolaev
    • , Kirill V. Voronin
    •  & Kostya S. Novoselov
  • Article
    | Open Access

    Non-Hermitian systems have many physical properties without Hermitian counterparts. Here, the authors demonstrate a non-Hermitian topolectrical circuit hosting continuous bound states under pseudomagnetic fields with no counterparts in Hermitian systems.

    • Xuewei Zhang
    • , Chaohua Wu
    •  & Gang Chen
  • Article
    | Open Access

    Exploring the miniaturization of imaging systems, researchers use inverse-design for broadband meta-optics in the LWIR spectrum. Here, authors achieve a six-fold Strehl ratio improvement in image quality over conventional metalenses using a novel design and computational techniques.

    • Luocheng Huang
    • , Zheyi Han
    •  & Arka Majumdar
  • Article
    | Open Access

    Authors showcase a framework for visual perception enhancement system based on vision-driven metasurfaces. It can help humans obtain information in multiple frequency bands and allows the metasurface platform with more interesting functions.

    • Tianshuo Qiu
    • , Qiang An
    •  & Shaobo Qu
  • Article
    | Open Access

    Entanglement entropy exhibits rich phenomenology connected to different kinds of phases in condensed matter. Here, the authors confirm some of these predictions by experimentally probing nonlocal correlations in 1D and 2D phononic crystal based on interconnected resonating acoustic cavities.

    • Zhi-Kang Lin
    • , Yao Zhou
    •  & Jian-Hua Jiang
  • Article
    | Open Access

    In this work, the authors present an active optical metasurface based on a silicon-organic platform. The metasurface can modulate the amplitude of a reflected beam via electric voltage actuation lower than ± 17V.

    • Tianzhe Zheng
    • , Yiran Gu
    •  & Andrei Faraon
  • Article
    | Open Access

    Here the authors experimentally realized a systematic approach to synthesize arbitrary-size two-dimensional all-band-flat photonic lattices, which pave a route for investigating flat-band related physics such as slow-light, nonlinear breathing, and dispersionless image transmission.

    • Jing Yang
    • , Yuanzhen Li
    •  & Fei Gao
  • Article
    | Open Access

    Coherent scattering of phonons in a periodic nanostructure leads to interference, which modifies phonon energies. Here, authors observed that a strong interference effect also influences phonon lifetime. Despite its reduction, energy transport is conserved thanks to a hopping of energy among the reflected waves.

    • Mohammad Hadi
    • , Haoming Luo
    •  & Valentina M. Giordano
  • Article
    | Open Access

    Here the authors propose an isotropic three-dimensional metamaterial with nonreciprocal magnetoelectric resonant responses at visible and mid-infrared frequencies. The proposed metamaterials do not require external magnetization.

    • Shadi Safaei Jazi
    • , Ihar Faniayeu
    •  & Viktar Asadchy
  • Article
    | Open Access

    Artificial spin ices are nanomagnetic metamaterials, whose collective magnetization self-organizes into extended domains. However, controlling when, where and how domains change has proven difficult, yet is crucial for technological applications. Here, Jensen and Strømberg et al. introduce astroid clocking, which enables controlled, stepwise growth and reversal of magnetic domains, using only global fields.

    • Johannes H. Jensen
    • , Anders Strømberg
    •  & Erik Folven
  • Perspective
    | Open Access

    In this Perspective, the authors illustrate the physics of hyperbolic polaritons in anisotropic 2D and 1D materials, proposing new potential material candidates, forward looking opportunities and technological applications.

    • Hongwei Wang
    • , Anshuman Kumar
    •  & Tony Low
  • Article
    | Open Access

    The requirement for sophisticated objective lenses hinders the miniaturisation of single molecule fluorescence spectroscopy for portable sensing applications. Here, the authors demonstrate a dual-wavelength metalens for real-time monitoring of individual fluorescent nanoparticles.

    • Aleksandr Barulin
    • , Yeseul Kim
    •  & Inki Kim
  • Article
    | Open Access

    Wavefront manipulation with metasurfaces is typically limited to low quality factors. Here, the authors show how higher-order Mie modes can be leveraged to design high quality factor optical metasurfaces for wavefront manipulation in two dimensions.

    • Claudio U. Hail
    • , Morgan Foley
    •  & Harry A. Atwater
  • Article
    | Open Access

    Metasurfaces enable all-optical geometric coordinate transformations, converting images with altered pixel spatial relations, which can facilitate fast, energy-efficient preprocessing for tasks like object tracking, or aid in laser manufacturing.

    • Xingwang Zhang
    • , Xiaojie Zhang
    •  & Xingjie Ni
  • Article
    | Open Access

    The authors demonstrate how flexible metasurfaces powered by artificial neural network can dynamically manipulate the EM scattering behavior from an arbitrary surface - an ultimate ambition for many EM stealth and communication problems.

    • Erda Wen
    • , Xiaozhen Yang
    •  & Daniel F. Sievenpiper