Micro-optics articles within Nature Communications

Featured

  • Article
    | Open Access

    All holographic displays and imaging techniques are fundamentally limited by the étendue supported by existing spatial light modulators. Here, the authors report on using artificial intelligence (AI) to learn an étendue expanding element that effectively increases étendue by two orders of magnitude.

    • Ethan Tseng
    • , Grace Kuo
    •  & Felix Heide
  • Article
    | Open Access

    Metasurfaces processing incoming images have been proposed in the context of real space operations. Here, the authors demonstrate mathematical operations, such as differentiation, on the angular spectrum of an image using metasurfaces, which can be used to enhance spectral features of an image.

    • Ming Deng
    • , Michele Cotrufo
    •  & Lin Chen
  • Article
    | Open Access

    Here the authors experimentally realize the electrical tuning of branched flow of light in nematic liquid crystals. The statistical properties and the polarization effect of the branched flow of light in the film are systematically studied adding fundamental insights on branched flow of light.

    • Shan-shan Chang
    • , Ke-Hui Wu
    •  & Jin-hui Chen
  • Article
    | Open Access

    Authors showcase 3D direct laser writing to fabricate optically interfaced mechanical resonators. The membrane-type structures are placed inside fiber Fabry-Perot cavities to realize a miniaturized optical cavity. Further, the optomechanical properties reveal the coupling mechanism and a significant tuning of the mechanical resonator frequency.

    • Lukas Tenbrake
    • , Alexander Faßbender
    •  & Hannes Pfeifer
  • Article
    | Open Access

    Low-temperature spectroscopy of single fluorescent molecules can be of use to study dynamics in the nano-environment around them. Here, Smit et al. show that the fluorescence wavelength of molecules on the surface of hexagonal boron-nitride is particularly sensitive to how clean this surface is.

    • Robert Smit
    • , Arash Tebyani
    •  & Michel Orrit
  • Article
    | Open Access

    Spectroscopic gas sensing with high sensitivity and selectivity finds an increasing number of applications. Here, the authors report an approach to ultrasensitive multiplexed gas sensing by integrating dual-comb spectroscopy with cavity optomechanics.

    • Xinyi Ren
    • , Jin Pan
    •  & Heping Zeng
  • Article
    | Open Access

    Lithium niobate (LN) is difficult to process via dry etching. Here, authors demonstrate the fabrication of deeply etched, tightly confining, low loss LN photonic integrated circuits with losses 4 dB/m using diamond like carbon as a hard mask.

    • Zihan Li
    • , Rui Ning Wang
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Development of synchroton facilities increases the demand of optics for focusing X-ray beam to achieve diffraction-limited focusing onto samples. Here, the authors demonstrated an X-ray optical element based on visible light Alvarez varifocal lens providing precise performance focusing elements.

    • Vishal Dhamgaye
    • , David Laundy
    •  & Kawal Sawhney
  • Article
    | Open Access

    Plasma can act as a tunable medium in electro-optical device. Here the authors demonstrate electrically induced transmission due to change in absorption in a microphotonic device consisting of a plasma-filled microcavity.

    • Baheej Bathish
    • , Raanan Gad
    •  & Tal Carmon
  • Article
    | Open Access

    Single-shot readout of optically active spin qubits is typically limited by low photon collection rates and measurement back-action. Here the authors overcome these limitations by using an open cavity approach for single-shot readout of a semiconductor quantum dot and demonstrate record readout time of a few ns.

    • Nadia O. Antoniadis
    • , Mark R. Hogg
    •  & Richard J. Warburton
  • Article
    | Open Access

    Silica glass is a high-performance material used in most branches of society from glassware and windows to optical lenses and fibers. Here, we develop a sintering-free method for 3D printing silica glass with sub-micrometer resolution and successfully demonstrate an optical microtoroid resonator.

    • Po-Han Huang
    • , Miku Laakso
    •  & Frank Niklaus
  • Article
    | Open Access

    Manipulation of Janus particles is challenging and has limited precision. Here, the authors propose manipulation of Janus particles by optical forces in the evanescent field of an optical nanofiber, and demonstrate that they exhibit strong transverse localization on the nanofiber and much faster propulsion compared to all-dielectric particles of the same size.

    • Georgiy Tkachenko
    • , Viet Giang Truong
    •  & Síle Nic Chormaic
  • Article
    | Open Access

    The authors present a single-shot 3D imaging approach utilizing carefully designed point clouds projection based on a metasurface device. They show submillimeter depth accuracy and demonstrate the potential for hand gesture detection.

    • Xiaoli Jing
    • , Ruizhe Zhao
    •  & Lingling Huang
  • Article
    | Open Access

    The defocusing problem has been considered the main bottleneck for developing optoelectronic μ-compound eye (CE) cameras. Here, the authors report miniature optoelectronic CE cameras with an ommatidia logarithmic-profile. The camera enables large field-of-view imaging, spatial position identification, and sensitive trajectory monitoring of moving targets.

    • Zhi-Yong Hu
    • , Yong-Lai Zhang
    •  & Hong-Bo Sun
  • Article
    | Open Access

    Electron beam manipulation is important for their application in microscopes, lithography instruments, and colliders. Here the authors report a wafer scale, self-assembled, microcoil electrically-driven magnetic charge particle optic device that can be implemented into different configurations for controlling of electron beams.

    • R. Huber
    • , F. Kern
    •  & A. Lubk
  • Article
    | Open Access

    Understanding noise dynamics in frequency combs is crucial for applications. Here, the authors study the phase noise dynamics and the linewidth of soliton microcombs, revealing that some comb lines can be more quiet than the pump laser itself.

    • Fuchuan Lei
    • , Zhichao Ye
    •  & Victor Torres-Company
  • Article
    | Open Access

    Mirrors that demonstrate 98% reflectivity and withstand 10 kilowatts of focused continuous-wave laser light are created by nanoscale fabrication of single-crystal diamond. The work finds applications in medicine, defence, industry, and communications.

    • Haig A. Atikian
    • , Neil Sinclair
    •  & Marko Lončar
  • Article
    | Open Access

    Electro-optic modulator is used to encode electrical signals onto light. Here the authors demonstrate an electro-optic modulator, based on Silicon Carbide, which can be useful for quantum and optical communications.

    • Keith Powell
    • , Liwei Li
    •  & Xiaoke Yi
  • Article
    | Open Access

    Robust engineering of non-Hermitian light-matter coupling will be crucial for future optical device design. Here the authors present a photonic system that operates on an exceptional surface, demonstrating chiral and degenerate absorption with super-Lorentzian lineshape.

    • S. Soleymani
    • , Q. Zhong
    •  & Ş. K. Özdemir
  • Article
    | Open Access

    Insect-like biomimetic compound eyes have many technological applications. Here, the authors present a facile fabrication scheme involving microfluidics assisted 3D printing that permits to completely separate design, optimization and construction of optical and sensor components.

    • Bo Dai
    • , Liang Zhang
    •  & Dawei Zhang
  • Article
    | Open Access

    A general theory for Floquet topology applicable to all crystalline symmetry groups is lacking. Here, the authors propose such a theory for noninteracting Floquet crystals and predict an inversion-protected Floquet higher-order topological phase with anomalous chiral hinge modes.

    • Jiabin Yu
    • , Rui-Xing Zhang
    •  & Zhi-Da Song
  • Article
    | Open Access

    Microcombs operating in the deterministic quantum regime could lead to new applications. Here, the authors demonstrate a quantum microcomb consisting of 20 two-mode squeezed comb pairs, in an optical microresonator on a silicon chip.

    • Zijiao Yang
    • , Mandana Jahanbozorgi
    •  & Xu Yi
  • Article
    | Open Access

    In this work the authors demonstrate on-chip integration of Brillouin lasing operating at visible wavelengths, with engineered design for stable output. This technical and scientific advance will help develop integrated light sources for quantum computing or atomic and molecular spectroscopy.

    • Nitesh Chauhan
    • , Andrei Isichenko
    •  & Daniel J. Blumenthal
  • Article
    | Open Access

    Metasurfaces allow for vast possibilities of light control. Here, the authors demonstrate on-demand engineering and realization of a broad family of two-dimensional phase singularity sheets and transverse polarization singularity sheets, opening up new aspects of light-matter interaction.

    • Soon Wei Daniel Lim
    • , Joon-Suh Park
    •  & Federico Capasso
  • Article
    | Open Access

    Light field prints displaying 3D information often appear pixelated due to limited resolution and misalignment between lenses and colour pixels. Here, the authors present a one-step process via two-photon polymerization lithography to fabricate light field prints with high spatial and angular resolution.

    • John You En Chan
    • , Qifeng Ruan
    •  & Joel K. W. Yang
  • Article
    | Open Access

    Photonic processors that can perform arbitrary tasks are in demand for many applications. Here, the authors present a photonic architecture using waveguide and resonator couplings to perform arbitrary linear transformations, by taking advantage of the frequency synthetic dimension.

    • Siddharth Buddhiraju
    • , Avik Dutt
    •  & Shanhui Fan
  • Article
    | Open Access

    Here the authors explore the noise spectrum of soliton microcomb when the pump is decoupled from the solitons motion by balancing the Raman shift with the emitted dispersive wave. Based on the analysis of the phase noise and the soliton repetition rate, they identify the uncorrelated thermal fluctuations as underlying mechanism.

    • Qi-Fan Yang
    • , Qing-Xin Ji
    •  & Kerry Vahala
  • Article
    | Open Access

    Self-injection locking of the pump laser for a soliton microcomb has significantly relaxed the requirements for laser drives. Here the authors study self-injection locking in experiment and theory and reveal that the soliton formation is feasible with detunings unreachable according to previous theories.

    • Andrey S. Voloshin
    • , Nikita M. Kondratiev
    •  & Igor A. Bilenko
  • Article
    | Open Access

    Squeezing light into a nanometer gap offers strong light–matter interaction. Here, the authors develop a nanoelectromechanical system to dynamically control the gap of a plasmonic dimer at nanometer scale, enabling the realization of a light-intensity modulator that operates at high speed and with a low power consumption.

    • Jung-Hwan Song
    • , Søren Raza
    •  & Mark L. Brongersma
  • Article
    | Open Access

    Non-resonant lasers have many advantages since the allow for a diverse set of architectures and gain media, but their application is limited due to their low directionality and efficiency. Here, the authors present a scattering cavity laser with a single hole to achieve efficient and directional emission.

    • KyeoReh Lee
    • , Ho Jin Ma
    •  & YongKeun Park
  • Article
    | Open Access

    For advanced microcomb applications, the exact detection of the high repetition rate becomes difficult due to the limited bandwidth of the photodiodes. Here, the authors present a Vernier dual-comb method to sample the main soliton comb and divide the repetition rate by a generating low frequency beat notes.

    • Beichen Wang
    • , Zijiao Yang
    •  & Xu Yi
  • Article
    | Open Access

    Metalenses that correct chromatic aberration also suffer from reduced focusing efficiency. Here, the authors introduce a Hybrid Achromatic Metalens which merges a metalens and phase plate to offer improved focusing efficiency over a broad wavelength range and diffraction limited imaging performance.

    • F. Balli
    • , M. Sultan
    •  & J. T. Hastings
  • Article
    | Open Access

    Molecules of solitons provide insight into fundamental interactions between them and the underlying nonlinear system. The reported heteronuclear molecules, comprised of dissipative solitons with distinct frequencies, temporal widths, and energies enter the multistability regime and yield in interlocked frequency combs.

    • Wenle Weng
    • , Romain Bouchand
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Efficient switching and routing of photons of different wavelengths is desirable for future quantum information applications. To this end the authors demonstrate interference in a multimode system between two optomechanically induced transparency processes in a diamond on-chip cavity.

    • David P. Lake
    • , Matthew Mitchell
    •  & Paul E. Barclay
  • Article
    | Open Access

    The electrons in 2D materials like graphene are described by the relativistic Dirac equation. Here the authors present a lattice of evanescently coupled waveguides that emulates a wide range of Dirac excitations and study the type-II edge states that emerge in this photonic system.

    • Georgios G. Pyrialakos
    • , Nora Schmitt
    •  & Demetrios N. Christodoulides
  • Article
    | Open Access

    Mesoscale investigations of material microarchitecture using small angle X-ray scattering (SAXS) methods have been limited by long measurement times. Here, the authors present an X-ray diffractive optics method which enables single shot acquisition of SAXS signals over large areas.

    • Matias Kagias
    • , Zhentian Wang
    •  & Marco Stampanoni
  • Article
    | Open Access

    Quantum coherence and the nonlinear properties of atoms are highly useful in optical devices. Here the authors show quantum-optic hybrid platforms in fully integrated chip-scale atomic diffractive optical elements by embedding hot atomic Rb vapor in microfabricated structures in silicon.

    • Liron Stern
    • , Douglas G. Bopp
    •  & John E. Kitching
  • Article
    | Open Access

    In the next generation of display technology for portable devices, lasers could replace LEDs to achieve more vibrant colours. Here, Zhao et al. demonstrate a dynamic full-color display in which each pixel is made up of three printed organic microlasers to cover the RGB space.

    • Jinyang Zhao
    • , Yongli Yan
    •  & Yong Sheng Zhao
  • Article
    | Open Access

    To date, experimental demonstrations of PT-symmetric systems have been restricted to one dimension. Here, the authors experimentally realize and characterize a two-dimensional PT-symmetric system using photonic lattice waveguides with judiciously designed refractive index landscape and an alternating loss distribution.

    • Mark Kremer
    • , Tobias Biesenthal
    •  & Alexander Szameit
  • Article
    | Open Access

    With the wide adoption of ultrasound methods in biomedical and technological diagnostics, sensitive probes are in demand. Here, the authors employ cavity optomechanics where optical and mechanical resonances are coupled, both enhancing the sensitivity of the device and allowing its chip-integration.

    • Sahar Basiri-Esfahani
    • , Ardalan Armin
    •  & Warwick P. Bowen