Nanoscience and technology articles within Nature Communications

Featured

  • Article |

    Water-soluble peptides with stable α-helical conformations are desirable for a range of applications, but incorporating charged residues to improve solubility usually leads to reduced helical stability. Here, polypeptides produced from amino acids with elongated charged side chains are found to be water soluble and exhibit very high helical stability.

    • Hua Lu
    • , Jing Wang
    •  & Jianjun Cheng
  • Article
    | Open Access

    Eliminating wiring in transistors could lead to high integration densities and low power consumption. Here, multiple logic gates are implemented in a microelectromechanical resonator by parametrically mixing binary information channels corresponding to mechanical oscillations of the resonator at different frequencies.

    • I. Mahboob
    • , E. Flurin
    •  & H. Yamaguchi
  • Article |

    Although hyperlenses made of metamaterials can image sub-diffraction-limited objects, they are limited to one-dimensional magnification and ultraviolet frequencies. Here, the authors demonstrate a spherical hyperlens for visible light far-field imaging, with a resolution of 160 nm in both lateral dimensions.

    • Junsuk Rho
    • , Ziliang Ye
    •  & Xiang Zhang
  • Article |

    Polycrystalline substrates are a hindrance to the realization of high-definition plasmonic nanostructures. In this paper the authors chemically grow large and thin gold single crystals, and show that they can be coupled with top-down fabrication methods to produce high-quality nanostructures with good optical properties.

    • Jer-Shing Huang
    • , Victor Callegari
    •  & Bert Hecht
  • Article
    | Open Access

    Deformations in nanocrystals smaller than 10 nm are not well understood. The authors perform compression high-resolution transmission electron microscopy studies of gold nanoparticles, and determine that the nanoparticles deform through the emission of partial dislocations from free surfaces.

    • He Zheng
    • , Ajing Cao
    •  & Scott X. Mao
  • Article
    | Open Access

    Molecular fluctuations are a source of noise that can impede single-molecule identification. Here, quantum-fluctuation-induced inelastic noise is observed as current fluctuations in individual molecules, suggesting that inelastic noise could be used as a molecular signature.

    • Makusu Tsutsui
    • , Masateru Taniguchi
    •  & Tomoji Kawai
  • Article
    | Open Access

    Water is composed of the electrochemically active species, H+ and OH, but has not been used as an active electronic material. In this study, a field-effect transistor is developed that uses water-infiltrated nanoporous glass as the gate insulator; this new application of water may be useful in electronics and energy storage.

    • Hiromichi Ohta
    • , Yukio Sato
    •  & Hideo Hosono
  • Article
    | Open Access

    Many technological applications would benefit from new ways of bringing complex materials near the insulator–metal transition region. The authors induce, in a Lantanum Strontium Titanate, a transition from insulating to metallic behaviour by structural intercalation of intrinsically insulating units, opening new avenues to engineer these materials.

    • Zhongchang Wang
    • , Masaki Okude
    •  & Yuichi Ikuhara
  • Article |

    Energy harvesting through mechanical actions of nanosized components could be useful for powering mobile electronics. Here, the authors grow lead zirconate nanowire arrays at comparatively low temperature and use them to power a macroscopic laser diode.

    • Sheng Xu
    • , Benjamin J. Hansen
    •  & Zhong Lin Wang
  • Article |

    Flicker noise in nanoscale field effect transistors deviates from the simple frequency-dependent behaviour of macroscale objects. Here the authors show that Coulomb repulsion between nearby trap sites leads to an order of magnitude reduction in noise in these devices.

    • N. Clément
    • , K. Nishiguchi
    •  & D. Vuillaume
  • Article
    | Open Access

    Frataxin is an essential protein that has been linked to iron–sulphur cluster assembly, and reduced levels are associated with Friedrich's ataxia. In this study, a combination of techniques is used to probe the interactions of the bacterial frataxin orthologue CyaY with the iron–sulphur cluster assembly machinery.

    • Filippo Prischi
    • , Petr V. Konarev
    •  & Annalisa Pastore
  • Article |

    In low-temperature one-dimensional metals, electrons condense into collective charge-density wave states. Zybtsevet al. observe conductivity jumps with temperature in a metal bar, as only specific wavelengths are permitted in the bar for the charge-density wave modes.

    • S.G. Zybtsev
    • , V.Ya. Pokrovskii
    •  & S.V. Zaitsev-Zotov
  • Article
    | Open Access

    Understanding the thermal transitions of confined polymers is important for the design of molecular scale devices. In this study, unusual thermal transitions are observed in polyethylene glycol chains incorporated in nanochannels of porous coordination polymers.

    • Takashi Uemura
    • , Nobuhiro Yanai
    •  & Susumu Kitagawa
  • Article |

    The assembly of nanoparticles into stoichiometry-controlled structures could lead to materials with novel properties and functions. Here, reaction systems are developed, which allow the rational assembly of differently functionalized gold nanoparticles (A and B) to give AB, AB2, AB3 and AB4nanoclusters.

    • Yong Wang
    • , Gang Chen
    •  & Hongyu Chen
  • Article |

    One challenge in the development of proton exchange fuel cells is the requirement for durable, high-conductivity electrolytes. The authors show that incorporating ionic liquids into synthetic block co-polymer electrolytes results in nanostructured membranes with much higher conductivities than currently available.

    • Sung Yeon Kim
    • , Suhan Kim
    •  & Moon Jeong Park
  • Article |

    The mass production of high-quality reduced graphene oxide could aid the scale-up of graphene-based technologies. Here, a one-pot reduction of graphene oxide using hydriodic acid and acetic acid provides large quantities of highly conductive reduced graphene oxide.

    • In Kyu Moon
    • , Junghyun Lee
    •  & Hyoyoung Lee
  • Article |

    The spontaneous ordering of molecules into two-dimensional arrays is usually a result of directional intermolecular interactions. Here, it is shown that electrospray-deposited Mn12(acetate)16forms filamentary aggregates driven by anisotropic interactions, which are a consequence of the complex shape of the molecule.

    • Alex Saywell
    • , Graziano Magnano
    •  & Peter H. Beton
  • Article |

    Improving the properties of metallic alloys is important to develop new lightweight materials. In this paper, we show that an aluminium (Al) alloy containing a hierarchy of nanostructures in a solid solution with a high density of dislocations is capable of beating strength records for Al alloys while maintaining good ductility.

    • Peter V. Liddicoat
    • , Xiao-Zhou Liao
    •  & Simon P. Ringer
  • Article |

    The complex electronic motion in the quantum Hall regime in semiconductors has so far eluded analysis of its microscopic structure. Here, the authors use scanning gate microscopy to measure the spatial structure of transport inside a metal in this regime, opening the way for localized manipulation of the electronic states.

    • B. Hackens
    • , F. Martins
    •  & V. Bayot
  • Article |

    Multifunctional imaging probes are important in bionanotechnology. In this paper, the authors show that nanoparticles with magnetic cores, thin gold shells and an organic spacer layer support a novel magnetomotive photoacoustic imaging mode, and enhance contrast with respect to conventional imaging techniques.

    • Yongdong Jin
    • , Congxian Jia
    •  & Xiaohu Gao
  • Article
    | Open Access

    At room temperature, glasses are known to be brittle and fracture upon deformation. Zhenget al. show that, by exposing amorphous silica nanostructures to a low-intensity electron beam, it is possible to achieve dramatic shape changes, including a superplastic elongation of 200% for nanowires.

    • Kun Zheng
    • , Chengcai Wang
    •  & Evan Ma
  • Article |

    Miniaturizing fuel cells for biological applications is challenging due to poor performance at these small scales. Now Gao and coworkers show that electrodes made with porous microfibers composed of oriented carbon nanotubes are capable of delivering fast mass transport of the reagents and greatly enhanced currents.

    • Feng Gao
    • , Lucie Viry
    •  & Nicolas Mano