Sub-wavelength optics articles within Nature Communications

Featured

  • Article
    | Open Access

    Lee et al. developed ultrathin metallic (metal filling ratios of > 70 %) metamaterials that exhibit perfect transmission at a specific radar frequency. These characteristics enable microwave transparent, low-sheet-resistance radar heaters for safe autonomous driving in extreme weather.

    • Eun-Joo Lee
    • , Jun-Young Kim
    •  & Sun-Kyung Kim
  • Article
    | Open Access

    Polarization serves as an excellent information encoding carrier. Here, authors expand the metasurface encoding dimensionality of polarization information by engineering the Poincaré Sphere trajectory with generalized Malus’ law, unveiling new opportunities for advanced polarization optics.

    • Zi-Lan Deng
    • , Meng-Xia Hu
    •  & Andrea Alù
  • Article
    | Open Access

    Using gas cells for spectroscopic studies opens possibility for miniaturized platforms that can be integrated with other optical components. Here the authors demonstrate molecular rovibrational spectroscopy by confining molecules in a cell of subwavelength thickness.

    • Guadalupe Garcia Arellano
    • , Joao Carlos de Aquino Carvalho
    •  & Athanasios Laliotis
  • Article
    | Open Access

    The authors show an original approach to achieve strong light-matter interaction harnessing the coupling between plasmonic resonators and the Landau resonances of an underlying quantum well, demonstrating remarkably high coupling strengths.

    • Joshua Mornhinweg
    • , Laura Katharina Diebel
    •  & Christoph Lange
  • Article
    | Open Access

    Nonlinear epsilon-near-zero nanodevices are attractive solutions for large-scale integrated system-on-chips yet heat genearation upon operation affects their performance. Here, the authors studied the linear and nonlinear thermo-optic effects in the indium tin oxide, commonly used material for this system.

    • Jiaye Wu
    • , Marco Clementi
    •  & Camille-Sophie Brès
  • Article
    | Open Access

    Here, the authors report the generation and manipulation of transient hyperbolic plasmons in black phosphorus via ultrafast photocarrier injection, demonstrating a topological transition of the non-equilibrium iso-frequency contours and the coexistence of different transient plasmonic modes.

    • Rao Fu
    • , Yusong Qu
    •  & Jianing Chen
  • Article
    | Open Access

    Hyperbolic exciton polaritons (HEPs) are anisotropic light-matter excitations with promising applications, but their steady-state observation is challenging. Here, the authors report experimental evidence of HEPs in a van der Waals magnet, CrSBr, via cryogenic infrared near-field microscopy.

    • Francesco L. Ruta
    • , Shuai Zhang
    •  & D. N. Basov
  • Article
    | Open Access

    The usual treatment of wave scattering theory relies on a formalism that does not easily allow for probing optimal spectral response. Here, the authors show how an alternative formalism, encoding fundamental principles of causality and passivity, can be used to make sense of complex scattered fields’ structures.

    • Lang Zhang
    • , Francesco Monticone
    •  & Owen D. Miller
  • Article
    | Open Access

    The authors develop a method for sub-diffraction near-field imaging using measurements taken relatively far from an object, amplifying evanescent waves that encode the highest resolution. The increased distance greatly reduces the perturbation of the fields by the imaging device itself.

    • Alessandro Tuniz
    •  & Boris T. Kuhlmey
  • Article
    | Open Access

    Integrating coherent light sources on surface wave platforms would offer opportunities for sensing and data processing. The authors realize a microfabricated coherent light source based on the stimulated emission of a guided Bloch surface wave mode.

    • Yang-Chun Lee
    • , Ya-Lun Ho
    •  & Jean-Jacques Delaunay
  • Article
    | Open Access

    Here, the authors use tip-enhanced photoluminescence spectroscopy to show a discontinuity of the exciton density distribution on each side of the interface of a MoSe2/WSe2 lateral heterostructure. They introduce the concept of ‘exciton Kapitza resistance’ by analogy with the interfacial thermal resistance known as ‘Kapitza resistance’.

    • Hassan Lamsaadi
    • , Dorian Beret
    •  & Jean-Marie Poumirol
  • Article
    | Open Access

    The scattering of light by small particles plays a central role in a myriad of fields. Here, the authors demonstrate a super dipole resonance that arises when two resonant modes of a small particle interfere, overcoming a widely accepted limitation to the cross section.

    • Adrià Canós Valero
    • , Hadi K. Shamkhi
    •  & Alexander S. Shalin
  • Article
    | Open Access

    The authors report a simple strategy to enable ultrahigh-Q guided-mode resonances by introducing a patterned perturbation layer on top of a multilayer-waveguide system. Such high-Q resonances are experimentally demonstrated with measured Q-factors up to 2.4 × 105.

    • Lujun Huang
    • , Rong Jin
    •  & Andrey E. Miroshnichenko
  • Article
    | Open Access

    Optical singularities are typically 1D structures like vortices. This study used metasurfaces to position ten identical point singularities with tight confinement. This could miniaturize optical systems for super-resolution microscopy and dark traps.

    • Soon Wei Daniel Lim
    • , Joon-Suh Park
    •  & Federico Capasso
  • Article
    | Open Access

    A new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours, is experimentally observed both in near-field and through prism excitation, unveiling opportunities stemming from the interplay of extreme anisotropic responses, light confinement and directional radiation leakage.

    • Xiang Ni
    • , Giulia Carini
    •  & Andrea Alù
  • Article
    | Open Access

    The authors show computationally optimized, multilayer scattering structures in the mid-infrared for high efficiency imaging. Multispectral and polarization sorting devices are fabricated via two-photon lithography and characterized optically.

    • Gregory Roberts
    • , Conner Ballew
    •  & Andrei Faraon
  • Article
    | Open Access

    Manipulation of Janus particles is challenging and has limited precision. Here, the authors propose manipulation of Janus particles by optical forces in the evanescent field of an optical nanofiber, and demonstrate that they exhibit strong transverse localization on the nanofiber and much faster propulsion compared to all-dielectric particles of the same size.

    • Georgiy Tkachenko
    • , Viet Giang Truong
    •  & Síle Nic Chormaic
  • Article
    | Open Access

    In this work, the authors show that photonic topological lattices with dissipative couplings could exhibit non-Abelian dynamics and geometric phases that are in sharp contrast to those arising in typical energy-conserving systems.

    • Midya Parto
    • , Christian Leefmans
    •  & Alireza Marandi
  • Article
    | Open Access

    Microcavities concentrate light in tiny volumes and are important, e.g., for semiconductor lasers and nonlinear optics. In this paper, metasurfaces are introduced to realize microcavities with arbitrary mode profiles.

    • Marcus Ossiander
    • , Maryna Leonidivna Meretska
    •  & Federico Capasso
  • Article
    | Open Access

    The authors demonstrate a label-free superresolution imaging method by using a hyperbolic material as a substrate for tailored light-matter interactions. The hyperbolic material enhanced scattering, combined with dark-field detection, result in 5.5-fold resolution improvement beyond the diffraction limit.

    • Yeon Ui Lee
    • , Shilong Li
    •  & Zhaowei Liu
  • Article
    | Open Access

    The optoelectronic performance of lead halide perovskite in highfluence applications are hindered by heterogeneous multi-polaron interactions in the nanoscale. Here, Nishda et al. spatially resolve sub-ns relaxation dynamics on the nanometer scale by ultrafast infrared pumpprobe nanoimaging.

    • Jun Nishida
    • , Peter T. S. Chang
    •  & Markus B. Raschke
  • Article
    | Open Access

    Here, the authors integrate measured fabrication constraints in topology optimization to design a highly optimized dielectric nanocavity. The theoretically predicted confinement of light below the diffraction limit is confirmed by near- and far-field spectroscopy.

    • Marcus Albrechtsen
    • , Babak Vosoughi Lahijani
    •  & Søren Stobbe
  • Article
    | Open Access

    Polarization control is of paramount importance for various applications. Here, the authors enable extreme control over light polarization spanning the entire Poincaré sphere by combining coherent control of wave phenomena and the physics of bound states in the continuum.

    • Ming Kang
    • , Ziying Zhang
    •  & Andrea Alù
  • Article
    | Open Access

    Hyperbolic phonon polaritons – mixed states of photons and anisotropic lattice vibrations – offer appealing properties for nanophotonic applications. Here, the authors show that the plasmon-phonon hybridization upon electronic doping in graphene/α-MoO3 heterostructures can induce topological transitions of the polariton wavefront.

    • Francesco L. Ruta
    • , Brian S. Y. Kim
    •  & D. N. Basov
  • Article
    | Open Access

    When approaching atomic-scale confinement of the electromagnetic radiation nonlocal effects are not negligible. Here the authors approach that regime, probing extremely confined gap plasmon modes by means of scanning near-field optical microscopy, and suggesting that quantum nonlocal corrections should be taken into account.

    • Sergejs Boroviks
    • , Zhan-Hong Lin
    •  & N. Asger Mortensen
  • Article
    | Open Access

    By combining an asymmetric immersion lens setup and a complementary resonating metasurface, the authors are able to resolve the far-field transmission of an ultrastrongly coupled, highly subwavelength split-ring single resonator at millimeter wavelengths.

    • Shima Rajabali
    • , Sergej Markmann
    •  & Giacomo Scalari
  • Article
    | Open Access

    Though active metasurfaces have been attractive for applications requiring control of optical wavefronts, realizing metasurfaces with full phase control remains a challenge. Here, the authors report a metasurface design strategy for enhanced dynamic phase modulation and tunability.

    • Ju Young Kim
    • , Juho Park
    •  & Min Seok Jang
  • Article
    | Open Access

    Though chiral hybrid organic-inorganic perovskites are attractive for next-generation optoelectronics, imparting strong chirality through chemical synthesis has proved challenging. Here, the authors report all-dielectric perovskite metasurfaces with giant superstructural chirality via planar nanostructuring.

    • Guankui Long
    • , Giorgio Adamo
    •  & Cesare Soci
  • Article
    | Open Access

    The authors observe efficient Brillouin scattering generated by an evanescent field nearby a single pass sub-wavelength waveguide. This work creates an important bridge between Brillouin scattering in waveguides, Brillouin spectroscopy and microscopy.

    • Fan Yang
    • , Flavien Gyger
    •  & Luc Thévenaz
  • Article
    | Open Access

    Excitons play an important role in the optical properties of 2D semiconductors, but their spatial characterization is usually constrained by the diffraction limit. Here, the authors report near-field optical spectroscopy of 2D transition metal dichalcogenides with 20 nm resolution, revealing their spatially dependent excitonic spectra and complex dielectric function.

    • Shuai Zhang
    • , Baichang Li
    •  & D. N. Basov
  • Article
    | Open Access

    The understanding of the topological properties of light is at the base of the future optical devices development. In this work the authors aim to suggesting a different paradigm for topological transport and manipulation of nonparaxial light, paving the way toward the new developments in the field of topological photonics

    • Qingqing Cheng
    • , Huaiqiang Wang
    •  & Yiming Pan
  • Article
    | Open Access

    The engineering of localized fields is at the base of ultra-compact plasmonic devices. The authors demonstrate that localized plasmon skyrmions provide a unique way to build arbitrarily shaped skyrmionic textures promising high flexibility and robustness for real applications like information processing.

    • Zi-Lan Deng
    • , Tan Shi
    •  & Andrea Alù
  • Article
    | Open Access

    Refraction between anisotropic media is still an unexplored phenomenon. Here, the authors investigate the propagation of hyperbolic phonon polaritons traversing α-MoO3 nanoprisms, showing a bending-free refraction effect and sub-diffractional focusing with foci size as small as 1/50 of the light wavelength in free space.

    • J. Duan
    • , G. Álvarez-Pérez
    •  & P. Alonso-González
  • Article
    | Open Access

    Metasurfaces allow for vast possibilities of light control. Here, the authors demonstrate on-demand engineering and realization of a broad family of two-dimensional phase singularity sheets and transverse polarization singularity sheets, opening up new aspects of light-matter interaction.

    • Soon Wei Daniel Lim
    • , Joon-Suh Park
    •  & Federico Capasso
  • Article
    | Open Access

    Knowledge of the quantum response of materials is essential for designing light–matter interactions at the nanoscale. Here, the authors report a theory for understanding the impact of metallic quantum response on acoustic graphene plasmons and how such response could be inferred from measurements.

    • P. A. D. Gonçalves
    • , Thomas Christensen
    •  & N. Asger Mortensen
  • Article
    | Open Access

    The appearance of toroidal multipolar moments in electrodynamics interrogates the question for their existence in Berry curvature, which can be seen as the “magnetic field” in the momentum space. Here, the authors observe 3D vortex distributions in the Berry curvature within a photonic metamaterial.

    • Biao Yang
    • , Yangang Bi
    •  & Shuang Zhang