Superconducting properties and materials articles within Nature Communications

Featured

  • Article
    | Open Access

    The authors report the measurement of the Little-Parks effect in the unconventional superconductor candidate 4Hb-TaS2. They find a π-shift in the transition-temperature oscillations and an ehancement of Tc as a function of the out-of-plane field when a constant in-plane field is applied, consistent with a multi-component order parameter.

    • Avior Almoalem
    • , Irena Feldman
    •  & Amit Kanigel
  • Article
    | Open Access

    Strange metal behaviour of high-Tc superconductors, characterised by unconventional electrical and thermodynamic properties, still poses challenges for theory. Smit et al. report experimental features in the self-energy of a strange metal that are consistent with predictions by holographic theoretical methods.

    • S. Smit
    • , E. Mauri
    •  & M. S. Golden
  • Article
    | Open Access

    According to conventional wisdom, angle-resolved photoemission spectroscopy (ARPES) can only measure the magnitude of the superconducting gap but not its phase. Here, the authors propose a new method to directly detect the superconducting gap phase using ARPES and validate this technique on a cuprate superconductor.

    • Qiang Gao
    • , Jin Mo Bok
    •  & X. J. Zhou
  • Article
    | Open Access

    The authors study the [Nb/V/Ta] superconducting artificial superlattice, known to support a superconducting diode effect, by pulsed THz spectroscopy and simultaneous transport. They found a non-monotonic switching between the superconducting and normal state, which can be explained if the THz-driven vortex depinning determines the critical current.

    • Fumiya Sekiguchi
    • , Hideki Narita
    •  & Yoshihiko Kanemitsu
  • Article
    | Open Access

    The authors study the intrinsic superconducting diode effect (SDE) in a single Josephson junction consisting of a InGaAs/InAs/InGaAs quantum well as the weak link, and an Al film as the superconductor. They find a correspondence between SDE and an offset in the relationship between critical current and the difference in phase of the superconducting order parameter across the junction.

    • S. Reinhardt
    • , T. Ascherl
    •  & N. Paradiso
  • Article
    | Open Access

    Recently, superconductivity near 80 K was observed in La3Ni2O7 under high pressure, but the mechanism is debated. Here the authors report angle-resolved photoemission spectroscopy measurements under ambient pressure, revealing flat bands with strong electronic correlations that could be linked to superconductivity.

    • Jiangang Yang
    • , Hualei Sun
    •  & X. J. Zhou
  • Article
    | Open Access

    The authors theoretically study the pressure dependence of the phase diagram of the nickelate PrNiO2 with and without Sr doping. At high pressure, they find that the superconducting dome is significantly enhanced in both Tc and doping-range of superconductivity compared with ambient pressure, with a maximal Tc of 100 K around 100 GPa in absence of external doping.

    • Simone Di Cataldo
    • , Paul Worm
    •  & Karsten Held
  • Article
    | Open Access

    The authors study a YbCoIn5/CeCoIn5/YbRhIn5 heterostructure. Using non-reciprocity in the second harmonic transport response, they demonstrate the existence of a specific form of finite-momentum pairing called a helical superconducting state, where the phase of the order parameter is spontaneously spatially modulated.

    • T. Asaba
    • , M. Naritsuka
    •  & Y. Matsuda
  • Article
    | Open Access

    Previous measurements of FeSe0.45Te0.55 found one-dimensional (1D) defects that were interpretated as domain walls hosting propagating Majorana topological modes. Here, the authors reveal that these 1D defects correspond to sub-surface debris and show that the filling of the superconducting gap on these defects is topologically trivial.

    • A. Mesaros
    • , G. D. Gu
    •  & F. Massee
  • Article
    | Open Access

    The authors characterize the phonon modes at the FeSe/SrTiO3 interface with atomically resolved electron energy loss spectroscopy and correlate them with accurate atomic structure in an electron microscope. They find several phonon modes highly localized at the interface, one of which engages in strong interactions with the electrons in FeSe.

    • Ruochen Shi
    • , Qize Li
    •  & Peng Gao
  • Article
    | Open Access

    In addition to its low-field superconducting state, UTe2 features a re-entrant superconducting state when high magnetic fields are applied at a particular range of angles. Here, the authors demonstrate that the high-field re-entrant superconducting state survives even when the low-field superconducting state is destroyed by disorder.

    • Corey E. Frank
    • , Sylvia K. Lewin
    •  & Nicholas P. Butch
  • Article
    | Open Access

    The authors study monolayer FeSe via scanning tunneling microscopy and simultaneous micron-scale-probe-based transport. They observe distinct superconducting phases in domains and on boundaries between domains, with different superconducting gaps and pairing temperatures.

    • Dapeng Zhao
    • , Wenqiang Cui
    •  & Qi-Kun Xue
  • Article
    | Open Access

    Superconductors with hexagonal symmetry are expected to be isotropic particularly near the critical temperature Tc, a property called emergent rotational symmetry (ERS). Here, the authors use calorimetry to study the hexagonal kagome superconductor CsV3Sb5 and find a violation of the expected ERS, hinting at realization of exotic superconductivity.

    • Kazumi Fukushima
    • , Keito Obata
    •  & Shingo Yonezawa
  • Article
    | Open Access

    Recently superconductivity with Tc of about 80 K was discovered in a bilayer nickelate La3Ni2O7 under high pressure. Here the authors report a density functional theory and random phase approximation study of structural and electronic properties as a function of pressure and discuss the pairing mechanism.

    • Yang Zhang
    • , Ling-Fang Lin
    •  & Elbio Dagotto
  • Article
    | Open Access

    The authors present Nernst measurements on a 2D film of amorphous MoxGe1−x, which shows a magnetic-field-induced superconductor-metal-insulator transition. The intermediate metal phase is known as the “anomalous metal” (AM) state. The authors conclude that the AM state originates from broadening of the superconductor-insulator transition.

    • Koichiro Ienaga
    • , Yutaka Tamoto
    •  & Satoshi Okuma
  • Article
    | Open Access

    The authors propose that screw or edge dislocations can trap Majorana zero modes in the absence of an external magnetic field. They predict that the Majoranas will appear as second-order topological modes on the four corners of an embedded 2D subsystem defined by the cutting plane of the dislocation.

    • Lun-Hui Hu
    •  & Rui-Xing Zhang
  • Article
    | Open Access

    The authors theoretically propose a simple microscopic mechanism for light-induced superconductivity based on a boson coupled to an electronic interband transition. The electron-electron attraction needed for the superconductivity can be resonantly amplified when the boson’s frequency is close to the energy difference between the two electronic bands. The model can be engineered using a 2D heterostructure.

    • Christian J. Eckhardt
    • , Sambuddha Chattopadhyay
    •  & Marios H. Michael
  • Article
    | Open Access

    R. Khasanov et al. report thermodynamic and muon-spin-rotation measurements on the Mo5Si3−xPx superconducting family. They find that a flat band reaches the Fermi level at x ≃ 1.3, leading to enhancement of electronic correlations and an abrupt change of the superconducting properties.

    • Rustem Khasanov
    • , Bin-Bin Ruan
    •  & Zurab Guguchia
  • Article
    | Open Access

    Recent theoretical work has shown that quasicrystal (QC) superconductors should exhibit unconventional behaviors, such as vortex pinning without impurities and FFLO-like states. Here, Y. Tokumoto et al. report experimental observation of bulk superconductivity in Ta1.6Te, a van-der-Waals-layered QC with Tc = 1 K.

    • Yuki Tokumoto
    • , Kotaro Hamano
    •  & Keiichi Edagawa
  • Article
    | Open Access

    The field of hydride superconductivity is currently attempting to increase the critical temperature Tc, while also lowering the required stabilization pressure. Here, L.C. Chen et al. study (Y,Ce)H9 alloys and find maximum Tc ~ 140 K at 130 GPa pressure.

    • Liu-Cheng Chen
    • , Tao Luo
    •  & Xiao-Jia Chen
  • Article
    | Open Access

    S. Gassner et al. propose using light pulses to drive a centrosymmetric s-wave superconductor with strong spin-orbit coupling into a metastable triplet p-wave superconductor with non-trivial topology. The two superconducting orders must be closely competing in equilibrium and the light pulse must break a generalized, dynamic form of inversion symmetry.

    • Steven Gassner
    • , Clara S. Weber
    •  & Martin Claassen
  • Article
    | Open Access

    An altermagnet has highly anisotropic spin splitting but zero net magnetization. Here, S.-B. Zhang et al. theoretically study the behavior of s-wave superconductor/altermagnet hybrid structures, finding that Cooper pairs in the proximitized altermagnet have an anisotropic non-zero momentum.

    • Song-Bo Zhang
    • , Lun-Hui Hu
    •  & Titus Neupert
  • Article
    | Open Access

    P. Poduval et al. theoretically study the nonzero-temperature vestigial phases of a 2D model exhibiting both triplet superconductivity and magnetism. They show that this model allows for a unique superconducting state in which the condensate consists of entities with three electrons and one hole, with properties similar to those seen in experiments on moiré systems.

    • Prathyush P. Poduval
    •  & Mathias S. Scheurer
  • Article
    | Open Access

    I. Silber et al. discover a two-fold symmetry of the superconducting upper critical field in hexagonal 4Hb-TaS2 just below Tc, a clear signature of nematic, two-component superconductivity. They further suggest a theoretical model that reconciles the nematic superconductivity with the previously-observed time-reversal-symmetry-breaking in this material.

    • I. Silber
    • , S. Mathimalar
    •  & Y. Dagan
  • Article
    | Open Access

    Quantum devices exhibiting non-reciprocal behaviour have been attracting attention for fundamental studies and applications. Here the authors report a microwave quantum diode based on a superconducting flux qubit coupled to two resonators, which has the advantage of compactness and scalability.

    • Rishabh Upadhyay
    • , Dmitry S. Golubev
    •  & Jukka P. Pekola
  • Article
    | Open Access

    The Yu-Shiba-Rusinov state, arising from exchange coupling between a magnetic impurity and a superconductor, undergoes a quantum phase transition at a critical coupling. In a scanning tunnelling microscopy experiment, Karan et al. reveal distinct tunnelling spectra on each side of the transition in a magnetic field, which allows them to distinguish the free spin regime from the screened spin regime.

    • Sujoy Karan
    • , Haonan Huang
    •  & Christian R. Ast
  • Article
    | Open Access

    Superconductivity was recently reported experimentally in nitrogen-doped lutetium hydride with Tc = 294 K at 1 GPa. Here, via theoretical calculations taking into account temperature and quantum anharmonic lattice effects, the authors find that room-temperature superconductivity in the suggested parent phase of LuH3 cannot be explained by a conventional electron-phonon mediated pairing mechanism.

    • Roman Lucrezi
    • , Pedro P. Ferreira
    •  & Christoph Heil
  • Article
    | Open Access

    A. G. Eaton et al. directly probe the Fermi surface of the candidate triplet superconductor UTe2 by measuring magnetic quantum oscillations in ultra-pure crystals. By comparison with model calculations, the data are found to be consistent with a Fermi surface that consists of two cylindrical sections of electron and hole-type respectively.

    • A. G. Eaton
    • , T. I. Weinberger
    •  & M. Vališka
  • Article
    | Open Access

    M. Valentini et al. study superconducting quantum interference devices (SQUIDs) where the weak link of the Josephson junctions is a germanium 2D hole gas. They report signatures of the tunneling of pairs of Cooper pairs. For a particular microwave drive power, they observe a 100% efficient superconducting diode effect.

    • Marco Valentini
    • , Oliver Sagi
    •  & Georgios Katsaros
  • Article
    | Open Access

    The superconductor UTe2 exhibits a reentrant superconducting phase at magnetic fields above 40 T for particular field angles. Here, from high-field Hall-effect measurements, T. Helm et al. find evidence for a partial compensation between the applied field and an exchange field, pointing to the Jaccarino-Peter effect as a possible mechanism for the reentrant superconductivity.

    • Toni Helm
    • , Motoi Kimata
    •  & Jean-Pascal Brison
  • Article
    | Open Access

    S. Matsuo et al. report tunneling spectroscopy measurements on a device consisting of two Josephson junctions (JJ) sharing a single superconducting electrode. In isolation, each JJ would host an Andreev bound state (ABS). In their coherently-coupled JJs, the authors report the formation of an Andreev molecule due to hybridization of the two ABSs.

    • Sadashige Matsuo
    • , Takaya Imoto
    •  & Seigo Tarucha
  • Article
    | Open Access

    The microscopic mechanism of superconducting pairing in hole-doped cuprates is still debated. Here, using state-of-the-art numerical techniques, the authors examine the properties of pairs of holes in a model relevant to cuprates revealing two types of bound states involving light and heavy hole pairs.

    • A. Bohrdt
    • , E. Demler
    •  & F. Grusdt
  • Article
    | Open Access

    The authors study transport in Nb-(Pt/Cu)-Nb Josephson junctions (JJ), where Pt/Cu is a Rashba interface. Due to the Rashba–Edelstein effect, a charge current leads to a non-equilibrium spin moment at the Pt/Cu interface, which can be measured from a shift of the Fraunhofer pattern of the JJ.

    • Tapas Senapati
    • , Ashwin Kumar Karnad
    •  & Kartik Senapati
  • Article
    | Open Access

    Nitrogen-doped lutetium hydride, recently proposed as a superconductor at near-ambient conditions, features distinct color changes from blue to pink to red as a function of pressure. Using theoretical calculations, the authors identify the pink phase as hydrogen-deficient LuH2 and find that this phase is not a phonon-mediated superconductor near room temperature. Further, the color is controlled by the concentration of hydrogen vacancies.

    • Sun-Woo Kim
    • , Lewis J. Conway
    •  & Bartomeu Monserrat
  • Article
    | Open Access

    Heavy-fermion superconductors feature a magnetic quantum critical point linked to the Kondo effect breakdown. Wang et al. use pressure-dependent Hall measurements to identify a crossover energy scale, confirming this in pure CeRhIn5, while revealing a shift to spin density wave criticality with Sn-doping.

    • Honghong Wang
    • , Tae Beom Park
    •  & Tuson Park
  • Article
    | Open Access

    Two-dimensional magnets and superconductors are emerging as tunable building blocks for quantum computing and superconducting spintronic devices. Here, Jo et al. demonstrate NbSe2/CrSBr van der Waals superconducting spin valves that exhibit infinite magnetoresistance and nonreciprocal charge transport, arising from a unique metamagnetic transition in CrSBr.

    • Junhyeon Jo
    • , Yuan Peisen
    •  & Luis E. Hueso
  • Article
    | Open Access

    It has been suggested that the strange metal phase in cuprates stems from a quantum critical point slightly above optimal doping. By resonant x-ray scattering in two cuprate families in a wide doping range, Arpaia et al. show that charge density fluctuations could be associated with this quantum critical point.

    • Riccardo Arpaia
    • , Leonardo Martinelli
    •  & Giacomo Ghiringhelli
  • Article
    | Open Access

    The authors study transport in the superconducting state of infinite-layer nickelate Nd0.8Sr0.2NiO2 films using a Corbino-disk configuration, finding that the magnetoresistance changes from isotropic to four-fold anisotropic with increasing magnetic field. At even higher field, an additional two-fold component emerges, which coincides with an anomalous upturn of the critical field.

    • Haoran Ji
    • , Yi Liu
    •  & Jian Wang
  • Article
    | Open Access

    The authors study (Bi,Sb)2Te3/FeTe bilayers, which feature emergent superconductivity at the interface with Tc ~ 12 K. Through angle-resolved photoemission spectroscopy and electrical transport measurements, they argue that the Dirac-fermion-mediated Ruderman-Kittel-Kasuya-Yosida-type interaction weakens antiferromagnetic order in FeTe layer, allowing for superconductivity.

    • Hemian Yi
    • , Lun-Hui Hu
    •  & Cui-Zu Chang
  • Article
    | Open Access

    The authors theoretically study superconductivity in twisted-bilayer and twisted-trilayer graphene, finding that flavor polarization allows for Cooper pairing in which the pairs consist of electrons in different bands. Both intervalley phonons and fluctuations of a time-reversal-symmetric intervalley coherent order can favor such pairing.

    • Maine Christos
    • , Subir Sachdev
    •  & Mathias S. Scheurer
  • Article
    | Open Access

    High-temperature behaviour of thermopower is special in cuprates, allowing for theory-experiment comparisons. Wang et al. use quantum Monte Carlo to compute high temperature thermopower in the Hubbard model, demonstrating qualitative and quantitative agreement with experiments across multiple cuprate families.

    • Wen O. Wang
    • , Jixun K. Ding
    •  & Thomas P. Devereaux
  • Article
    | Open Access

    The authors present resonant inelastic x-ray scattering measurements of Sr2RuO4 in the normal Fermi-liquid state. They find that spin excitations are confined below 200 meV, while orbital fluctuations appear only at higher energies. This separation of energy scales is a hallmark of Hund’s-rule-induced electron correlations.

    • H. Suzuki
    • , L. Wang
    •  & B. Keimer