Topological matter articles within Nature Communications

Featured

  • Article
    | Open Access

    Quantum spin Hall materials hold great potential for future nanoelectronics. Here, authors synthesize a potential host system — monolayer ZrTe5 — and demonstrate it possesses a band gap wide enough for potential room-temperature applications.

    • Yong-Jie Xu
    • , Guohua Cao
    •  & Shao-Chun Li
  • Article
    | Open Access

    The authors report the measurement of the Little-Parks effect in the unconventional superconductor candidate 4Hb-TaS2. They find a π-shift in the transition-temperature oscillations and an ehancement of Tc as a function of the out-of-plane field when a constant in-plane field is applied, consistent with a multi-component order parameter.

    • Avior Almoalem
    • , Irena Feldman
    •  & Amit Kanigel
  • Article
    | Open Access

    The authors reveal a link between the quantum metric and the dielectric constant of insulators, determining the geometric capacitance of insulators and revealing the intrinsic delocalization of electrons in the lattice.

    • Ilia Komissarov
    • , Tobias Holder
    •  & Raquel Queiroz
  • Article
    | Open Access

    The strong connection between the dynamics of a physical system and its Hamiltonian’s spectrum has scarcely been applied in the non-Hermitian case. Here, the authors use a photonic quantum walk to confirm and expand previous theoretical analyses connecting self-acceleration dynamics with non-trivial point-gap topology.

    • Peng Xue
    • , Quan Lin
    •  & Wei Yi
  • Article
    | Open Access

    Topological flat bands offer a solid-state platform for studying the interplay between topology and electron correlations. Here, the authors demonstrate that a prototypical 3D Dirac material can host topological flat bands under magnetic fields due to polar-distortion-assisted Rashba splitting.

    • Dong Xing
    • , Bingbing Tong
    •  & Cheng-Long Zhang
  • Article
    | Open Access

    Helimagnetic materials host a twisted magnetic texture, realizing screws, cycloids, and cones. While helimagnets are common in three dimensional materials, layered van der Waals helimagnets are exceedingly rare. Here, Akatsuka et al. demonstrate conical ordering in the easily cleavable magnet DyTe3.

    • Shun Akatsuka
    • , Sebastian Esser
    •  & Max Hirschberger
  • Article
    | Open Access

    Existing proposals of axion insulators are limited to spin-1/2 systems. Here the authors put forward a concept of a high spin axion insulator with several peculiar properties, such as the absence of gapless surface states and tunability of the axion field by an external magnetic field.

    • Shuai Li
    • , Ming Gong
    •  & X. C. Xie
  • Article
    | Open Access

    Authors predict polar Bloch points with negative capacitance in tensile-strained ultrathin ferroelectric PbTiO3 film by phase-field simulations, observing their polarization structures by scanning transmission electron microscopic imaging.

    • Yu-Jia Wang
    • , Yan-Peng Feng
    •  & Xiu-Liang Ma
  • Article
    | Open Access

    Previous work proposed the Berry curvature dipole as the mechanism of the nonlinear Hall effect. Lee et al. establish the sign-changing Berry curvature hot spots from spin-orbit split bands as the origin of the Berry curvature dipole and link it to the nonlinear Hall effect in the topological semimetal NbIrTe4.

    • Ji-Eun Lee
    • , Aifeng Wang
    •  & Hyejin Ryu
  • Article
    | Open Access

    Previous measurements of FeSe0.45Te0.55 found one-dimensional (1D) defects that were interpretated as domain walls hosting propagating Majorana topological modes. Here, the authors reveal that these 1D defects correspond to sub-surface debris and show that the filling of the superconducting gap on these defects is topologically trivial.

    • A. Mesaros
    • , G. D. Gu
    •  & F. Massee
  • Article
    | Open Access

    Sublattice symmetry has long been synonymous with chiral symmetry when it comes to topological classification. Here, the authors challenge this notion by systematically investigating sublattice symmetry and revealing its spatial nature with a precise description in terms of symmetry algebra and representation.

    • Rong Xiao
    •  & Y. X. Zhao
  • Article
    | Open Access

    Spin-momentum locking is a fundamental property of condensed matter systems. Here, the authors evidence parallel Weyl spin-momentum locking of multifold fermions in the chiral topological semimetal PtGa.

    • Jonas A. Krieger
    • , Samuel Stolz
    •  & Niels B. M. Schröter
  • Article
    | Open Access

    Manipulating the electronic properties of topological semimetals is a central goal of modern condensed matter physics research. Here, the authors demonstrate how a high-entropy engineering approach allows for the tuning of the crystal structure and the electronic states in a Dirac semimetal.

    • Antu Laha
    • , Suguru Yoshida
    •  & Zhiqiang Mao
  • Article
    | Open Access

    MnBi2Te4 is an antiferromagnetic topological insulator. This combination of magnetic ordering and topological properties has resulted in intense interest, however, like many van der Waals materials, experimental results are hampered by fabrication difficulties. Here, Li, Wang, Lian et al. show that the fabrication process itself can result in mismatched thickness dependence of magneto-transport measurements. ‘

    • Yaoxin Li
    • , Yongchao Wang
    •  & Chang Liu
  • Article
    | Open Access

    In addition to its low-field superconducting state, UTe2 features a re-entrant superconducting state when high magnetic fields are applied at a particular range of angles. Here, the authors demonstrate that the high-field re-entrant superconducting state survives even when the low-field superconducting state is destroyed by disorder.

    • Corey E. Frank
    • , Sylvia K. Lewin
    •  & Nicholas P. Butch
  • Article
    | Open Access

    Superconductors with hexagonal symmetry are expected to be isotropic particularly near the critical temperature Tc, a property called emergent rotational symmetry (ERS). Here, the authors use calorimetry to study the hexagonal kagome superconductor CsV3Sb5 and find a violation of the expected ERS, hinting at realization of exotic superconductivity.

    • Kazumi Fukushima
    • , Keito Obata
    •  & Shingo Yonezawa
  • Article
    | Open Access

    Here the authors demonstrate a broadband nonlinear optical diode effect and its electric control in the magnetic Weyl semimetal CeAlSi. Their findings advance ongoing research to identify novel optical phenomena in topological materials.

    • Christian Tzschaschel
    • , Jian-Xiang Qiu
    •  & Su-Yang Xu
  • Article
    | Open Access

    Several recent experimental studies have found disconnected Fermi surface arcs emerging below the Neel temperature in several rare-earth mono-pnictides. While these electronic states have been attributed to a non-collinear antiferromagnetic order, experimental evidence of this has been lacking. Here Huang et al demonstrate the emergence of non-collinear antiferromagnetic order using spin-polarized scanning tunnelling microscopy.

    • Zengle Huang
    • , Hemian Yi
    •  & Weida Wu
  • Article
    | Open Access

    Kekulé vortices in hexagonal lattices can host fractionalized charges at zero magnetic field, but have remained out of experimental reach. Here, the authors report a Kekulé vortex in the local density states of graphene around a chemisorbed hydrogen adatom.

    • Yifei Guan
    • , Clement Dutreix
    •  & Vincent T. Renard
  • Article
    | Open Access

    Moiré patterns have been experimentally observed in heterostructures comprised of topological insulator films. Here, the authors propose that topological insulator-based moiré heterostructures could be a host of isolated topologically non-trivial moiré minibands for the study of the interplay between topology and correlation.

    • Kaijie Yang
    • , Zian Xu
    •  & Chao-Xing Liu
  • Article
    | Open Access

    Fermi arcs show unpredictable diffraction features resulting from their long-range scattering order in aperiodic systems. Here, authors continuously twist a bi-block Weyl meta-crystal and experimentally observe the twisted Fermi arc reconstruction.

    • Hanyu Wang
    • , Wei Xu
    •  & Biao Yang
  • Article
    | Open Access

    The authors propose that screw or edge dislocations can trap Majorana zero modes in the absence of an external magnetic field. They predict that the Majoranas will appear as second-order topological modes on the four corners of an embedded 2D subsystem defined by the cutting plane of the dislocation.

    • Lun-Hui Hu
    •  & Rui-Xing Zhang
  • Article
    | Open Access

    Here the authors experimentally demonstrate the anomalous and Chern topological phases in a hyperbolic non-reciprocal scattering network, establishing unidirectional channels to induce new and exciting wave transport properties in curved spaces.

    • Qiaolu Chen
    • , Zhe Zhang
    •  & Romain Fleury
  • Article
    | Open Access

    Van Hove singularities (VHS) are believed to exist in one and two dimensions, but rarely found in three dimensions (3D). Here the authors report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy.

    • Wenbin Wu
    • , Zeping Shi
    •  & Xiang Yuan
  • Article
    | Open Access

    Vortex string, hypothetical topological defects in cosmology, are predicted to support massless chiral modes. The authors successfully mimicked vortex-string physics in a metamaterial system and experimentally observed the chiral modes within it.

    • Jingwen Ma
    • , Ding Jia
    •  & Xiang Zhang
  • Article
    | Open Access

    Artificial magnetic fields have been meticulously engineered in a 3D acoustic crystal, facilitating the creation of 3D flat bands through Landau quantization of quasiparticles arising from nodal-ring band degeneracies.

    • Zheyu Cheng
    • , Yi-Jun Guan
    •  & Baile Zhang
  • Article
    | Open Access

    The bulk photovoltaic effect and DC photocurrent generation can be used to detect topology and geometry in non-centrosymmetric quantum materials. Here, the authors theoretically propose the detection of DC shot noise as a diagnostic tool for the characterization of the band quantum geometry under relaxed symmetry conditions.

    • Longjun Xiang
    • , Hao Jin
    •  & Jian Wang
  • Article
    | Open Access

    S. Gassner et al. propose using light pulses to drive a centrosymmetric s-wave superconductor with strong spin-orbit coupling into a metastable triplet p-wave superconductor with non-trivial topology. The two superconducting orders must be closely competing in equilibrium and the light pulse must break a generalized, dynamic form of inversion symmetry.

    • Steven Gassner
    • , Clara S. Weber
    •  & Martin Claassen
  • Article
    | Open Access

    Here the authors develop a coupled ring resonators platform for realizing topological states of matter with hyperbolic dispersion thus offering an approach to boost the efficiency of topological photonic devices.

    • Lei Huang
    • , Lu He
    •  & Xiangdong Zhang
  • Article
    | Open Access

    Entanglement entropy exhibits rich phenomenology connected to different kinds of phases in condensed matter. Here, the authors confirm some of these predictions by experimentally probing nonlocal correlations in 1D and 2D phononic crystal based on interconnected resonating acoustic cavities.

    • Zhi-Kang Lin
    • , Yao Zhou
    •  & Jian-Hua Jiang
  • Article
    | Open Access

    Huang et al. study fractional quantum Hall (fQH) states in high-quality GaAs/AlGaAs samples. They report evidence for a fQH state at filling factor ν = 9/11, which they associate with the formation of six-flux composite fermions.

    • Haoyun Huang
    • , Waseem Hussain
    •  & G. A. Csáthy
  • Article
    | Open Access

    Applications of spontaneous symmetry breaking are hindered by unavoidable imperfections. Here, the authors reveal how a phase defect provides topological robustness to this process, enabling a bias free realization without fine tuning of parameters.

    • Stéphane Coen
    • , Bruno Garbin
    •  & Julien Fatome
  • Article
    | Open Access

    When multiple oscillators are tuned, degeneracies occur on a knot-shaped region in the space of tuning parameters. This knot influences how such systems can be tuned. Here, the authors reconcile two common means for visualizing this influence.

    • Chitres Guria
    • , Qi Zhong
    •  & Jack Gwynne Emmet Harris
  • Article
    | Open Access

    While the classification of single-particle topological phases has been established, recent efforts have been made to extend it to interacting limit. Here the authors present a classification of interacting topological systems in 2D based on the generalization of real space invariants.

    • Jonah Herzog-Arbeitman
    • , B. Andrei Bernevig
    •  & Zhi-Da Song
  • Article
    | Open Access

    R.-J. Slager et al. extend the theory of multigap topology from static to non-equilibrium systems. They identify Floquet-induced non-Abelian braiding, resulting in a phase characterized by anomalous Euler class, a multi-gap topological invariant. They also find a gapped anomalous Dirac string phase. Both phases have no static counterparts and exhibit distinct boundary signatures.

    • Robert-Jan Slager
    • , Adrien Bouhon
    •  & F. Nur Ünal
  • Article
    | Open Access

    P. Rout et al. study Josephson junctions where the weak link is WSe2-encapsulated bilayer graphene, which features helical edge modes. They argue that the supercurrent channels along opposite edges of the weak link are coupled by a circulating helical mode.

    • Prasanna Rout
    • , Nikos Papadopoulos
    •  & Srijit Goswami
  • Article
    | Open Access

    The charge-density-wave Weyl semimetal (TaSe4)2I is a candidate for an axion insulator, however it may be obscured by polaron physics. Here, using ultrafast terahertz photocurrent spectroscopy, the authors realize phase switches from the polaronic state, to the charge density wave phase, and to the Weyl phase.

    • Bing Cheng
    • , Di Cheng
    •  & Jigang Wang
  • Article
    | Open Access

    Strongly correlated and topological phases of matter can be often described using the tools of quantum field theory. Here the authors report the thermal Hall effect in the antiferromagnetic skyrmion lattice of MnSc2S4, revealing transport features that can be attributed to an emergent SU(3) gauge field.

    • Hikaru Takeda
    • , Masataka Kawano
    •  & Chisa Hotta