Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet

Abstract

Emergent quasiparticles with a Dirac dispersion in condensed matter systems can be described by the Dirac equation for relativistic electrons, in analogy with Dirac particles in high-energy physics. For example, electrons with a Dirac dispersion have been intensively studied in electronic systems such as graphene and topological insulators. However, charge is not a prerequisite for Dirac fermions, and the emergence of Dirac fermions without a charge degree of freedom has been theoretically predicted to be realized in Dirac quantum spin liquids. These quasiparticles carry a spin of 1/2 but are charge-neutral and so are called spinons. Here we show that the spin excitations of a kagome antiferromagnet, YCu3(OD)6Br2[Br0.33(OD)0.67], are conical with a spin continuum inside, which is consistent with the convolution of two Dirac spinons. The predictions of a Dirac spin liquid model with a spinon velocity obtained from spectral measurements are in agreement with the low-temperature specific heat of the sample. Our results, thus, provide spectral evidence for a Dirac quantum spin liquid state emerging in this kagome lattice antiferromagnet. However, the locations of the conical spin excitations differ from those calculated by the nearest-neighbour Heisenberg model, suggesting the Dirac spinons have an unexpected origin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of low-energy conical spin excitations and reciprocal space for YCu3-Br.
Fig. 2: INS results at low energies with the incident energy of neutrons (Ei) = 2.566 meV.
Fig. 3: Quantitative analysis of the low-energy data at 0.3 K.
Fig. 4: High-energy spin excitations at Ei = 9.986 meV and static susceptibility \({\chi }^{{\prime} }(Q,0)\) in YCu3-Br.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

    Article  ADS  Google Scholar 

  2. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    Article  ADS  Google Scholar 

  3. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. Broholm, C. et al. Quantum spin liquids. Science 367, 263 (2020).

    Article  Google Scholar 

  5. Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence-bond state: solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

    Article  ADS  Google Scholar 

  6. Wen, X. G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664–2672 (1991).

    Article  ADS  Google Scholar 

  7. Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. Sun, G.-Y. et al. Dynamical signature of symmetry fractionalization in frustrated magnets. Phys. Rev. Lett. 121, 077201 (2018).

    Article  ADS  Google Scholar 

  9. Wang, Y.-C., Cheng, M., Witczak-Krempa, W. & Meng, Z. Y. Fractionalized conductivity and emergent self-duality near topological phase transitions. Nat. Commun. 12, 5347 (2021).

    Article  ADS  Google Scholar 

  10. Chatterjee, A., Ji, W. & Wen, X.-G. Emergent generalized symmetry and maximal symmetry-topological-order. Preprint at https://arxiv.org/abs/2212.14432 (2022).

  11. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  12. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  13. Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83 (2014).

    Article  ADS  Google Scholar 

  14. Qin, Y. Q. et al. Duality between the deconfined quantum-critical point and the bosonic topological transition. Phys. Rev. X 7, 031052 (2017).

    Google Scholar 

  15. Ma, N. et al. Dynamical signature of fractionalization at a deconfined quantum critical point. Phys. Rev. B 98, 174421 (2018).

    Article  ADS  Google Scholar 

  16. Xu, X. Y. et al. Monte Carlo study of lattice compact quantum electrodynamics with fermionic matter: the parent state of quantum phases. Phys. Rev. X 9, 021022 (2019).

    Google Scholar 

  17. Song, X.-Y., Wang, C., Vishwanath, A. & He, Y.-C. Unifying description of competing orders in two-dimensional quantum magnets. Nat. Commun. 10, 4254 (2019).

    Article  ADS  Google Scholar 

  18. Sachdev, S. Kagomé and triangular-lattice Heisenberg antiferromagnets: ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys. Rev. B 45, 12377–12396 (1992).

    Article  ADS  Google Scholar 

  19. Hastings, M. B. Dirac structure, RVB, and Goldstone modes in the kagomé antiferromagnet. Phys. Rev. B 63, 014413 (2000).

    Article  ADS  Google Scholar 

  20. Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).

    Article  ADS  Google Scholar 

  21. Hermele, M., Ran, Y., Lee, P. A. & Wen, X.-G. Properties of an algebraic spin liquid on the kagome lattice. Phys. Rev. B 77, 224413 (2008).

    Article  ADS  Google Scholar 

  22. Iqbal, Y., Becca, F. & Poilblanc, D. Projected wave function study of \({{\mathbb{Z}}}_{2}\) spin liquids on the kagome lattice for the spin-\({{\mathbb{Z}}}_{2}\) quantum Heisenberg antiferromagnet. Phys. Rev. B 84, 020407 (2011).

    Article  ADS  Google Scholar 

  23. Iqbal, Y., Poilblanc, D. & Becca, F. Vanishing spin gap in a competing spin-liquid phase in the kagome Heisenberg antiferromagnet. Phys. Rev. B 89, 020407 (2014).

    Article  ADS  Google Scholar 

  24. He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).

    Google Scholar 

  25. Liao, H. J. et al. Gapless spin-liquid ground state in the s = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

    Article  ADS  Google Scholar 

  26. Zhu, W., Gong, S. & Sheng, D. N. Identifying spinon excitations from dynamic structure factor of spin-1/2 Heisenberg antiferromagnet on the kagome lattice. Proc. Natl Acad. Sci. USA 116, 5437 (2019).

    Article  ADS  Google Scholar 

  27. Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Topography of spin liquids on a triangular lattice. Phys. Rev. Lett. 120, 207203 (2018).

    Article  ADS  Google Scholar 

  28. Liu, Z.-X. & Normand, B. Dirac and chiral quantum spin liquids on the honeycomb lattice in a magnetic field. Phys. Rev. Lett. 120, 187201 (2018).

    Article  ADS  Google Scholar 

  29. Hu, S., Zhu, W., Eggert, S. & He, Y.-C. Dirac spin liquid on the spin-1/2 triangular Heisenberg antiferromagnet. Phys. Rev. Lett. 123, 207203 (2019).

    Article  ADS  Google Scholar 

  30. Song, X.-Y., He, Y.-C., Vishwanath, A. & Wang, C. From spinon band topology to the symmetry quantum numbers of monopoles in Dirac spin liquids. Phys. Rev. X 10, 011033 (2020).

    Google Scholar 

  31. Nomura, Y. & Imada, M. Dirac-type nodal spin liquid revealed by refined quantum many-body solver using neural-network wave function, correlation ratio, and level spectroscopy. Phys. Rev. X 11, 031034 (2021).

    Google Scholar 

  32. Da Liao, Y., Xu, X. Y., Meng, Z. Y. & Qi, Y. Dirac fermions with plaquette interactions. II. SU(4) phase diagram with Gross-Neveu criticality and quantum spin liquid. Phys. Rev. B 106, 115149 (2022).

    Article  ADS  Google Scholar 

  33. Han, T. H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    Article  ADS  Google Scholar 

  34. Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559 (2016).

    Article  ADS  Google Scholar 

  35. Ding, L. et al. Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2. Phys. Rev. B 100, 144432 (2019).

    Article  ADS  Google Scholar 

  36. Bordelon, M. M. et al. Spin excitations in the frustrated triangular lattice antiferromagnet NaYbO2. Phys. Rev. B 101, 224427 (2020).

    Article  ADS  Google Scholar 

  37. Chen, X.-H., Huang, Y.-X., Pan, Y. & Mi, J.-X. Quantum spin liquid candidate YCu3(OH)6Br2[Brx(OH)1−x] (x ≈ 0.51): with an almost perfect kagomé layer. J. Magn. Magn. Mater. 512, 167066 (2020).

    Article  Google Scholar 

  38. Zeng, Z. et al. Possible Dirac quantum spin liquid in the kagome quantum antiferromagnet YCu3(OH)6Br2[Brx(OH)1−x]. Phys. Rev. B 105, L121109 (2022).

    Article  ADS  Google Scholar 

  39. Liu, J. et al. Gapless spin liquid behavior in a kagome Heisenberg antiferromagnet with randomly distributed hexagons of alternate bonds. Phys. Rev. B 105, 024418 (2022).

    Article  ADS  Google Scholar 

  40. Lu, F. et al. The observation of quantum fluctuations in a kagome Heisenberg antiferromagnet. Commun. Phys. 5, 272 (2022).

    Article  Google Scholar 

  41. Hong, X. et al. Heat transport of the kagome Heisenberg quantum spin liquid candidate YCu3(OH)6.5Br2.5: localized magnetic excitations and a putative spin gap. Phys. Rev. B 106, L220406 (2022).

    Article  ADS  Google Scholar 

  42. Chatterjee, D. et al. From spin liquid to magnetic ordering in the anisotropic kagome Y-kapellasite Y3Cu9(OH)19Cl8: a single-crystal study. Phys. Rev. B 107, 125156 (2023).

    Article  ADS  Google Scholar 

  43. Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Disorder-induced mimicry of a spin liquid in YbMgGaO4. Phys. Rev. Lett. 119, 157201 (2017).

    Article  ADS  Google Scholar 

  44. Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).

    Google Scholar 

  45. Ma, Z. et al. Disorder-induced broadening of the spin waves in the triangular-lattice quantum spin liquid candidate YbZnGaO4. Phys. Rev. B 104, 224433 (2021).

    Article  ADS  Google Scholar 

  46. Shimokawa, T., Watanabe, K. & Kawamura, H. Static and dynamical spin correlations of the \(S=\frac{1}{2}\) random-bond antiferromagnetic Heisenberg model on the triangular and kagome lattices. Phys. Rev. B 92, 134407 (2015).

    Article  ADS  Google Scholar 

  47. Han, T.-H. et al. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite. Phys. Rev. B 94, 060409 (2016).

    Article  ADS  Google Scholar 

  48. Hering, M. et al. Phase diagram of a distorted kagome antiferromagnet and application to Y-kapellasite. npj Comput. Mater. 8, 10 (2022).

    Article  ADS  Google Scholar 

  49. Zheng, G. et al. Unconventional magnetic oscillations in kagome Mott insulators. Preprint at arxiv.org/abs/2310.07989 (2023).

  50. Dey, S. Destabilization of U(1) Dirac spin liquids on two-dimensional nonbipartite lattices by quenched disorder. Phys. Rev. B 102, 235165 (2020).

    Article  ADS  Google Scholar 

  51. Yang, K., Varjas, D., Bergholtz, E. J., Morampudi, S. & Wilczek, F. Exceptional dynamics of interacting spin liquids. Phys. Rev. Res. 4, L042025 (2022).

    Article  Google Scholar 

  52. Seifert, U. F. P., Willsher, J., Drescher, M., Pollmann, F. & Knolle, J. Spin-Peierls instability of the U(1) Dirac spin liquid. Preprint at arxiv.org/abs/2307.12295 (2023).

  53. Savary, L. & Balents, L. Disorder-induced quantum spin liquid in spin ice pyrochlores. Phys. Rev. Lett. 118, 087203 (2017).

    Article  ADS  Google Scholar 

  54. Sibille, R. et al. Coulomb spin liquid in anion-disordered pyrochlore Tb2Hf2O7. Nat. Commun. 8, 892 (2017).

    Article  ADS  Google Scholar 

  55. Sherman, N. E., Dupont, M. & Moore, J. E. Spectral function of the J1 − J2 Heisenberg model on the triangular lattice. Phys. Rev. B 107, 165146 (2023).

    Article  ADS  Google Scholar 

  56. Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn 80, SB028 (2011).

    Article  Google Scholar 

  57. Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn 82, SA031 (2013).

    Article  ADS  Google Scholar 

  58. Lass, J., Jacobsen, H., Mazzone, D. G. & Lefmann, K. MJOLNIR: a software package for multiplexing neutron spectrometers. SoftwareX 12, 100600 (2020).

    Article  Google Scholar 

  59. Lass, J. et al. Commissioning of the novel continuous angle multi-energy analysis spectrometer at the Paul Scherrer Institut. Rev. Sci. Instrum. 94, 023302 (2023).

    Article  ADS  Google Scholar 

  60. Holstein, T. & Primakoff, H. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhou, Y. Li and P. Lee for discussions. This work is supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400 and 2021YFA1400401), the K. C. Wong Education Foundation (Grant No. GJTD-2020-01), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33000000) and the Research Grants Council of Hong Kong Special Administrative Region of China (Project Nos. 17301721, AoE/P701/20, 17309822, C7037-22GF, A_HKU703/22 and 17302223). Measurements on AMATERAS were performed based on the approved proposal (Grant No. 2022B0048). The measurement on CAMEA was carried out under the proposal number 20220991. We thank HPC2021 system under the Information Technology Services and the Blackbody HPC system at the Department of Physics, University of Hong Kong, as well as the Beijng PARATERA Tech CO., Ltd. (https://cloud.paratera.com).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. grew the samples and analysed the INS data. C.Z., R.C. and Z.Y.M. performed the theoretical analysis and calculations. H.Z. and L.H. helped in co-aligning the crystals. K.L. helped in preparing the deuterated samples. M.K., K.N., Y.W., W.Z. and D.G.M. carried out the neutron scattering experiments. Z.Y.M. and S.L. drafted the paper with input from all authors. S.L. designed and supervised the project.

Corresponding authors

Correspondence to Kenji Nakajima, Zi Yang Meng or Shiliang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs .1–11 and Discussion.

Source data

Source Data for Fig. 2

ASCII data for colour maps of the low-energy INS results.

Source Data for Fig. 3

ASCII data for constant energy cuts along [H, 0] and FWHM versus energy.

Source Data for Fig. 4

ASCII data for high-energy INS colour maps and calculated Kramers–Kronig relation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Zhou, C., Zhou, H. et al. Spectral evidence for Dirac spinons in a kagome lattice antiferromagnet. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02495-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing